用户名: 密码: 验证码:
高压静电纺丝技术制备功能性无机纳米纤维及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一维纳米纳米结构材料如纳米管,纳米线,纳米纤维因为具有基础的科学研究和潜在的技术应用而吸引了很多研究工作人员的兴趣。近年来,电纺技术是一种简单和通用的方法获得连续的微米级别一下的超细的天然或合成高分子、以及纳米颗粒和高分子复合纤维,也可以把高分子和无机盐的复合纤维煅烧后得到陶瓷的无机物纳米纤维。电纺过程中,通过对溶液供给系统的改进,可以得到具有Core-Shell结构或者中空的高分子或无机物纳米纤维,通过对接受装置的改进,可以得到单根或者高度取向的纳米纤维。这种制备无机纳米纤维具有很小的纳米尺寸的直径,高的比表面积以及纤维之间形成的纳米空隙结构,这种具有特殊结构的材料在各领域都有很好的应用价值电纺技术不仅仅在实验室的研究,在工业化生产方面都有很好的应用领域,可以作为广电,传感技术,催化,过滤以及医学方面的器件和产品。以及碳纤维材料的的方法。
     本论文以电纺丝技术为基础,结合模板法和溶胶-凝胶技术,围绕着一维功能性纳米纤维制备和性能研究开展了以下六部分研究工作:
     (1)单组分无机氧化物纳米纤维的制备.以聚乙烯醇(PVA)为高分子,分别以醋酸镍、醋酸钴、醋酸铜、醋酸锰、醋酸镁和氯氧化锆反应制得前驱体,采用静电纺丝法制得聚乙烯醇(PVA)/无机盐的复合纤维,经焙烧后分别得到分布均匀、具有多孔结构的NiO、Co3O4、CuO、Mn3O4、MgO和ZrO2无机纳米纤维。
     (2)无机复合氧化物纳米纤维的制备.以聚乙烯醇(PVA)为高分子,分别以无机盐醋酸镍和醋酸钴;水解得到SiO2和醋酸镍;水解得到SiO2和醋酸锌混合制得前驱体,采用静电纺丝法制得聚乙烯醇(PVA)/无机盐的复合纤维,经焙烧后分别得到分布均匀、NiCo2O4 ,NiO/SiO2, ZnO/SiO2无机复合纳米纤维。
     (3)采用两步合成法制备了Ag/SiO2,Ag/TiO2复合纳米纤维。第一步分别用PVA/SiO2, PVP/Ti(OC4H9)4为前驱体,采用静电纺丝技术制备的纤维,经过高温煅烧后得到SiO2和纯锐钛矿相TiO2纳米纤维。第二步把无机物纤维,在银氨溶液中发生氧化还原反应得到不同银修饰的Ag/SiO2,Ag/TiO2复合纳米纤维。
     (4)静电纺丝技术制备聚丙烯氰纳米纤维经过预氧化和碳化得到碳纤维纳米纤维,直接切成圆形的电极片,不需要在制片过程中使用导电剂和黏合剂,研究其在锂离子电池负极材料的性能。
     (5)利用静电纺丝技术和溶胶-凝胶方法,可以制备高分子和无机盐类复合纤维,通过高分煅烧得到具有纤维特殊结构的生物玻璃,通过在SBF溶液的生长过程发现,制备的生物玻璃具有很好的生物活性。
     (6)静电纺丝过程中,关于高度取向纳米纤维,核壳结构同轴纳米纤维,以及多喷嘴干产量的电纺热点问题的跟踪研究。
In recent years, one-dimensional (1D) nanostructural materials such as nanorods, nanowires, or nanofibers, have been actively studied due to both scientific interests and potential applications in nanodevices and functional materials. Recently, Electrospinning technique has been used as a simple and versatile method to obtain of continuous fibers with diameters down to a few nanometers. The method can be applied to synthetic and natural polymers, polymer alloys, and polymers loaded with nanoparticles, or active agents, as well as to ceramics.. Fibers with complex architectures, such as core–shell fibers or hollow fibers, can be produced by special electrospinning methods. It is also possible to produce structures ranging from single fibers to ordered arrangements of fibers. The as-prepared inorganic nanofiber mats possess small fiber diameters and porous structure, which will result in a high specific surface area that is beneficial in a wide variety of applicants. Electrospinning is not only employed in university laboratories, but is also increasingly being applied in industry.The scope of applications, in fields as diverse as optoelectronics, sensor technology, catalysis, filtration, and medicine.
     In this paper, the series of functional nanofibers were prepared by using sol–gel processing and electrospinning technique. As followed
     (1)Preparations of Metal Oxide nanofibers: NiO, Co3O4, CuO, Mn3O4, MgO and ZrO2 nanofibres with a diameter of 50-200nm could be successfully obtained by using PVA/inorganic component composite electrospun fibers as precursor through calcinations. The above fibers were further investigated by TG-DTA, XRD, FT-IR and SEM, respectively. The results showed that the crystalline phase and morphology of the fibers were largely influenced by the calcinations temperature.
     (2)Preparations of Metal Oxide composite nanofibers: A series of Metal Oxide composite nanofibers were successfully prepared by employing electrospun and gol-gel technique. First, a precursor mixture of polyvinyl alcohol (PVA)/cobalt acetate/nickel acetate, (PVA)/silica/ nickel acetate or PVA/silica/ nickel acetate Zinc was prepared and electrospun nanofibers of them were further made by electrospinning methods. After calcinations of the above precursor fibers, NiCo2O4, NiO/SiO2, ZnO/SiO2 composite nanofibres with a diameter of 100-200nm could be successfully obtained. The fibers were investigated by TG-DTA, XRD, FT-IR and SEM, respectively. The results showed that the crystalline phase and morphology of the fibers were largely influenced by the calcinations temperature.
     (3) Ag/SiO2 and Ag/TiO2 composite nanofibers were fabricated through a two-step method: First, SiO2 or TiO2 nanofibers were obtained by electrospinning of PVA/silica or TiO2/PVP composite with a further calcination at 700oC. Then, SiO2 and TiO2 nanofibers were transferred into the Ag(NH3)2+ solution. After the oxide-reduced reaction by Sn2+ and CH3CHO, .Ag coted SiO2 or TiO2 nanofibers were obtained finally.
     (4) Carbon nanofibers were prepared by the stabilization and carbonization of polyacrylonitrile (PAN) nanofibers which were obtained by electrospinning technique. The prepared nanofibers tissue was test as the Anode Material of Lithium-Ion Secondary Batteries。.
     (5) The bioglass nanofibers with a weight ratio of SiO2 50%-NaO 22.5%-CaO 22.5%-P2O5 5% were successfully prepared through electrospinning technique. The precursor mixture of polyvinylalcohol (PVA)/inorganic components was firstly fabricated into electrospun nanofibers, and then a calcinations treatment was followed. Finally, the bioactive nanofibers with diameters ranging from 80 to100nm were obtained and their bio-activities were further investigated in SBF.
     (6) Investigations of highly ordered nanofibers, core-shell structured nanofibers and Multiple spinnerets technique were performed and discussed.
引文
[1]Zhang L, Webster T J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration[J]. Nano Today, 2009, 4(1): 66-80.
    [2]Gao J, Xu B. Application of nanomaterials inside cells[J]. Nano Today, 2009, 4(1): 37-51.
    [3]Suh W H, Suh Y H, Stucky G D. Multifunctional nanosystems at the interface of physical and life sciences[J]. Nano Today, 2009, 4(1): 27-36.
    [4]Comini E, Baratto C, Faglia G, et al.Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors[J]. Prog. Mater. Sci., 2009, 54(1): 1-67.
    [5]张立德,牟季美.纳米材料和纳米结构.科学出版社, 2001, 175-198.
    [6]Lijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [7]Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 2001, 291(5505): 851-853.
    [8]漆奇.低维纳米金属氧化物半导体敏感特性的研究[D]: [吉林大学博士论文].长春:电子科学与工程学院, 2009.
    [9]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.
    [10]Wagner R S, Ellis W C, Vapor-liquid-liquid mechanism of single crystal growth[J]. Appl. Phys. Lett., 1964, 4(5): 89-90.
    [11]Huang M H, Mao S, Yang P. Room temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.
    [12]Wang J, Gudiksen M S, Lieber C M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science, 2001, 293(5534): 1455-1457.
    [13]Johnson J, Choi K P, Yang P, Single gallium nitride nanowire lasers[J]. Nature Mater., 2002, 1(2): 106-110.
    [14]Kind H, Yan H, Yang P. Nanowire ultraviolet photodetectors and optical switches[J]. Adv. Mater., 2002, 14(2): 158-160.
    [15]Trentler T J, Hickman K M, Geol S C, et al. Solution-Liquid-Solid growth of crystalline III-V semiconductors: an analogy to Vapor-liquid-solid growth[J]. Science, 1995, 270(5243):1791-1794.
    [16]Rudolph J, Reddy K L, Chiang J P, et al. Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: Pyridine-mediated ligand acceleration[J]. Am. Chem. Soc., 1997, 119(26): 6189-6190.
    [17]Markowttz P D, Zach M P, Gibbons P C, et al. Phaseseparation in AlxGa1-xAs nanowhiskers grown by the solution-liquid-solid mechanism[J]. J. Am. Chem. Soc., 2001, 123: 4502-4511.
    [18]Lourie O R, Jones C R, Bartlet B M, et al. CVD growth of boron nitride nanotubes[J]. Chem. Mater., 2000, 12(7): 1808-1810.
    [19]Dingman S D, Rath N P, Markowttz P D, et al. Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors[J]. Angew. Chem. Int. Ed., 2000, 39(8): 1470-1472.
    [20]Qian Y T. Handbook of Nanostructured Materials and Nanotechnology[M]. Edited byNalwa, volume1: synthesis and processing, A. 424-437.
    [21]Dutta P K, Gregg J R. Hydrothermal synthesis of tetragonal barium titanate[J]. Chem. Mater., 1992, 4(4): 843–846.
    [22]Heath J R, Legouse F K. A liquid solution synthesis of single crystal germanium quantum wires[J]. Chem.Phys.Lett., 1993, 208(3-4): 263-268.
    [23]Li Y D, Li H, Qian Y T. Solvothermal elemental direct reaction to CdE (E=S,Se,Te) semiconductor nanorod[J]. Inorg.Chem., 1999, 38: 1382-1387.
    [24]Jiang Y, Wu Y, Zhang S Y, et al. A.catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature[J]. J. Am. Chem. Soc., 2000, 122(49): 12383-12384.
    [25]Feng S H, Xu R R. New materials in hydrothermal synthesis[J]. Acc. Chem. Res., 2001, 34(3): 239-247.
    [26]Walton R I. Subcritical solvothermal synthesis of condensed inorganic materials[J]. Chem. Soc. Rev., 2002, 31(4): 230-238.
    [27]Wang X, Li Y. Selected-control hydrothermal synthesis ofα-andβ-MnO2 single crystal nanowires[J]. J.Am.Chem.Soc., 2002, 124(12): 2880-2881.
    [28]Tang K B, Qian Y T, Zeng J H, et al. Solvothermal route to semiconductor nanowires[J]. Adv.Mater., 2003, 15(5): 448-450.
    [29]Tang Q, Zhou W J, Qian Y T. A template-free aqueous route to ZnO nanorod arrays with high optical property[J]. Chem. Commun., 2004, 10(6): 712–713.
    [30]Liang J B, Liu J W, Qian Y T, et al. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles[J]. J. Phys. Chem. B, 2005, 109(19): 9463–9467.
    [31]Ma R Z, Zhang L Q, Sasaki T, et al. Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements[J]. Adv. Mater, 2004, 16(11): 918–922.
    [32]Lou X W, H. Zeng C. Hydrothermal synthesis of alpha-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate[J]. Chem. Mater., 14: 4781–4789.
    [33]Cao M H, Liu T F, Gao S, et al. Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: large-scale synthesis, formation mechanism, and properties[J]. Angew. Chem. Int. Ed., 2005, 44: 4197–4201.
    [34]Penn L, Banfield J F. Imperfect Oriented Attatchment: Dislocation Generation in Defect-Free Nanocrystals[J]. Science, 1998, 281: 969-971.
    [35]Pacholski R C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods[J]. Angew. Chem. Int. Ed., 2002, 41(7): 1188-1191.
    [36]Yin Y, Rioux R M, Erdonmez C K, et al. Alivisatos A P, Formation of hollow nanocrystals through the nanoscale kirkendall effect[J]. Science, 2004, 304: 711-714.
    [37]Liu B, Zeng H C. Fabrication of ZnO‘dandelions’via a modified kirkendall process[J]. J. Am. Chem. Soc., 2004, 126(51): 16744–16746.
    [38]Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of“dandelions”[J]. J. Am. Chem. Soc., 2004, 126(26): 8124-8125.
    [39]Yao W T, Yu S H. Recent advances in hydrothermal synthesis of low dimensional nanoarchitectures[J]. Int. J. Nanotechnology, 2007, 4(1-2): 129-162.
    [40]Cao X, Lan X, Guo Y, et al. From CdTe nanoparticles precoated on silicon substrate to long nanowires and nanoribbons: oriented attachment controlled growth[J]. Cryst. Growth. Des., 2008, 8(2): 575-580.
    [41]Zhu H, Wang X, Yang F, et al. Template-free, surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In2O3[J]. Cryst. Growth. Des., 2008, 8(2): 950-956.
    [42]Nguyen T D, Mrabet D, Do T O. Controlled self-assembly of Sm2O3 nanoparticles into nanorods: simple and large scale synthesis using bulk Sm2O3 powders[J]. J. Phys. Chem. C, 2008, 112(39): 15226-15235.
    [43]Li M, H Schnablegger, S Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization[J]. Nature, 1999, 402(6760): 393-395.
    [44]Jana N R, Gearheart L, Murphy,C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J. Phys. Chem. B, 2001, 105(19): 4065-4047.
    [45]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controlladble aspect ratio[J]. Chem. Commun., 2001, 7: 617-618.
    [46]Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv. Mater., 2002, 14(1): 80-82.
    [47]Li D, Thompson R S, Bergmann G, et al. Template-based synthesis and magnetic properties of cobalt nanotube arrays[J]. Adv. Mater., 2008, 20(23): 4575-4578.
    [48]昊大诚,杜仲良,高绪珊,[M]纳米纤维.化学工业出版社, 2003, 44.
    [49]Formhals A. U.S. Patent No. 1, 975, 504, 1934.
    [50]Vonnegut B, Neubauer R L. Production of monodisperse liquid particles by electrical atomization[J]. J Colloid Sci, 1952, 7(6): 616-622.
    [51]Baumgarten P K. Electrostatic spining of acrylic microfibers[J]. J. Coll. Int. Sci., 1971, 36(1): 71-79.
    [52]Larrondo L, Manley R S T J. Electrostatic fibers spinning from polymer melts, I.Experimental observations on fibers formation and properties[J]. J Polymer Sci: Polymer Physics Ed, 1981, 19: 909-920.
    [53]肖长发.电子纺丝成形及纤维形态结构研究[J].高科技纤维与应用, 2003, 28(1): 10-14.
    [54]Shin Y M, Hohman M M, Brenner M P. Experimental characterization of electrospinning: the electrically forced jet and instabilities[J]. Polymer, 2001, 42(25): 9955-9967.
    [55]Andreas Griiner, Joachim H, Wendorff. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers[J]. Angew. Chem. Int. Ed., 2007, 46: 5670-5703.
    [56]Theron A, Zussman E, Yarin A L. Formation of nanofiber crossbars in electrospinning[J]. Appl. Phys. Lett. 2003, 82(6): 973-975.
    [57]Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology, 2001, 12(3): 384-390.
    [58] Theron, A.; Zussman, E.; Yarin, A. L. Nanotechnology 2001, 12, 384-390.
    [59]Sundaray B, Subramanian V, Natarajan T S. Electrospinning of continuous aligned polymer fibers[J]. Appl. Phys. Lett., 2004, 84(7): 1222-1224.
    [60]Li D, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J]. Nano Lett. 2003, 3(8): 1167-1771.
    [61]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers[J]. J. Electrostat. 1995, 35(2-3): 151-160.
    [62]Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology, 2001, 12(3): 384-390.
    [63]Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42(19): 8163-8170.
    [64]Fong H, Liu W D, Wang C S, et al. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite[J]. Polymer, 2002, 43(3): 775-780.
    [65]Dersch R, Liu T, Schaper A K, et al. Electrospun nanofibers: Internal structure and intrinsic orientation[J]. J. Polym. Sci., Part A: Polym. Chem., 2003, 41(4): 545-553.
    [66]Katta P, Alessandro M, Ramsier R D, et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drumcollector[J]. Nano Lett., 2004, 4(11): 2215-2218.
    [67]Yarin A L, Zussman E. Synthesis of core/shell structure of glycidyl–functionalized poly(methyl methacrylate) latex nanoparticles via differential microemulsion polymerization[J]. Polymer, 2004, 45(11): 2977-2986.
    [68]Dosunmu O O, Chase G G, Kataphinan W, et al. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface[J]. Nanotechnology, 2006, 17: 1123-1127.
    [69]Ding B, Kimura E, Sato T, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer, 2004, 45(6): 1895-1902.
    [70]Yarin A L, Zussman E. Upward needleless electrospinning of multiple nanofibers[J]. Polymer, 2004, 45(9): 2977-2980.
    [71]Sun Z, Zussman E, Yarin A L, et al. Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J]. Adv. Mater. 2003, 15(22): 1929-1932.
    [72]Li D, Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning[J]. Nano Lett, 2004, 4(5): 933-938.
    [73]Gupta P, Wilkes G L. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach[J]. Polymer, 2003, 44(20): 6353-6359.
    [1]Huang M H, Mao S, Feick H,et al. Room-Temperature Ultraviolet Nanowire Nanolasers[J]. Science, 2001 292: 1897-1899.
    [2]Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature, 2001, 409: 66-69.
    [3] Iijma S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
    [4]Morales A M, Lieber C. M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires[J]. Science, 1998, 279: 208-211.
    [5]Martin C R. Nanomaterials: A Membrane-Based Synthetic Approach[J]. Science, 1994, 266: 1961-1966.
    [6]Han W Q, Fan S S, li Q Q, et al. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction[J]. Science, 1997, 277: 1287-1289.
    [7]Wang Y D, Ma C L, Sun X D, et al. Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method[J]. Inorg. Chem. Commu., 2002, 5(10): 751-755.
    [8]Shi W S, Zheng Y F, Wang N, et al. A General Synthetic Route to III-V Compound Semiconductor Nanowires[J]. Adv. Mater., 2001, 13(8): 591-594.
    [9]Pan Z W, Dai Z R, Wang E L. Nanobelts of Semiconducting Oxides[J]. Science, 2001, 291: 1947-1949.
    [10]Liu S, Yue J, Gedanke A. Synthesis of Long Silver Nanowires from AgBr Nanocrystals[J]. Adv.Mater., 2001, 13(9): 656-658.
    [11]Shao C L, Kim H. Y, Gong J, et al. A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor[J]. Nanotechnology, 2002, 13: 635-637.
    [12]Dai H Q, Gong J, Kim H Y, et al. ibid, 2002, 13: 674.
    [13]Hasson D F, Mater J. Sci, 1985, 20: 4147.
    [14]Kondilis P, Mousdis G, Kordas G. Studies in 123 texturing through pressure and MgO whiskers seeding[J]. Physica C, 1994, 235–240: 467-468.
    [15]Yuan Y S, Wong M S, Wong S S. ibid, 1995, 250: 247.
    [16]Yin Y D, Zhang G T, Xia Y N. Synthesis and Characterization of MgO Nanowires Through a Vapor-Phase Precursor Method[J]. Adv. Funct. Mater., 2002, 12(4): 293-298.
    [17]Cui Z, Meng G W, Huang W D, et al. Preparation and characterization of MgO nanorods[J]. Mater. Res. Bull., 2000, 35(10): 1653-1659.
    [18]Zhu Y Q, Hsu W K, Zhou W Z, et al. Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures[J]. Chem. Phys. Lett., 2001, 347(4-6): 337-343.
    [19]Zhang J, Zhang L D. Intensive green light emission from MgO nanobelts[J]. Chem. Phys. Lett., 2002, 363: 293-297.
    [20]Sadtler Research Laboratories, INC. U.S.A., 1965, Inorganics Grating Spectra Y 89K.
    [21]Nishio Y, Manley R S. Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride[J]. Macromolecules, 1988, 21(5): 1270-1277.
    [22]Wei Z Q, Qi H, Ma P H, et al. A new route to prepare magnesium oxide whisker[J]. Inorg. Chem. Commu., 2002, 5(2): 147-149.
    [1]Jeong I S ,Kim J H , Im S , Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure Applied Physics letters [J]. 2003, 83 (14) 2947-2948
    [2]Cao H , Zhao Y G , Ho S T , et al . Random laser action in semiconductor power [J] .Phys . Rev . lett . , 1999 , 82 : 2278-2280
    [3]叶志镇,张银珠,陈汉鸿等ZnO光电导紫外探测器的制备和特性研究[J].电子学报. 2003, 31:1605-1607
    [4]Harada Y, Hashimoto S, Enhancement of band-edge photoluminescence of bulk ZnO single crystals coated with alkali halide [J]. Phys. Rev. B. 2003, 68: 45-421.
    [5]Look D C, Reynolds D C, Sizelove J R et al, Electrical properties of bulk ZnO[J]. Solid State Commun. 105 (1998) 399-401
    [6]Makino T, Tamura K, Chia C H et al, Photoluminescence properties of ZnO epitaxial layers grown on lattice-matched ScAlMgO4 substrates[J]. J. Appl. Phys. 2002, 92: 7157-7159
    [7]Ogata K, Maejima K, Fujita S, Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy[J]. J. Cryst. Growth 2003, 248: 25-30
    [8]Kim S W, Fujita S, Self- Assembled Three-Dimensional ZnO Nanosize Islands on Si Substrates with SiO2 Intermediate Layer by Metalorganic Chemical Vapor Deposition[J]. Jpn. J. Appl. Phys. 2002, 41: 543-548
    [9]Mo C M, Li Y H, Liu Y C, Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels[J]. J. Appl. Phys 1998,. 83: 4389-4391
    [10]Sanjeev J , Shuo G , Mark H S ,et al . Synthesis of composite film [J]. Chemicaol Vapor Deposition . , 1998 , 4 : 253-257
    [11]Li D,Xia Y , Fabrication of Titania Nanofibers by Electrospinning[J]. Nano. Letters. 2004, 3 (4): 555-558
    [12]Shao C , Kim H Y , Gong J et al A novel method for making silica nanofibers by using electrospun fibres of polyvinylalcohol/silica composite as precursor Nanotechnology, 2002, 13: 635-737
    [13]Guan H , Shao C , Wen S , et al Prepartion and characterization of NiO nanofibres Via an electrospinning technique [J]. Inorganic Chemistry Communications 2003, 6: 1302-1303
    [14]Guan H , Shao C , Liu Y C et al Fabrication of NiCo2O4 nanofibers by electrospinning[J] Solid State Communications 2004, 131: 107-109
    [15]Yang X H , Shao C , Guan H Y et al Preparation and chatacterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite feber as precursor[J]. Inorg. Chem. Commun. 2004, 7: 176-178
    [16]Li Z Q , Xiong y J , Xie Y Slected-Contor Syethesis of ZnO Nanowires and Nanorods Via a PEG-Assisted Route[J]. Inorganic Chemistry 2003, 42: 8105-8109.
    [1]Regan B O, GrGtzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-740.
    [2]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chem. Rev., 1995, 95(3): 735-758.
    [3]Mor G K, Shankar K, Paulose M, et al. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano. Lett., 2006, 6(2): 215-218.
    [4] (a) Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca,M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles[J]. J. Am. Chem. Soc., 1982, 104(11): 2996-3002. (b) Kisch H, Zang L, Lange C, et al. Modified, Amorphous Titania - A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light[J]. Angew. Chem. Int. Ed., 1998, 37: 3034-3036. (c) Zang L, Lange C, Abraham I, et al. Amorphous Microporous Titania Modified with Platinum(IV) Chloride: A New Type of Hybrid Photocatalyst for Visible Light Detoxification[J]. J. Phys. Chem. B., 1998, 102(52): 10765-10771.
    [5] (a) Sakthivel S, Kisch H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide[J]. Angew. Chem. Int. Ed., 2003, 42(40): 4908. (b) Park J H, kim S, Bard A J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Letters, 2006, 6(1): 24-28.
    [6] (a) Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96. (b) Wang X C, Yu J C, Yip H Y, et al. A Mesoporous Pt/TiO2 Nanoarchitecture with Catalytic and Photocatalytic Functions[J]. Chem. Eur. J., 2005, 11(10): 2997-3004.
    [7] (a) Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293: 269-271. (b) Umebayashi T, yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl. Phys. Lett., 2002, 81, 454-456. (c) Livraghi S, Votta A, M. Paganini C, et al. The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis[J]. Chem. Commun., 2005, 4: 498-500. (d) Alvaro M, Carbonell E, Fornes v, et al. Enhanced Photocatalytic Activity of Zeolite- Encapsulated TiO2 Clusters by Complexation with Organic Additives and N-Doping[J]. Chem. Phys. Chem., 2006, 7(1): 200-205.
    [8]Xin B F, Jing L Q, Ren Z Y, et al. Effects of Simultaneously Doped and Deposited Ag on thePhotocatalytic Activity and Surface States of TiO2[J]. J. Phys. Chem. B, 2005, 109(7): 2805-2809.
    [9] (a) Zhang L Z, Yu J C, Yin H Y, et al. Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated TiO2 with Enhanced Photocatalytic and Bactericidal Activities[J]. Langmuir, 2003, 19(24): 10372-10380. (b) Tada H, Ishida T, Takao A, et al. Drastic Enhancement of TiO2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters[J]. Langmuir, 2004, 20(19): 7898-7900.
    [10]Stathatos E, Lianos P, Falaras P, et al. Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films[J]. langmuir, 2000, 16(5): 2398-2400.
    [11] (a) Chen S H, Carroll D L. Synthesis and Characterization of Truncated Triangular Silver Nanoplates[J]. Nano. Lett., 2002, 2(9): 1003-1007. (b) Park H K, Yoon J K, Kim K. Novel Fabrication of Ag Thin Film on Glass for Efficient Surface-Enhanced Raman Scattering[J]. Langmuir, 2006, 22(4): 1626-1629. (c) Wen B M, Liu C Y, Liu Y. Depositional Characteristics of Metal Coating on Single-Crystal TiO2 Nanowires[J]. J. Phys. Chem. B, 2005, 109(25): 12372-12375.
    [12]Cozzoli O D, Comparellli R, Fanizza E, et al. Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2 Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution[J]. J. AM. Chem. Soc. 2004, 126(12): 3868-3879.
    [13]Li D, Xia Y N. Fabrication of Titania Nanofibers by Electrospinning[J]. Nano. Lett., 2003, 3(4): 555-560.
    [14]Hu J W, Zhao B, Xu W Q, et al. Aggregation of Silver Particles Trapped at an Air?Water Interface for Preparing New SERS Active Substrates[J]. J. Phys. Chem. B, 2002, 106(25): 6500-6506.
    [1]Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162-163.
    [2]Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
    [3]Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306: 666-669.
    [4]吴宇平等.锂离子电池-应用与实践[M].化学工业出版社.
    [5]Wu X L, Liu Q, Guo Y G, et al. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11: 1468-1471.
    [1]Langer R, Vacanti J P. Tissue engineering[J]. Science, 1993, 260: 920-926.
    [2]Koh C J, Atala A. Tissue Engineering, Stem Cells, and Cloning: Opportunities for Regenerative Medicine[J]. J. Am. Soc. Nephrol., 2004, 15: 1113-1125.
    [3]Schreuder-Gibson H L, Gibson P, Senecal K, et al. Applications of electrospun nanofibers in current and future materials[J]. ACS Symposium Series, 2006, 918: 121-136.
    [4]Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers[J]. Colloids Surf. A, 2001, 187-188: 469-481.
    [5]Nair L S, Bhattacharyya S, Laurencin C T. Development of novel tissue engineering scaffolds via electrospinning[J]. Expert Opin. Biol. Ther., 2004, 4(5): 659-668.
    [6]Khil M S, Bhattarai S R, Kim H Y, et al. Novel fabricated matrix via electrospinning for tissue engineering[J]. J. Biomed. Mater. Res. Part B, 2005, 72(1): 117-124.
    [7]Xu C, Yang F, Wang S, et al. J. Biomed. Mater. Res[D]. [453] R. H. MOller, K. MTder, S. Gohla, Eur. J. Pharm. Biopharm. 2000, 50; 161-177.
    [8]Soppimath K S, Aminabhavi T M, Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J. Controlled Release, 2001, 70(1): 1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700