用户名: 密码: 验证码:
氧化物纳米纤维甲/乙醇气体传感器的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于一维纳米材料具有优异的物理、化学特性,因此使其在光电器件,生物医药,催化传感等方面有着广泛的应用。最近研究表明基于一维纳米金属氧化物的气敏传感器具有更优异的气敏性能,开发研制新型一维纳米材料是改进气敏性能的有效方法。静电纺丝技术操作简单、成本低廉是目前被公认的一种能快速生产一维纳米材料的技术。本论文对基于电纺纳米纤维为气敏材料的甲醇、乙醇传感器进行了系统的研究,主要分为以下四个部分:
     (1)利用静电纺丝技术结合热处理过程制备了氧化铁(α-Fe_2O_3)纳米纤维。研究结果表明:α-Fe_2O_3纳米纤维对乙醇表现出较好的气敏性能,但是灵敏度有待提高。
     (2)基于相同的方法制备出氧化铟(In_2O_3)纳米纤维及其复合纤维。纯的In_2O_3纳米纤维对乙醇的灵敏度很高,响应恢复时间也很快,这初步解决了α-Fe_2O_3纳米纤维对乙醇灵敏度低的弱点。利用液相法在具有良好气敏性能的氧化铟纳米纤维表面修饰Pt纳米粒子,研究表明此传感器对有毒气体硫化氢有很好的响应;掺杂适当的氧化物是提高气敏性能的又一有效途径。因此,选择在气敏方面有着良好性能的氧化锡与氧化铟复合,制备出铟锡复合纳米纤维(In_2O_3/SnO2),复合纳米纤维对甲醇具有很好的响应。
     (3)稀土金属氧化物是重要的工业原料而且有很好的催化性能。因此,选择三种具有代表性的氧化物La_2O_3,Eu_2O_3,CeO2掺杂氧化铟(In_2O_3)纳米纤维以提高对甲醇的响应。实验表明2% Eu_2O_3/In_2O_3复合纤维对甲醇的气敏性能最好。
     (4)制备钙钛矿型(ABO3)金属氧化物纳米纤维,研究LaFeO3,LaCoO3,LaInO3对甲醇的气敏性能。实验结果表明:在这三种钙钛矿型稀土复合纤维中铁酸镧(LaFeO_3)纳米纤维对甲醇有最好的响应,而且在气体的选择性方面也有一定改善。既可以通过改变钙钛矿中B位原子的种类来改变气敏性能,也可以通过改变工作温度来实现对某种气体的选择性。
Metal oxide thin film gas sensors have been widely used in today's industrial production in the gas detection, environmental protection, the atmospheric monitoring, the detection of alcohol in traffic safety, the public safety of the toxic gas detection, combustible gas as well as fires warning. However, they usually suffer from several critical limitations such as relative low sensitivity, long response and recovery time and poor selectivity. Along with industrial development and technological advances, it is difficult to meet the requirements of modern industry. Therefore, it requires developing new gas-sensing materials, designing the new structure of the sensor to solve these problems. The rapid development of nanotechnology and nano-materials with nano-effects makes great success in the improvement of gas sensors. With larger surface area, smaller size than the bulk material, sensitive material in a nano-scale can significantly enhance the sensitivity of the sensor performance.
     One-dimensional (1D) material with excellent physical and chemical properties has a wide range of applications in the optoelectronic devices, bio-medicine, catalysis and sensor. Recent studies have shown that 1D metal oxide-based gas sensor has more excellent gas-sensing properties. Thus development of a new 1D material is an effective way to improve gas-sensing properties. In all the methods and technology to prepare 1D nanomaterials, electrospinning technique is most simple and inexpensive. It is to be recognized as a fast 1D nanostructures of production technology. Unfortunately, there are few reports on the gas sensor based on electrospun nanofibers. In this thesis, the sensors based on electrospun metal oxide nanofibers have been investigated systematically. The thesis is divided into the following four parts:
     (1)α-Fe_2O_3 ceramic nanofibers were prepared by electrospinning and followed by calcination. The experimental results exhibit that our product shows good characteristics to ethanol vapor. In particular, the sensor's response and recovery time is excellent, response time and recovery is 3 s and 5 s, respectively. However, the sensitivity needs to be improved.
     (2) In_2O_3 nanofibers have been fabricated by electrospinning, followed by calcination in air at 700 ?C. The sensor based on the as-prepared In_2O_3 nanofibers showed high response, fast response and recovery time towards ethanol gas. The weakness and low sensitivity to ethanol of the sensor based onα-Fe_2O_3 nanofiber has been initially solved. Noble metals are widely used in catalysis and gas sensing performance could be enhanced by doping the appropriate noble metals. In order to improve the properties of the sensor, we presented a simple and effective solution route to deposit Pt nanoparticles on electrospun In_2O_3 nanofibers for H2S gas detection and exhibited excellent gas sensing properties. In the previous studies, too little attention has paid to methanol which is a toxic substance and important industrial raw materials. Therefore, the study of methanol sensor has enormous and commercial value. In order to develop a methanol sensor, nanofibers in the In_2O_3-doped SnO2 appropriate to improve the response for methanol have been fabricated. Experiments show that when the content of In_2O_3 25% in the composite (In_2O_3/SnO2), which shows the best response for methanol, 600 ppm, the sensitivity is up to 130, response and recovery time is 8 s and 15 s, respectively.
     (3) Rare earth oxides are important industrial raw material which has a good catalytic performance. Therefore, three representative oxides, La_2O_3, Eu_2O_3, CeO2 were used as additive-doped indium oxide In_2O_3 nanofibers to enhance the response of methanol. Experiments show that the 2% Eu_2O_3/In_2O_3 composite nanofiber had the best performance for methanol gas. The sensor sensitivity is 5.3 when methanol concentration is 3 ppm. With the methanol concentration increased to 400 ppm, the sensitivity is actually up 834.
     (4) Perovskite-type (ABO3) metal oxide nanofibers were prepared to study the LaFeO3, LaCoO3, LaInO3 gas-sensing properties for methanol. Experimental results show that LaFeO3 composite nanofibers have the best responses on the methanol among the three perovskite-type nanofibers. When the concentration of methanol is 500 ppm, the sensitivity is 163, the response and recovery time is 12 s, 21 s (average). The selectivity can be improved not only by changing the types of atoms in the B but also by changing the operating temperature.
引文
[1]杨帆.传感器技术[M].西安:西安电子科技大学出版社,2008.
    [2]章吉良,周勇,戴旭涵.微传感器—原理、技术及应用[M].上海:上海交通大学出版社,2005.
    [3]倪星元,张志华.传感器敏感功能材料及应用[M].北京:化学工业出版社,2005.
    [4]康昌鹤,唐省吾.气、湿敏感器件及其应用[M].北京:科学出版社,1988.
    [5]康昌鹤,唐万新.半导体传感器技术[M].长春:吉林大学出版社,1991.
    [6]晋传贵,裴立宅,俞海云.一维无机纳米材料[M].北京:冶金工业出版社,2007.
    [7] WAGNER R S, ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett., 1964, 4:89-90.
    [8] BRENNER S S, SEARS G W. Mechanism of whisker growth-III nature of growth sites [J]. Acta Metallurgica, 1956, 4:268-270.
    [9] WU Y, YANG P. Direct observation of Vapor-Liquid-Solid nanowire growth [J]. J. Am. Chem. Soc., 2003, 15:353-389.
    [10] LIANG C, MENG G, LEI Y, et al. Catalytic growth of semiconducting In2O3 nanofibers [J]. Adv. Mater., 2001, 13:1330-1332.
    [11] HUANG M H, WU Y, FEICK H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv. Mater., 2000, 13:113-116.
    [12] DAI Z R, GOLE J L, STOUT J D, WANG Z L. Tin oxide nanowires, nanoribbons, and nanotubes [J]. J. Phys. Chem. B, 2002, 106:1274-1279.
    [13] CHEN Y J, LI J B, HAN Y S, YANG X Z, DAI J H, The effect of Mg vaporsource on the formation of MgO whiskers and sheets [J]. J. Cryst. Growth, 2002, 245:163-170.
    [14] BAI Z G, YU D P, ZHANG H Z, DING Y, WANG Y P, GAI X Z, HANG Q L, XIONG G C,FENG S Q. Nano-scale GeO2 wires synthesized by physical evaporation [J]. Chem. Phys. Lett., 1999, 303:311-314.
    [15]李永军,刘春艳.一维无机纳米材料的研究进展[J].感光科学与光化学, 2003, 21:446-448.
    [16] UMAR A, KIM S H, LEE Y S, NAHM K S, HAHN Y B. Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: structural and optical properties [J] J. Cryst. Growth, 2005, 282:131-136.
    [17]裴立宅,唐元洪,郭池等.水热及溶剂热合成法制备IV族一维无机纳米材料[J].稀有金属, 2005, 299:194-199.
    [18] LIU B, ZENG H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm [J]. J. Am. Chem. Soc., 2003, 125:4430-4431.
    [19] GUO M, DIAO P, CAI S M. Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions [J]. J. Solid State Chem., 2005, 178:1864-1873.
    [20] CAO M H, WANG Y H, GUO C X, QI Y J, HU C W, WANG E B. A simple route towards CuO nanowires and nanorods [J]. J. Nanosci. Nanotechnol., 2004, 4: 824-828.
    [21] WANG X, LI Y D. Solution-based synthetic strategies for 1-D Nanostructures [J]. Inorg. Chem., 2006, 45:7522-7534.
    [22] YANG Z H, ZHANG Y C, ZHANG W X, WANG X, QIAN Y T, WEN X G, YANG S H. Nanorods of manganese oxides: Synthesis, characterization and catalytic application [J]. Journal of Solid State Chemistry, 2006, 179:679-684.
    [23] KUMAR R V, KOLTYPIN Y, XU X N, YESHURUN Y, GEDANKEN A, FELNER I. Fabrication of magnetite nanorods by ultrasound irradiation [J]. J. Appl. Phys. 2001, 89:6324-6328.
    [24] POL V G, PALCHIK O, GEDANKEN A, FELNER I. Synthesis of europium oxide nanorods by ultrasound irradiation [J]. J. Phys.Chem. B, 2002, 106:9737-9743.
    [25] HU X L, ZHU Y J, WING S W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods [J]. Mater. Chem. Phys., 2004, 88:421-426.
    [26] XU C K, XU G D, LIU Y K, WANG G H. A simple and novel route for the preparation of ZnO nanorods [J]. Solid State Commun., 2002, 122:175-179.
    [27] XU C K, ZHAO X L, LIU S, WANG G H. Large-scale synthesis of rutile SnO2 nanorods [J]. Solid State Commun., 2003, 125:301-304.
    [28] RAHMAN S, YANG H. Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates [J]. Nano Lett., 2003, 3:439-442.
    [29] ZHENG M J, ZHANG L D, LI G H, SHEN W Z. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique [J]. Chem. Phys. Lett., 2002, 363:123-128.
    [30] MINTZ T S, BHARGAVA Y V, THORNE S A, et al. Electrochemical synthesis of functionalized nickel oxide nanowires [J]. Electrochem. Solid State Lett., 2005, 8: 26-30.
    [31] MIAO Z, XU D S, OUYANG J H, GUO G L, ZHAO X S, TANG Y Q. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires [J]. Nano Lett., 2002, 2:717-720.
    [32] XU H, QIN D H, YANG Z, LI H L. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method [J]. Mater. Chem. Phys., 2003, 80:524-528.
    [33] ZHOU Y K, LI H L. Sol-gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array [J]. J. Mater. Chem., 2002, 12:681-686.
    [34] YANG Z, HUANG Y, B. DONG, LI H L. Fabrication and structural properties of LaFeO3 nanowires by an ethanol-ammonia-based sol-gel template route [J]. Appl. Phys. A Mater. Sci. Process., 2005, 81:453-457.
    [35] WANG X Y, WANG X Y, HUANG W G, SEBASTIAN P J, GAMBOA S. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays [J]. J. Power Sources, 2005, 140:211-215.
    [36] ZHANG M, BANDO Y, WADA K. Sol-gel template preparation of TiO2 nanotubes and nanorods [J]. J. Mater. Sci. Lett., 2001, 20:167-170.
    [37] SHI K Y, XIN B F, CHI Y J, FU H G. Assembling porous Fe2O3 nanowire arrays by electrochemical deposition in mesoporous silica SBA-16 films [J]. Acta Chim. Sin., 2004, 62:1859-1861.
    [38] YANG H F, SHI Q H, TIAN B Z, LU Q Y, GAO F, XIE S H, FAN J, YU C Z, TU B, ZHAO D Y. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks [J]. J. Am. Chem. Soc., 2003, 125:4724-4725.
    [39] YANG H F, ZHAO D Y. Synthesis of replica mesostructures by the nanocasting strategy [J]. J. Mater. Chem., 2005, 15:1217-1231.
    [40] SHI K Y, CHI Y J, H T YU, XIN B F, AND FU H G. Controlled growth of mesostructured crystalline iron oxide nanowires and Fe-filled carbon nanotube arrays templated by mesoporous silica SBA-16 film [J]. J. Phys. Chem. B, 2005, 109: 2546-2551.
    [41] AJAYAN P M, STEPHAN O, REDLICH PH, COLLIEX C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures [J]. Nature, 1995, 375:564-567.
    [42] SATISHKUMAR B C, GOVINDARAJ A, NATHA M, RAO C N. Synthesis of metal oxide nanorods using carbon nanotubes as templates [J]. J. Mater. Chem., 2000, 10:2115-2119.
    [43] YAMAUCHI Y, KURODA K. Rational design of mesoporous metals and related nanomaterials by a soft-template approach [J]. Chem. Asian J., 2008, 3:664-676.
    [44] WANG Y D, MA C L, SUN X D, LI H D. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route [J]. J. Colloid Interf. Sci., 2005, 286:627-631.
    [45]陈翌庆.准一维纳米材料的合成及其研究进展[J].特种铸造机有色金属,2004, 4:4-7.
    [46]张作山,张树永,李文荣.模板及其在纳米材料合成领域的应用[J].化学进展, 2004, 16:26-34.
    [47] CONG H P, YU S H. Hybrid ZnO-dye hollow spheres with new optical properties from a self-assembly process based on evans blue dye andcetyltrimethylammonium bromide [J]. Adv. Funct. Mater., 2007, 17:1814-1820.
    [48] WAN J X, CHEN X Y, WANG Z H, YANG X G, QIAN Y T. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods [J]. J Cryst. Growth, 2005, 276:571-576.
    [49] HUANG Z M, ZHANG Y Z, KOTAKI M, RAMAKRISHNA S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos. Sci. Technol., 2003, 63:2223-2253.
    [50] LI D, XIA Y N. Electrospinning of nanofibers: Reinventing the wheel? [J]. Adv. Mater., 2004, 16:1151-1170.
    [51] GREINER A, WENDORFF J H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. [J]. Angew. Chem. Int. Edit., 2007, 46:5670-5703.
    [52] FRENOT A, CHRONAKIS I S. Polymer nanofibers assembled by electrospinning [J]. Curr. Opin. Colloid. In., 2003, 8:64-75.
    [53] BURGER C, HSIAO B S, BENJAMIN S, CHU B. Nanofibrous materials and their applications [J]. Annu. Rev. Mater. Res., 2006, 36:333-368.
    [54] FORMHALS A, US patent 1, 975, 504, 1934.
    [55] TAYLOR G I. Disintegration of water drops in an electric field [J]. Proc. Roy. Soc. London A, 1964, 280:383-397.
    [56] YARIN A L, KOOMBHONGSE S, RENEKER D H. Bending instability in electrospinning of nanofibers [J]. J. Appl. Phys., 2001, 89:3018-3026.
    [57] HAN T, RENEKER D H, YARIN A L. Buckling of jets in electrospinning [J]. Polymer, 2007, 48:6064-6076.
    [58] HOHMAN M M, SHIN Y M, RUTLEDGE G, BRENNER M P. Electrospinning and electrically forced jets. I. Stability theory [J]. Phys. Fluids, 2001, 13:2201-2220.
    [59] SHIN Y M, HOHMAN M M, BRENNER M P, et al. Electrospinning: A whipping fluid jet generates submicron polymer fibers [J]. Appl. Phes. Lett., 2001, 78:1149-1151.
    [60] SHIN Y M, HOHMAN M M, BRENNER M P, et al. Experimental characterization of electrospinning: the electrically forced jet and instabilities [J]. Polymer, 2001, 42:09955-09967.
    [61] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning [J]. Polymer, 1999, 40:4585-4592.
    [62] DOSHI J, RENEKER D H. Electrospinning process and application ofelectrospun fibers [J]. Journal of Electrostatics, 1995, 35:151-160.
    [63] MEGELSKI S, STEPHENS J S, CHASE D B, RABOLT J F. Micro-and Nanostructured surface morphology on electrospun polymer fibers [J]. Macromolecules, 2002, 35:8456-8466.
    [64] CASPER C L, STEPHENS J S, TASSI N G., CHASE D B, RABOLT J F. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process [J]. Macromolecules, 2004, 37:573-578.
    [65] HONG Y L, SHANG T C, LI Y Y, WANG L Z, WANG C, CHEN X S, JING X B. Synthesis using electrospinning and stabilization of single layer macroporous films and fibrous networks of poly(vinyl alcohol) [J]. Journal of Membrane Science, 2006, 276:1-7.
    [66] DEITZEL J M, KLEINMEYER J, HARRIS D, BECK TAN N C. The effect of processing variables on the morphology of electrospun nanofibers and textiles [J]. Polymer, 2001, 42:261-272.
    [67] TAYLOR G. Electrically driven jets [J]. Proc. Roy. Soc. London A, 1969, 313: 453-475
    [68] LI D, WANG Y L, XIA Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays [J]. Nano Lett., 2003, 3:1167-1171.
    [69] KAMEOKA J, ORTH R, YANG Y, et al. A scanning tip electrospinning source for deposition of oriented nanofibres [J]. Nanotechnology, 2003, 14:1124-1129.
    [70] BOLAND E D, WNEK G E, SIMPSON D G, et al. Tailoring tissue engineering scaf- folds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning [J]. J. Macromol. Sci. A, 2001, 38:1231-1243.
    [71] MATHEWS J A, WNEK G E, SIMPSON D G, et al. Electrospinning of collagen nanofibers [J]. Biomacromolecules, 2002; 3:232-238.
    [72] THERON A, ZUSSMAN E, YARIN A L. Electrostatic field-assisted alignment ofelectrospun nanofibres [J]. Nanotechnology, 2001, 12:384-390.
    [73] DERSCH R, LIU T, SCHAPER A K, et al. Electrospun nanofibers: Studies on their internal structure and intrinsic orientation [J]. J. Polym. Sci. Part A: Polym. Chem. 2003, 41:545-553.
    [74] DEITZEL J M, KLEINMEYER J D, HIRVONEN J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers [J]. Polymer, 2001, 42:8163-8170.
    [75] LOSCERTALES I G, BARRERO A, GUERRERO I, et al. Micro/Nano encapsulation via electrified coaxial liquid jets [J]. Science, 2002, 295:1695-1698.
    [76] SUN Z, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers by co-electrospinning [J]. Adv. Mater., 2003; 15:1929-1932.
    [77] LI D, XIA Y N. Direct Fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. Nano Lett., 2004, 4:933-938.
    [78] ZHAO Y, CAO X Y, JIANG L. Bio-mimic multichannel microtubes by a facile method [J]. J. Am. Chem. Soc., 2007, 129:764-765.
    [79] ZHAO Y, JIANG L. Hollow micro/nanomaterials with multilevel interior structures [J]. Adv. Mater., 2009, 21:3621-3638.
    [80] PAWLOWSKI K J, BELVIN H L, RANEY D L, SU J, HARRISON J S, SIOCHI E J. Electrospinning of a micro-air vehicle wing skin [J]. Polymer, 2003, 44, 1309-1314.
    [81] DZENIS Y, WEN Y. Continuous carbon nanofibers for nanofiber composites [J]. Mater. Res. Soc. Symp. Proc., 2002, 702:173-178.
    [82] GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloids Surf. A, 2001, 187-188:469-481.
    [83] WANG X, DREW C, LEE S H, SENECAL K J , KUMARJ, SAMUELSON L A. Electrospun nanofibrous membranes for highly sensitive optical sensors [J]. Nano Lett., 2002, 2:1273-1275.
    [84] WANG Y, SERRANO S, SANTIAGO-AVILéS JORGE J. Raman characterization of carbon nanofibers prepared using electrospinning [J]. SyntheticMetals, 2003, 138:423-427.
    [85] WNEK G E, CARR M E, SIMPSON D G, BOWLIN G L. Electrospinning of nanofiber fibrinogen structures [J]. Nano Lett., 2003, 3:213-216.
    [86] DUAN X, HUANG Y, CUI Y, WANG J, LIEBER C M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409:66-69.
    [87] WANG J F, GUDIKSEN M S, DUAN X F, CUI Y, LIEBER C M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires [J]. Science, 2001, 293:1455-1457.
    [88] HANRATH T T, KORGEL B A. Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals [J]. J. Am. Chem. Soc., 2002, 124:1424-1429.
    [89] TSENG G Y, ELLENBOGEN J C. Enhanced: toward nanocomputers [J]. Science, 2001, 294:1293-1294.
    [90] KIND H, YAN H, MESSER B, LAW M, YANG P. Nanowire ultraviolet photodetectors and optical switches [J]. Adv. Mater., 2002, 14:158-160.
    [91] YU J Y, CHUNG S W, HEATH J R. Silicon nanowires: Preparation, device fabrication, and transport properties [J]. J. Phys. Chem. B, 2000, 104:11864-11870.
    [92] WU Y, FANG R, YANG P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires [J]. Nano Lett., 2002, 2:83-86.
    [93] ZHOU Y, FREITAG M, HONE J, STAII C, JOHNSON A T, MACDIARMID A G, et al. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm [J]. Appl. Phys. Lett., 2003, 83:3800-3082.
    [94] PINTO N J, JOHNSON A T, MACDIARMID A G, et al. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor [J]. Appl. Phys. Lett., 2003, 83:4244-4246.
    [95] SHANG T C, YANG F, ZHENG W, WANG C. Fabrication of electrically bistable nanofibers [J]. Small, 2006, 2:1007-1009.
    [96] CHEN L P, HONG S G, ZHOU X P, ZHOU Z P, HOU H Q. Novel Pd-carrying composite carbon nanofibers based on polyacrylonitrile as a catalyst for sonogashiracoupling reaction [J]. Catal. Commun., 2008, 9:2221-2225.
    [97] CHEN L, BROMBERG L, HATTON T A, RUTLEDGE G C. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers [J]. Polymer, 2007, 48:4675-4682.
    [98] STASIAK M, STUDER A, GREINER A, WENDORFF J H. Polymer fibers as carriers for homogeneous catalysts [J]. Chem. Eur. J., 2007, 13:6150-6156.
    [99] STASIAK M, ROBEN C, ROSENBERGER N, SCHLETH F, STUDER A, GREINER A, WENDORFF J H. Design of polymer nanofiber systems for the immobilization of homogeneous catalysts-preparation and leaching studies [J]. Polymer, 2007, 48:5208-5218.
    [100] PATEL A C, LI S X, WANG C, ZHANG W J, WEI Y. Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications [J]. Chem. Mater., 2007, 19:1231-1238.
    [101] FORMO E, LEE E, CAMPBELL D, XIA Y. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications [J]. Nano Lett., 2008, 8:668-672.
    [102] FORMO E, PENG Z, LEE E, LU X, YANG H, XIA Y. Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase [J]. J. Phys. Chem. C, 2008, 112:9970-9975.
    [103] LI M Y, HAN G Y, YANG B S. Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats [J]. Electrochem. Commun., 2008, 10:880-883.
    [104] PARK S J, BHARGAVA S, BENDER E T, CHASE G G, RAMSIER R D. Palladium nanoparticles supported by alumina nanofibers synthesized by electrospinning [J]. J. Mater. Res., 2008, 23:1193-1196.
    [105] HE C H, GONG J. The preparation of PVA-Pt/TiO2 composite nanofiber aggregate and the photocatalytic degradation of solid-phase polyvinyl alcohol [J]. Polym. Degrad. Stab., 2003, 81:117-124.
    [106] EBERT K, BENGTSON G, JUST R, OEHRING M, FRITSCH D. Catalytically active poly(amideimide) nanofibre mats with high activity tested in the hydrogenationof methyl-cis-9-octadecenoate [J]. Appl. Catal. A: General, 2008, 346:72-78.
    [107] YOON J, CHAE S K, KIM J M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers [J]. J. Am. Chem. Soc., 2007, 129:3038-3039.
    [108] LI Z Y, ZHANG H N, ZHENG W, WANG W, HUANG H M, WANG C, MACDIARMID A G, WEI Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc., 2008, 130:5036-5037.
    [109] PARK C O, AKBAR S A. Ceramics for chemical sensing [J]. J. Mater. Sci., 2003, 38:4611-4673.
    [110] KOLMAKOV A, MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater. Res., 2004, 34:151-80.
    [111] COMINI E. Metal oxide nano-crystals for gas sensing, [J]. Anal. Chim. Acta, 2006, 568:28-40.
    [112] BARSAN N, KOZIEJ D, U. WEIMAR. Metal oxide-based gas sensor research: How to? [J]. Sens. Actuat. B Chem., 2007, 121:18-35.
    [113] KOROTCENKOV G. Metal oxides for solid-state gas sensors: What determines our choice? [J]. Mater. Sci. Eng. B, 2007, 139:1-23.
    [114] YAMAZOE N. New approaches for improving semiconductor gas sensors [J]. Sens. Actuat. B Chem., 1991, 5:7-19.
    [115] COMINI E, BARATTO C, FAGLIA G, FERRONI M, VOMIERO A, SBERVEGLIERI G. Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors [J]. Prog. Mater. Sci., 2009, 54:1-67.
    [116] HUANG J, WAN Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures [J]. Sensors, 2009, 9:9903-9924.
    [117] HUANG X J, CHOI Y K. Chemical sensors based on nanostructured materials [J]. Sens. Actuat. B Chem., 2007, 122:659-671.
    [118] LIU A H. Towards development of chemosensors and biosensors withmetal-oxide-based nanowires or nanotubes [J]. Biosensors and Bioelectronics, 2008, 24:167-177.
    [119] LU J G, CHANG P C, FAN Z Y. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications [J]. Mater. Sci. Eng. R, 2006, 52:49-91.
    [120] COMINI E, FAGLIA G, SBERVEGLIERI G. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J]. Appl. Phys. Lett., 2002, 81:1869-1871.
    [121] LAW M, KIND H, MESSER B, KIM F, YANG P D. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature [J]. Angew. Chem. Int. Ed., 2002, 41:2405-2408.
    [122] WAN Q, LI Q H, CHEN Y J, WANGT H, HE X L, LI J P, LIN C L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl. Phys. Lett., 2004, 84:3654-3657.
    [123] KOROTCENKOV G, ZHANG Y, CHENG G, MOSKOVITS M. Detection of CO and O2 using tin oxide nanowire sensors [J]. Adv. Mater., 2003, 15:997-1000.
    [124] BARSAN N, SCHWEIZER-BERBERICH M, GOPEL W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report [J]. Fresen. J. Anal. Chem., 1999, 365:287-304.
    [125] VARGHESE O K, GONG D. et al, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure [J]. Adv. Mater., 2003,15:624-627.
    [126] SUN Z P, LIU L, ZHANG L, JIA D Z. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties [J]. Nanotechnology, 2006, 17:2266-2270.
    [127] WAN Q, HUANG J, XIE Z, WANG T H, DATTOLI E N, LU W. Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application [J]. Appl. Phys. Lett., 2008, 92:102101-3.
    [128] QI Q, ZHANG T, LIU L, ZHENG X J, YU Q J, ZENG Y, YANG H B. Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery [J]. Sens. Actuat. B Chem., 2008, 134:166-170.
    [129] XU P C, CHENG Z X, PAN Q Y, XU J Q, XIANG Q, YU W J, CHU Y L. High aspect ratio In2O3 nanowires synthesis mechanism and NO2 gas-sensing properties [J]. Sens. Actuat. B Chem., 2008, 130:802-808.
    [130] ANDREI P, FIELDS L L, ZHENG J P, CHENG Y, XIONG P. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure [J]. Sens. Actuat. B Chem., 2007, 128:226-234.
    [131] ZHANG D H, LI C, LIU X L, KASAI J, MOZUME T, ISHIKAWA H. Doping dependent NH3 sensing of indium oxide nanowires [J]. Appl. Phys. Lett., 2003, 83:1845-1847.
    [132] ZHANG D, LIU Z, LI C, TANG T, LIU X, HAN S, LEI B, ZHOU C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices [J]. Nano Lett., 2004, 4:1919-1924.
    [133] KOLMAKOV A, KLENOV D O, LILACH Y, STEMMER S, MOSKOVITS M. Enhanced gas sensing byindividual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles [J]. Nano Lett., 2005, 5:667-673.
    [134] SHEN Y B, YAMAZAKI T, LIU Z F, MENG D, KIKUTA T, NAKATANI N, SAITO M, MORI M. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires [J]. Sens. Actuat. B Chem., 2009, 135:524-529.
    [135] CHANG S J, HSUEH T J, CHEN I C, HSIEH S F,CHANG S P, HSU C L, LIN Y R, HUANG B R. Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption [J]. IEEE Trans. Nanotechnol., 2008, 7:754-759.
    [136] HSUEH T J, CHANG S J, HSU C L, LIN Y R, CHEN I C. Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption [J]. Appl. Phys. Lett., 2007, 91:053111-3.
    [137] LIAO L, MAI H X, YUAN Q, LU H B, LI J C, LIU C, YAN C H, SHEN Z X, YU T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism [J]. J. Phys. Chem. C, 2008, 112:9061-9065.
    [138] KUGISHIMA M, SHIMANOE K, YAMAZOE N. C2H4O sensing properties for thick film sensor using La2O3-modified SnO2 [J]. Sens. Actuat. B Chem., 2006,118:171-176.
    [139] QI Q, ZHANG T, ZHENG X J, FAN H T, LIU L, WANG R, ZENG Y. Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference [J]. Sens. Actuat. B Chem., 2008, 134:36-42.
    [140] STAMBOLOVA I, KONSTANTINOV K, VASSILEV S, PESHEV P TSACHEVA T S. Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity [J]. Mater. Chem. Phys., 2000, 63:104-108.
    [141] LIU L, ZHANG T, QI Q, ZHANG L, CHEN W Y, XU B K. A novel micro-structure ethanol gas sensor with low power consumption based on La0.7Sr0.3FeO3 [J]. Solid-State Electronics, 2007, 51:1029-1033.
    [142] JIANG Y, SONG W, XIE C, WANG A, ZENG D, HU M. Electrical conductivity and gas sensitivity to VOCs of V-doped ZnFe2O4 nanoparticles [J]. Mater. Lett., 2006, 60:1374-1378.
    [143] TOANA N N, SAUKKOA S, LANTTO V. Gas sensing with semiconducting perovskite oxide LaFeO3 [J]. Physica B: Condensed Matter, 2003, 327:279-282.
    [144] CAO M H, WANG Y D, CHEN T, ANTONIETTI M, NIEDERBERGER M. A highly sensitiveand fast-responding ethanol sensor based on CdIn2O4 nanocrystals synthesized by a nonaqueous sol-gel route [J]. Chem. Mater., 2008, 20:5781-5786.
    [145] WANG D, CHU X F, GONG M L. Single-crystalline LaFeO3 nanotubes with rough tube walls: synthesis and gas-sensing properties [J]. Nanotechnology, 2006, 17:5501-5505.
    [146] LU X F, WANG C, WEI Y. One-Dimensional composite nanomaterials synthesis by electrospinning and their applications [J]. small, 2009, 5:2349-2370.
    [147] RAMASESHAN R, SUNDARRAJAN S, JOSE R, et al. Nanostructured ceramics by electrospinning [J]. J. Appl. Phys., 2007, 102:111101.
    [148] SIGMUND W, et al. Processing and structure relationships in electrospinning of ceramic fiber systems [J]. J. Am. Ceram. Soc., 2006, 89:395-407.
    [149] LI D, MCCANN J T, XIA Y N. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes [J]. J. Am. Ceram. Soc., 2006, 89:1861-1869.
    [150] WANG W, HUANG H M, LI Z Y, ZHANG H N, WANG Y, ZHENG W, WANG C. Zinc oxide nanofiber gas sensors via electrospinning [J]. J. Am. Ceram. Soc., 2008, 91:3817-3819.
    [151] SONG X F, WANG Z J, LIU Y B, WANG C, LI L J. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers [J]. Nanotechnology, 2009, 20:075501.
    [152] ZHANG Y, HE X L, LI J P, MIAO Z J, HUANG F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers [J]. Sens. Actuat. B Chem., 2008, 132:67-73.
    [153] WANG Y, RAMOS I, SANTIAGO-AVILES J. Electrical characterization of a single electrospun porous SnO2 nanoribbon in ambient air [J]. Nanotechnology, 2007, 18:435704-4.
    [154] WANG Y, RAMOS I, SANTIAGO-AVILES J. Detection of moisture and methanol gas using a single electrospun tin oxide nanofiber [J]. IEEE Sens. J., 2007, 7:1347-1348.
    [155] WANG G, JI Y, HUANG X R, YANG X Q, GOUMA P I, DUDLEY M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing [J]. J. Phys. Chem. B, 2006, 110:23777-82.
    [156] HAO R, YUAN J Y, PENG Q. Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning [J]. Chem. Lett., 2006, 35: 1248-1249.
    [1] FAN Z Y, WEN X G, YANG S H, LU J G. Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors [J]. Appl. Phys. Lett., 2005, 87:013113-13123.
    [2] SHI F, TSE M K, POHL M M, BRUCKNER A, ZHANG S M, BELLER M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations [J]. Angew. Chem. Int. Ed., 2007, 46:8866-8868.
    [3] TUTTLE R W, CHOWDURY A, BENDER E T, RAMSIER R D, RAPP J L, ESPE M P. Electrospun ceramic fibers: Composition, structure and the fate of precursors [J]. Appl. Surf. Sci., 2008, 254:4925-4929.
    [4] KAY A, CESAR I, GRATZEL M. New benchmark for water photooxidation by nanostructuredα-Fe2O3 films [J]. J. Am. Chem. Soc., 2006, 128:15714-15721.
    [5] CESAR I, KAY A, MARTINEZ J A G, GRATZEL M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping [J]. J. Am. Chem. Soc., 2006, 128:4582-4583.
    [6] CHEN J, XU L N, LI W Y, GOU X L.α-Fe2O3 nanotubes in gas sensor and Lithium-Ion battery applications [J]. Adv. Mater., 2005, 17:582-586.
    [7] WOO K, LEE H J, AHN J P, PARK Y S. Sol-gel mediated synthesis of Fe2O3 nanorods [J]. Adv. Mater., 2003, 15:1761-1764.
    [8] CHUEH Y L, LAI M W, LIANG J Q, CHOU L J, WANG Z L. Systematic study of the growth of aligned arrays ofα-Fe2O3 and Fe3O4 nanowires by a vapor-solid process [J]. Adv. Funct. Mater., 2006, 16:2243-2251.
    [9] SHAO C L, YANG X H, GUAN H Y, YU N, LIU Y C. Preparation ofα-Fe2O3 nanofiber via electrospinning process [J]. Chem. Res. Chin. U, 2004, 20:521-522.
    [10] ZHU Y, ZHANG J C, ZHAI J, JIANG L. Preparation of superhydrophilicα-Fe2O3 nanofibers with tunable magnetic properties [J]. Thin Solid Films, 2006, 510:271-274.
    [11] KOLMAKOV A, MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater. Res., 2004,34:151-80.
    [12] HUANG X J, CHOI Y K. Chemical sensors based on nanostructured materials [J]. Sens. Actuat. B Chem., 2007, 122:659-671.
    [13] SHIN Y M, HOHMAN M M, BRENNER M P, et al. Experimental characterization of electrospinning: the electrically forced jet and instabilities [J]. Polymer, 2001, 42:09955-09967.
    [14] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning [J]. Polymer, 1999, 40:4585-4592.
    [15] LIU L, KOU H Z, MO W L, LIU H J, WANG Y Q. Surfactant-assisted synthesis ofα-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties [J]. J. Phys. Chem. B, 2006, 110:15218-15223.
    [16] ZHOU H J, WONG S S. A facile and mild synthesis of 1-D ZnO, CuO, andα-Fe2O3 nanostructures and nanostructured arrays [J]. ACS Nano, 2008, 2:944-958.
    [17] ZHANG T, QI Q, LIU K X, LIU L, ZHANG L, XU B K. Temperature measurement based on radialization power for micro-hotplate [J]. Trans. Nonferrous Met. Soc. China, 2006, 16:780-784.
    [18] YAMAZOE N, FUCHIGAMI J, KISHIKAWA M, SEIYAMA T. Interactions of tin oxide surface with O2, H2O and H2 [J]. Surf. Sci., 1979, 86:335-344.
    [19] WAN Q, LI Q H, CHEN Y J, WANG T H, He X L, LI J P, LIN C L. Fabrication and ethanol sensing characteristics of ZnO nanowires gas sensor [J]. Appl. Phys. Lett., 2004, 84:3654-3656.
    [20] HSUEH T J, HSU C L, CHANG S J, CHEN I C. Laterally grown ZnO nanowire ethanol gas sensors [J]. Sens. Actuat. B Chem., 2007, 126:473-477.
    [21] KIM D, ROTHSCHILD A, LEE B H, KIM D Y, JO S M, TULLER H L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers [J]. Nano Lett., 2006, 6:2009-2013.
    [1]原子健,朱夏明,王雄等人.氧化铟薄膜制备及其特性研究[J].无机材料学报,2010,25:141-144.
    [2] LIU Y J, YEN C H, HSU C H, YU K H, CHEN L Y, TSAI T H, LIU W C. Impact of an indium oxide/indium-tin oxide mixed structure for GaN-based light-emitting diodes [J]. Optical Review, 2009, 16:575-577.
    [3] GRANQVIST C G. Transparent conductive electrodes for electrochromic devices: A review [J]. Appl. Phys. A: Solids Surf., 1993, 57:19-22.
    [4] ZHAN Z L, JIANG D G, XU J Q. Investigation of a new In2O3-based selective H2 gas sensor with low power consumption [J]. Mater. Chem. Phys., 2005, 90:250-254.
    [5] XU P C, CHENG Z X, PAN Q Y, XU J Q, XIANG Q, YU W J, CHU Y L. High aspect ratio In2O3 nanowires synthesis mechanism and NO2 gas-sensing properties [J]. Sens. Actuat. B Chem., 2008, 130:802-808.
    [6] DU N, ZHANG H, CHEN B D, MA X Y, LIU Z H, WU J B, YANG D R. Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates andapplication for room-temperature NH3 gas sensors [J]. Adv. Mater., 2007, 19: 1641-1645.
    [7]杨清彪.高分子微纳米纤维和金属纳米粒子高分子复合纤维的制备与表征[D].长春:吉林大学化学学院,2004.
    [8] LI Y B, BANDO Y, GOLBERG D. Single-crystalline In2O3 nanotubes filled with In [J]. Adv. Mater., 2003, 15:581-585.
    [9] ZHANG Y F, LI J Y, LI Q, ZHU L, LIU X D, ZHONG X H, MENG J, CAO X Q. Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties [J]. Scripta Mater., 2007, 56:409-412.
    [10] CHANG S C, HUANG M H. Formation of short In2O3 nanorod arrays within mesoporous silica [J]. J. Phys. Chem. C, 2008, 112:2304-2307.
    [11] BARSAN N, SCHWEIZER-BERBERICH M, GOPEL W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report [J]. Fresen. J. Anal. Chem., 1999, 365:287-304.
    [12] COMINI E. Metal oxide nano-crystals for gas sensing [J]. Anal. Chim. Acta, 2006, 568:28-40.
    [13] BARSAN N, KOZIEJ D, WEIMAR U. Metal oxide-based gas sensor research: how to? [J]. Sens. Actuat. B Chem., 2007, 121:18-35.
    [14] CHEN Y J, NIE L, XUE X Y, WANG Y G, WANG T H. Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity [J]. Appl. Phys. Lett., 2006, 88: 083105/1-083105/3.
    [15] CHOWDHURI A, GUPTA V, SREENIVAS K, KUMAR R, MOZUMDAR S, PATANJALI P K. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles [J]. Appl. Phys. Lett., 2004, 84:1180-1182.
    [16] YAMAZOE N. New approaches for improving semiconductor gas sensors [J]. Sens. Actuat. B Chem., 1991, 5:7-19.
    [17] HE J H, WANY Q, XU L. Nano-effects, quantum-like properties in electrospun nanofibers [J]. Chaos Solitons Fract., 2007, 33:26-37.
    [18] FENG P, XUE X Y, LIU Y G, WANG T H. Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact [J]. Appl. Phys. Lett.,2006, 89:243514/1-243514/3.
    [19] CHEN A F, HUANG X D, TONG Z F, BAI S L, LUO R X, LIU C C. Preparation, characterizationand gas-sensing properties of SnO2-In2O3 nanocomposite oxides [J]. Sens. Actuat. B Chem., 2006, 115:316-321.
    [20] CHEN A F, BAI S L, SHI B J, LIU Z Y, LI D Q, LIU C C. Methane gas-sensing and catalytic oxidation activity of SnO2-In2O3 nanocomposites incorporating TiO2 [J]. Sens. Actuat. B Chem., 2008, 135:7-12.
    [21] KOLMAKOV A, MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater., 2004, 34:151-180.
    [22] KOLMAKOV A, ZHANG Y X, CHENG G S, MOSKOVITS M. Detection of CO and O2 using tin oxide nanowire sensors [J]. Adv. Mater., 2003, 15:997-1000.
    [23] LI Z Y, ZHANG H N, ZHENG W, WANG W, HUANG H M, WANG C, MACDIARMID A G, WEI Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc., 2008, 130:5036-5037.
    [24] KIM D, ROTHSCHILD A, LEE B H, KIM D Y, JO S M, TULLER H L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers [J]. Nano Lett., 2006, 6:2009-2013.
    [25] WAN Q, LI Q H, CHEN Y J, WANG T H, HE X L, LI J P, LIN C L. Fabrication and ethanol sensing characteristics of ZnO nanowires gas sensor [J]. Appl. Phys. Lett., 2004, 84:3654-3656.
    [26] NERI G, BONAVTIA A, MICALI G, RIZZO G, GALVAGNO S, NIEDERBERGER M, PINNA N. A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3 nanocrystals [J]. Chem. Commun., 2005, 5:6032-6034.
    [27] CHEN J Y, XIONG Y J, YIN Y D, XIA Y N. Pt nanoparticles surfactant-directed assembled into colloidal spheres and used as substrates in forming Pt nanorods and nanowires [J]. Small, 2006, 2:1340-1343.
    [28] LORENZ H, STOGER-POLLACH M, SCHWARZ S, PFALLER K, KLOTZERB, BERNARDI J, PENNER S. A new preparation pathway to well-defined In2O3 nanoparticles at low substrate temperatures [J]. J. Phys. Chem. C, 2008, 112:918-925.
    [29] CHEN A B, ZHANG W P, LI X Y, TAN D L, HAN X W, BAO X H. One-pot encapsulation of Pt nanoparticles into the mesochannels of SBA-15 and their catalytic dehydrogenation of methylcyclohexane [J]. Catal. Lett., 2007, 119:159-164.
    [30] WANG C H, CHU X F, WU M M. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods [J]. Sens. Actuat. B Chem., 2006, 113:320-323.
    [31] CHEN J J, WANG K, HARTMAN L, ZHOU W L. H2S detection by vertically aligned CuO nanowire array sensors [J]. J. Phys. Chem. C, 2008, 112:16017-16021.
    [32] WANG Y, KONG F H, ZHU B L, WANG S R, WU S H, HUANG W P. Synthesis and characterization of Pd-dopedα-Fe2O3 H2S sensor with low power consumption [J]. Mater. Sci. Eng. B, 2007, 140:98-102.
    [33] CHAUDHARI G N, GEDAM N N, JAGTAP S V, MANORAMA S V. H2S sensing properties of nanocrystalline Sr2Fe0.6Ni0.4Mo0.6 thick film prepared by sol-gel citrate method [J]. Talanta, 2009, 77:1675-1679.
    [34] TAO W H, TSAI C H. H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining [J]. Sens. Actuat. B Chem., 2002, 81:237-247.
    [35] ZENG Z M, WANG K, ZHANG Z X, CHEN J J, ZHOU W L. The detection of H2S at room temperature by using individual indium oxide nanowire transistors [J]. Nanotechnology, 2009, 20:045503.
    [36] KAUR M, JAIN N, SHARMA K, BHATTACHARYA S, ROY M, TYAGI A K, GUPTA J V. Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers [J]. Sens. Actuat. B Chem., 2008, 133:456-461.
    [37] XU J Q, CHEN Y P, PAN Q Y, XIANG Q, CHENG Z X, DONG X W. A new route for preparing corundum-type In2O3 nanorods used as gas-sensing materials [J]. Nanotechnology, 2007, 18:115615-7.
    [38] EPIFANI M, CAPONE S, RELLA R, SICILIANO P, VASANELLI L, FAGLIA G, NELLI P, SBERVEGLIERI G. In2O3 Thin films obtained through a chemicalcomplexation based sol-gel process and their application as gas sensor devices [J]. J. Sol-Gel Sci. Technol. 2003, 26:741-744.
    [39] WANG Y, WANG S R, ZHAO Y Q, ZHU B L, KONG F H, WANG D, WU S H, HUANG W P, ZHANG S M. H2S sensing characteristics of Pt-dopedα-Fe2O3 thick film sensors [J]. Sens. Actuat. B Chem., 2007, 125:79-84.
    [40] PATEL N G, PATEL P D, VAISHNAV V S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature [J]. Sens. Actuat. B Chem., 2003, 96:180-189.
    [41] NERI G, BONAVITA A, RIZZO G, GALVAGNO S, CAPONE S, SICILIANO P. Methanol gas sensing properties of CeO2-Fe2O3 thin films [J]. Sens. Actuat. B Chem., 2006, 114:687-695.
    [42] NOGAMI M, MAEDA T, UMA T. A methanol gas sensor based on inorganic glass thin films [J]. Sens. Actuat. B Chem., 2009, 137:603-607.
    [43] MABROOK M, HAWKINS P. A rapidly-responding sensor for benzene, methanol and ethanol vapours based on films of titanium dioxide dispersed in a polymer operating at room temperature [J]. Sens. Actuat. B Chem., 2001, 75:197-202.
    [44] COMINI E, BARATTO C, FAGLIA G, FERRONI M, VOMIERO A, SBERVEGLIERI G. Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors [J]. Prog. Mater. Sci., 2009, 54:1-67.
    [45] MCCUE J T, YING J Y. SnO2-In2O3 nanocomposites as semiconductor gas sensor for CO and NOx detection [J]. Chem. Mater., 2007, 19:1009-1015.
    [46] FRANCIOSO L, FORLEO A, CAPONE S, EPIFANI M, TAURINO A M, SICILIANO P. Nanostructured SnO2-In2O3 sol-gel thin film as material for NO2 detection [J]. Sens. Actuat. B Chem., 2006, 114:646-655.
    [1] GANDUGLIA-PIROVANO M V, HOFMANN A, SAUER J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges [J]. Surface Science Reports, 2007, 62:219-270.
    [2] BANARES M A. Supported metal oxide and other catalysts for ethane conversion: a review [J]. Catal. Today, 1999, 51:319-348.
    [3] WIKTORCZYK T. Rare earth oxide films: their preparation and characterization [J]. Optica Applicata, 2001, 31:5-33.
    [4] KOTANI A, SHIN S. Resonant inelastic x-ray scattering spectra for electrons in solids [J]. Reviews of Modern Physics, 2001, 73:203-246.
    [5] Marsal A, Cornet A, Morante J R. Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor [J]. Sens. Actuat. B Chem., 2003, 94:324-329.
    [6] IMANAKA N, MASUI T, KATO Y. Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3 [J]. J. Solid State Chem., 2005, 178:395-398.
    [7] DORENBOS P. The Eu3+ charge transfer energy and the relation with the band gap of compounds [J]. J. Lumin., 2005, 111:89-104.
    [8] IZU N, SHIN W, MURAYAMA N, KANZAKI S. Resistive oxygen gas sensorsbased on CeO2 fine powder prepared using mist pyrolysis [J]. Sens. Actuat. B Chem., 2002, 87:95-98.
    [9] TANG L, LI Y M, XU K L, HOU X D, LV Y. Sensitive and selective acetone sensor based on its cataluminescence from nano-La2O3 surface [J]. Sens. Actuat. B Chem., 2008, 132:243-249.
    [10] NIU X S, ZHONG H X, WANG X J, JIANG K. Sensing properties of rare earth oxide doped In2O3 by a sol-gel method [J]. Sens. Actuat. B Chem., 2006, 115:434-438.
    [11] ZHOU Q, ZHANG L C, FAN H Y, WU L, LV Y. An ethanol gas sensor using energy transfer cataluminescence on nanosized YVO4:Eu3+ surface [J]. Sens. Actuat. B Chem., 2010, 144:192-197.
    [12] ZHANG Y F, LI J Y, LI Q, ZHU L, LIU X D, ZHONG X H, MENG J, CAO X Q. Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties [J]. Scripta Mater., 2007, 56:409-412.
    [13] SHI L, YUAN Y, LIANG X F, XIA Y D, YIN J, LIU Z G. Microstructure and dielectric properties of La2O3 doped amorphous SiO2 films as gate dielectric material [J]. Appl. Surf. Sci., 2007, 253:3731-3735.
    [14] KOLMAKOV A, MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater., 2004, 34:151-180.
    [15] WAN Q, LI Q H, CHEN Y J, WANG T H, HE X L, LI J P, LIN C L. Fabrication and ethanol sensing characteristics of ZnO nanowires gas sensor [J]. Appl. Phys. Lett., 2004, 84:3654-3656.
    [16]漆奇.低维纳米金属氧化物半导体敏感特性的研究[D].长春:吉林大学电子科学与工程学院,2009.
    [17] CUI Q Z, DONG X T, WANG J X, LI M. Direct fabrication of cerium oxide hollow nanofibers by electrospinning [J]. Journal of Rare Earths, 2008, 26:664-669.
    [18] LARACHI F, PIERRE J, ADNOT A, BERNIS A. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J]. Appl. Surf. Sci., 2002, 195 236-250.
    [19]. HOLGADO J P, MUNUERA G, ESPINOS J P, GONZALEZ-ELIPE A R. XPSstudy of oxidation processes of CeOx defective layers [J]. Appl. Surf. Sci., 2000, 158:164-171.
    [20] YANG H P, ZHANG D S, SHI L Y, FANG J H. Synthesis and strong red photoluminescence of europium oxide nanotubes and nanowires using carbon nanotubes as templates [J]. Acta Mater., 2008, 56:955-967.
    [21] YANG X, XU L L, YU X D, LI W, LI K X, HUO M X, GUO Y H. Enhanced photocatalytic activity of Eu2O3/Ta2O5 mixed oxides on degradation of rhodamine B and 4-nitrophenol [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320:61-67.
    [22] UWAMINO Y, ISHIZUKA T. X-ray photoelectron spectroscopy of rare-earth compounds [J]. J. Electron Spectrosc. Relat. Phenom., 1984, 34:67-78.
    [23] YAMAZOE N. New approaches for improving semiconductor gas sensors [J]. Sens. Actuat. B Chem., 1991, 5:7-19.
    [24] ZHENG W, LU X F, WANG W, LI Z Y, ZHANG H N, WANG Y, WANG Z J, WANG C. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers [J]. Sens. Actuat. B Chem., 2009,142:61-65.
    [25] ZHENG W, LU X F, WANG W, LI Z Y, ZHANG H N, WANG Y, WANG Z J, XU X R, LI S Y, WANG C. Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection [J]. J. Colloid Interf. Sci., 2009, 338:366-370.
    [26] HUANG J, WAN Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures [J]. Sensors, 2009, 9:9903-9924.
    [27] KOLMAKOV A, ZHANG Y X, CHENG G S. Moskovits M. Detection of CO and O2 using tin oxide nanowire sensors [J]. Adv. Mater., 2003, 15:997-1000.
    [28] LI Z Y, ZHANG H N, ZHENG W, WANG W, HUANG H M, WANG C, MACDIARMID A G, WEI Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc., 2008, 130:5036-5037.
    [29] KIM D, ROTHSCHILD A, LEE B H, KIM D Y, JO S M, TULLER H L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers [J]. Nano Lett., 2006, 6:2009-2013.
    [1] PENA M A, FIERRO J L G. Chemical structures and performance of perovskite oxides [J]. Chem. Rev., 2001, 101:1981-2017.
    [2] KHARTON V V, MARQUES F M B, ATKINSON A. Transport properties of solid oxide electrolyte ceramics: a brief review [J]. Solid State Ionics, 2004, 174:135-149.
    [3] GELLINGS P J, BOUWMEESTER H J M. Solid state aspects of oxidationcatalysis [J]. Catal. Today, 2000, 58:1-53.
    [4] FERGUS J W. Perovskite oxides for semiconductor-based gas sensors [J]. Sens. Actuat. B Chem., 2007, 123:1169-1179.
    [5] FERGUS J W. Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases [J]. Sens. Actuat. B Chem., 2007, 122:683-693.
    [6] ZHU J W, SUN X J, WANG Y P, WANG XIN, YANG X J, LU L D. Solution-phase synthesis and characterization of perovskite LaCoO3 nanocrystals via a co-precipitation route [J]. Journal of Rare Earths, 2007, 25:601-604.
    [7] YANG Z, HUANG Y, DONG B, LI H L, SHI S Q. Sol-gel template synthesis and characterization of LaCoO3 nanowires [J]. Appl. Phys. A, 2006, 84:117-122.
    [8] CHENG C S, ZHANG L, ZHANG Y J, JIANG S P. Synthesis of LaCoO3 nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells [J]. Solid State Ionics, 2008, 179:282-289.
    [9] WANG J X, DONG X T, ZHEN QU, LIU G X, YU W S. Fabrication and characterization of LaCoO3 nanofibers via an electrospinning technique [J]. International Journal of Chemistry, 2010, 2:161-167.
    [10] HE H P, HUANG X J, CHEN L Q. Sr-doped LaInO3 and its possible application in a single layer SOFC [J]. Solid State Ionics, 2000, 130:183-193.
    [11] LAKSHMINARASIMHAN N, VARADARAJU U V. Luminescent host lattices, LaInO3 and LaGaO3-A reinvestigation of luminescence of d10 metal ions [J]. Mater. Res. Bull., 2006, 41:724-731.
    [12] HE H P, HUANG X J, CHEN L Q. The effects of dopant valence on the structure and electrical conductivity of LaInO3 [J]. Electrochim. Acta, 2001, 46:2871-2877.
    [13] WANG D, CHU X F, GONG M L. Single-crystalline LaFeO3 nanotubes with rough walls: synthesis and gas-sensing properties [J]. Nanotechnology, 2006, 17:5501-5505.
    [14] DONG X T, WANG J X, CUI Q Z, LIU G X, YU W S. Preparation of LaFeO3 porous hollow nanofibers by electrospinning [J]. International Journal of Chemistry, 2009, 1:13-17.
    [15] QI X W, ZHOU J, YUE Z X, et al. A simple way to prepare nanosized LaFeO3powders at room temperature [J]. Ceramic International, 2003, 29:347-349.
    [16] SHI W S, ZHENG Y F, WANG N, et al. A general synthetic route to III-V compound semiconductor nanowires [J]. Adv. Mater., 2001, 13:591-594.
    [17] WANG Y P, ZHU J W, ZHANG L L, et al. Preparation and characterization of perovskite LaFeO3 nanocrystals [J]. Mater. Lett., 2006, 60:1767-1770.
    [18] YANG Z, HUANG Y, DONG B, et al. Controlled synthesis of highly ordered LaFeO3 nanowires using a citrate-based sol-gel route [J]. Mater. Res. Bull., 2006, 41:274-281.
    [19] YANG Z, HUANG Y, DONG B, et al. Fabrication and structural properties of LaFeO3 nanowires by an ethanol-ammonia-based sol-gel template route [J]. Appl. Phys. A, 2005, 81:453-457.
    [20]宋鹏.纳米晶钙钛矿型La(Pb)Fe(Co, Ni)O3的制备及气敏特性研究[D].济南:山东大学,2006.
    [21] KOLMAKOV A, MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater., 2004, 34:151-180.
    [22] HUANG J, WAN Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures [J]. Sensors, 2009, 9:9903-9924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700