用户名: 密码: 验证码:
镍和氧化镍纳米晶的控制生长及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感器技术是当今世界发展最为快速的高新技术之一,也是现代工程技术进步的一个重要标志;电导型纳米传感器现已在航空航天、军事国防、信息科技、矿山机械、食品安全、家庭安全、生物监测、农业监视、医学、环境等诸多领域获得广泛的应用和发展。NiO拥有稳定的理化性能,被认为是构筑微型传感器的理想候选材料之一,其最为重要的应用就是电导型气敏传感器。本论文主要研究了Ni和NiO纳米晶(纳米线、树枝晶、纳米锥)的可控生长,并将NiO纳米线和Zn掺杂的NiO树枝晶应用于微型气敏传感器,利用NiO的纳米效应来提高气敏传感器对气体分子的快速吸附,利用Zn掺杂来改善传感器对气体分子的快速解吸附特性;同时,通过去除Ni纳米锥表面的气体分子极大地改善了其场电子发射性能,为新型场电子发射器的开发提供了新的思路。具体研究进展如下:
     (1)通过磁场辅助肼还原法制得了高纯的Ni纳米线,在空气中380℃以下具有很高的化学稳定性,矫顽力Hc(257.6Oe)高于体相材料;同时,实验发现通过改变溶液中的Ni~(2+)离子浓度、反应温度、NaOH浓度、溶剂种类、外加磁场强度、反应时间、N_2H_4·H_2O浓度可以很好地控制Ni纳米线的表面形貌、微结构、长径比;根据大量的实验得出了Ni纳米线的生长机制,发现通过外加磁场和反应参数能够很好地将Ni晶核组装成不同形貌的纳米结构;此外,我们开发了批量Ni纳米线的制备装置。
     (2)通过高温氧化法将磁场组装的超长Ni纳米线阵列转化为NiO纳米线阵列,发现氧化温度越低,NiO纳米线的平均晶粒尺寸越小,带隙值越大;根据不同温度和时间的高温氧化实验提出了NiO纳米线的形成机理;随后利用lift-off工艺将NiO纳米线阵列组装成气敏传感器,发现其对NH_3均具有很好的响应、恢复性能,优异的重复性和选择性;此外,我们还发现平均晶粒尺寸越小的NiO纳米线传感器灵敏度越大,这是因为其表面活性点较多,能够吸附更多的NH_3分子。
     (3)通过电解法制得了分层、对称、高度有序的Ni树枝晶,研究发现Ni树枝晶主要由主干、第二分支、第三分支组成,第二分支与主干之间的角度约为70o,第三分支与第二分支之间的角度约为60o,树枝晶的主干和分支的直径分别为280nm和210nm,主干和分支的平均长度分别为10μm和1.5μm;根据一系列不同时间反应产物的形貌,分析了Ni树枝晶的生长过程,提出了Ni树枝晶可能的生长机制;实验还得出了电解法制备Ni树枝晶的最佳工艺参数。
     (4)通过电解的途径和随后的高温氧化法制得了Zn掺杂的NiO树枝晶,SEM测试得知树枝晶的主干长度在6-10μm,分支长度在1-3μm;HRTEM分析显示,Zn掺入之后,NiO晶格条纹有加宽的趋势,这是因为较大的Zn原子替代了NiO晶格中较小的Ni原子所致;同时发现Zn在NiO树枝晶中的溶解极限低于7%;随后将掺杂的树枝晶组装成微传感器并测试其对NH_3的气敏性能,发现Zn的掺入致使传感器的响应速度提高了5-8倍,恢复速度提高了30-50倍;最后探讨了Zn掺杂NiO树枝晶传感器的气敏机理。
     (5)通过水热法在Ni箔基底上可控生长了Ni纳米锥阵列,锥底直径范围为50-450nm,锥的高度范围为50-200nm,锥的顶部直径在10nm左右,锥的顶角约40o;同时探讨了Ni纳米锥的生长机制以及反应参数对锥体结构的影响;随后我们用Ni纳米锥作为阴极,镀有ITO玻璃作为阳极,测试了其场电子发射性能,发现真空环境下的残余气体分子对Ni纳米锥场电子发射性能有较大的影响,针对这种问题我们提出了两种改善Ni纳米锥场电子发射性能的方案。
Sensor technology is one of the most rapidly developing high-tech, which is animportant symbol of the development of modern science and technology. Conductancenano-sensors are being widely applied in aerospace, national defense, informationtechnology, mining machinery, food security, homeland security, biological detection,monitoring of agriculture, medical, environments, and so on. NiO has stable physical andchemical properties, which are considered to be one of the ideal materials for buildingminiature sensors, and the conductance nano-sensor is the most important application ofNiO. In our work, we synthesized the Ni and NiO nanocrystals (nanowires, dendriticcrystals and nanocones), and exploited the NiO nanowire and Zn doped NiO dendriticcrystal as the sensing materials, to fabricate the gas sensor based on the networks of NiOnanocrystals. NiO nanometer effect makes the fast adsorption of gas molecules, and Zndoping makes the fast desorption of gas molecules in gas sensors. Meanwhile, we greatlyimproved the field electron emission properties of Ni nanocone arrays via the removal ofgas molecules on the nanocones’ surface, which provide a new idea of field electronemitters. Specific research progresses are as follows:
     (1) Ni nanowires with large aspect ratio have been prepared via a hydrazine hydratereduction method under assistance of magnetic fields, which have the high stability in air,and the coercivity (Hc,257.6) of nanowires is higher than that of the bulk materials.Meanwhile, we find that the surface morphology, microstructure and aspect ratio of Ninanowires can be controlled through adjusting the Ni~(2+)concentration, reaction temperature, NaOH concentration, solution species, intensity of the applied magnetic field, reaction timeand N_2H_4·H_2O concentration. The growth mechanism of Ni nanowires was proposedaccording to lots of experiments, which illustrate that the different morphology ofnanocrystals can be assembled with Ni nuclei via external magnetic field and optimalreaction parameters. In addition, we developed a batch Ni nanowires preparation device,which mainly comprises five large institutions (the reaction chamber, the compensationloop part, thermostatic temperature control part, a magnetic field generator, gas protectingpart).
     (2) Transformation from Ni nanowire arrays to NiO semiconducting nanowire arrayscan achieved via in situ high temperature oxidation method. It was found that the lower theoxidation temperature is, the smaller the average grain size of the NiO nanowries is, thelarger the bad gap energy is. The forming mechanism of NiO nanowires was providedaccording to the different temperature and time experiments. And then, we assembled theas-synthesized NiO nanowires into the gas sensor using the lift-off technology, and findthat this sensor have the fast response, rapid recovery, outstanding reproducibility andexcellent selectivity. In addition, we find that the sensitivity of sensor gradually increaseswith the decrease of average grain size of NiO nanowires due to the smaller grains havingmore grain boundaries, which are considered as the active sites to adsorb more gasmolecules.
     (3) Symmetric Ni dendritic crystals, which consist of a long main trunk and highlyordered secondary and tertiary branches, have been successfully synthesized via a simpleand inexpensive electrolytic process in ethylene glycol solution. The length of the maintrunk is about10μm, and that of each branch is about1.5μm with a width of210nm.Microstructure characterization indicates that the angles between the central trunk and allthe secondary branches in dendritic structure are almost the same at about70o, and theangles between the secondary branches and tertiary branches are about60o. A possible growth mechanism of magnetic pure metal dendritic crystals was proposed afterinvestigating four different stages during the electrolytic process. Meanwhile, we obtainedthe optimal parameters of preparation of Ni dendritic crystals: NiCl2concentration is0.010mol/L, electrolytic voltage is50V, electrolytic temperature is60oC, and electrolytic timeis more than5h.
     (4) Zn-doped NiO dendritic crystals have been successfully synthesized via anelectrolytic approach combined with subsequent high temperature oxidation. The trunkshave lengths in the range6–10μm with diameters varying from190nm to200nm, and thebranches have lengths in the range1–3μm with diameters varying from150nm to180nm.Microstructure characterization indicated that the solubility limit of zinc ions in the NiOlattice sites was lower than7mol%. We systematically investigated the gas sensingproperties of the Zn-doped NiO sensors for NH_3gas detection at room temperature. Thesensor with doped NiO dendritic crystals gave5–8times faster responses and30–50timesfaster recovery speeds than the sensor with pristine NiO dendritic crystals, which isimportant for the practical application of this NiO sensor. Lastly, a possible gas sensingmechanism of NiO dendritic crystal sensors was discussed.
     (5) We present the fabrication of Ni nanocone arrays on Ni foil substrate as well asgas exposure field electron emission experiments using them as cold electron cathodes.The Ni nanocones have base diameters ranging from50to450nm and heights rangingfrom50to200nm. The tip diameter of the nanocones is about10nm and the apex angle ofnanocone is about40o. Field electron emission measurements indicated that the as-grownNi nanocone array is an excellent field emitter exhibiting low turn-on field, high currentdensity, and large field enhancement factor due to sharper tips and better contact with theNi substrate. Meanwhile, we find that adsorbed gas molecules greatly hindered the fieldelectron emission performance of the Ni nanocone array. Repeated applying voltage or‘vacuum J–E annealing’ could significantly improve field emission properties and stability, which is attributed to desorption of the adsorbed gas molecules through Joule heating.
引文
[1]林志东.纳米材料基础与应用.北京:北京大学出版社.2010:11-20.
    [2] Murday, J. S., Guenther, B. D., Lau, C. G., Marrian, C. R. K., Pazik, J. C., Pomrenke G.S. Overview of the nanoscale science and technology program in the department of defense.Defense applications of nanomaterials [J].2005,891(1):2-14.
    [3]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社.2006:1-9.
    [4]倪星元.纳米材料制备技术.北京:化学工业出版社.2008:1-30.
    [5] Bode, M., Pietzsch, O., Kubetzka, A., Wiesendanger, R. Shape dependent thermalswitching behavior of superparamagnetic nanoislands [J]. Phys. Res. Lett.2004,92(6):67201.
    [6] Tour, J. M., Wu, R., Schumm, J. S. Approaches to orthogonally fused conductingpolymers for molecular electronics [J]. J. Am. Chem. Soc.1990,112(14):5662-5563.
    [7] Tour, J. M., Jones, L., Pearson, D. L., Lamba, J. J. S., Burgin, T. P., Whitesides, G. M.,Allara, D. L., Parikh, A. N., Atre, S. V. Self-assembled monolayers and multilayers ofconjugated thiols,.alpha.,.omega.-dithiols, and thioacetyl-containing adsorbates.Understanding attachments between potential molecular wires and gold surfaces [J]. J. Am.Chem. Soc.1995,117(37):9529-34.
    [8] Hopfield, J. J., Onuchic, J. N., Beratan, D. N. A molecular shift register based onelectron transfer [J]. Science.1988,241(4867):817-820.
    [9] Wada, Y. Atom electronics: A proposal of atom/molecule switching devices [J]. Ann.N. Y. Acad. Sci.1998,852:257-276.
    [10] Lundstrom, M., Ren, Z. Essential physics of carrier transport in nanoscale MOSFETs[J]. IEEE Trans. Electron Devices.2002,49(1):133-141.
    [11] Winstead, B., Ravaioli, U. Simulation of schottky barrier MOSFET’s with a coupledquantum injection/monte carlo technique [J]. IEEE Trans. Electron Devices.2000,47(6):1241-1246.
    [12] Baccarani, G., Reggiani, S. A compact double-gate MOSFET model comprisingquantum-mechanical and nonstatic effects [J]. IEEE Trans. Electron Devices.1999,46(8):1656-1666.
    [13] Dürkop, T., Getty, S. A., Enrique, C., Fuhrer, M. S. Extraordinary mobility insemiconducting carbon nanotubes [J]. Nano Lett.2004,4(1):35-39.
    [14] Allen, B. L., Kichambare, P. D., Star, A. Carbon nanotube field-effect-transistor-based biosensors [J]. Adv. Mater.2007,19:1439-1451.
    [15] Gruner, G. Carbon nanotube transistors for biosensing applications [J]. Anal. Bioanal.Chem.2006,384:322-335.
    [16] Fan, H., Lu, Y., Stump, A., Reed, S. T., Baer, T., Schunk, R., Perez-Luna, V., Lopez,G. P., Brinker, C. J. Rapid prototyping of patterned functional nanostructures [J]. Nature.2000,405:56-60.
    [17] Ye, D., Moussa, S., Ferguson, J. D., Baski, A. A., EI-Shall, M. S. Highly efficientelectron field emission from graphene oxide sheets supported by nickel nanotip arrays [J].Nano Lett.2012,12:1265-1268.
    [18]李国强,陈日耀,郑曦,陈震.化学制备一维无机纳米材料的几种方法[J].化学通报.2006,69: w029.
    [19]晋传贵,裴立宅,俞海云.一维无机纳米材料.北京:冶金工业出版社.2007:1-17.
    [20]刘吉平,廖莉玲.无机纳米材料.北京:科学出版社.2003:104-120.
    [21]周苇,郭林.化学法制备金属镍纳米材料研究进展[J].化学通报.2006,69:w063.
    [22]张磊,葛洪良,钟敏.金属镍纳米材料研究进展[J].材料导报.2008,22:2-4.
    [23] Chatterjee, A., Chakravorty, D. Preparation of nickel nanoparticles by metalorganicroute [J]. Appl. Phys. Lett.1992,60:138-140.
    [24] Chen, D. H., He, X. R. Synthesis of nickel ferrite nanoparticles by sol-gel method [J].Mater. Res. Bull.2001,36:1369-1377.
    [25] Tian, F., Zhu, J., Wei, D. Fabrication and Magnetism of Radial-easy-magnetized NiNanowire Arrays [J]. J. Phys. Chem. C.2007,111:12669-12672.
    [26] Wang, X. W., Fei, G. T., Xu, X. J., Jin, Z., Zhang, L. D. Size-dependent orientationgrowth of large-area ordered Ni nanowire arrays [J]. J. Phys. Chem. B.2005,109,24326-24330.
    [27] Li, X., Wang, Y., Song, G., Peng, Z., Yu, Y., She, X., Sun, J., Li, J., Li, P., Wang, Z.,Duan, X. Fabrication and magnetic properties of Ni/Cu shell/core nanocable arrays [J]. J.Phys. Chem. C.2010,114:6914-6916.
    [28] Ning, M., Zhu, H., Jia, Y., Niu, H., Wu, M., Chen, Q. Synthesis of hollowmicrospheres of nickel using spheres of metallic zinc as templates under mild conditions[J]. J. Mater. Sci.2005,40:4411-4413.
    [29] Zhou, W., Zheng, K., He, L., Wang, R., Guo, L., Chen, C., Han, Zhang, X., Z.Ni/Ni3C core-shell nanochains and its magnetic properties: one-step synthesis at lowtemperature [J]. Nano Lett.2008,8:1147-1152.
    [30] Wang, N., Cao, X., Kong, D., Chen, W., Guo, L., Chen, C., Nickel chains assembledby hollow microspheres and their magnetic properties [J]. J. Phys. Chem. C.2008,112:6613-6619.
    [31] Chan, K. T., Kan, J. J., Doran, C., Ouyang, L., Smith, D. J., Fullerton, E. E. Orientedgrowth of single-crystal Ni nanowires onto amorphous SiO2[J]. Nano Lett.2010,10:5070-5075.
    [32] Bagkar, N., Seo, K., Yoon, H., In, J., Jo, Y., Kim, B. Vertically alignedsingle-crystalline ferromagnetic Ni3Co nanowires [J]. Chem. Mater.2010,22:1831-1835.
    [33] Ni, X., Zhao, Q., Zhang, D., Zhang, X., Zheng, H., Novel hierarchical nanostructuresof nickel: self-assembly of hexagonal nanoplatelets [J]. J. Phys. Chem. C.2007,111:601-605.
    [34] Wang, C., Han, X., Xu, P., Wang, J., Du, Y., Wang, X., Qin, W., Zhang, T. Controlledsynthesis of hierarchical nickel and morphology-dependent electromagnetic properties [J].J. Phys. Chem. C.2010,114:3196-3203.
    [35] Sarkar, S., Sinha, A. K., Pradhan, M., Basu, M., Negishi, Y., Pal, T. Redoxtransmetalation of prickly nickel nanowires for morphology controlled hierarchicalsynthesis of nickel/gold nanostructures for enhanced catalytic activity and SERSresponsive functional material [J]. J. Phys. Chem. C.2011,115:1659-1673.
    [36] Ye, J., Chen, Q. W., Qi, H. P., Tao, N. Formation of nickel dendritic crystals withpeculiar orientations by magnetic-induced aggregation and limited diffusion [J]. Cryst.Growth Des.2008,8:2464-2468.
    [37] Jiang, C., Zou, G., Zhang, W., Yu, W., Qian, Y. Aqueous solution route to flower-likemicrostructures of ferromagnetic nickel nanotips [J]. Mater. Lett.2006,60:2319-2321.
    [38] Ni, X. M., Su, X. B., Yang, Z. P., Zheng, H. G. The preparation of nickel nanorods inwater-in-oil microemulsion [J]. J. Cryst. Growth.2003,252:612-617.
    [39] Chen, D. H., Wu, S. H. Synthesis of nickel nanoparticles in water-in-oilmicroemulsions [J]. Chem. Mater.2000,12:1354-1360.
    [40] Chang, Z. Q., Liu, G., Zhang, Z. C. In situ coating of microreactor inner wall withnickel nano-particles prepared by γ-irradiation in magnetic field [J]. Radiat. Phys. Chem.2004,69:445-449.
    [41] Hu, X., Yu, J. C. High-yield synthesis of nickel and nickel phosphide nanowires viamicrowave-assisted processes [J]. Chem. Mater.2008,20:6743-6749.
    [42] Zhou, W., Lin, L. J., Zhao, D. Y., Guo, L. Synthesis of nickel bowl-like nanoparticlesand their doing for inducing planar alignment of a nematic liquid crystal [J]. J. Am. Chem.Soc.2011,133:8389-8391.
    [43]祁康成.六硼化镧场发射特性研究[博士论文].成都:电子科技大学.2008.
    [44] Gautam, U. K., Fang, X. S., Bando, Y., Zhan, J. H., Golberg, D. A novel core-shellheterostructure of branched ZnS nanotube-In nanowires: synthesis, structure and multiplyenhanced field-emission properties [J]. ACS Nano.2008,2:1015–1021.
    [45] Wu, Z. S., Pei, S., Ren, W., Tang, D., Gao, L., Liu, B., Li, F., Liu, C., Cheng, H.M. Field emission of single-layer graphene films prepared by electrophoretic deposition [J].Adv. Mater.2009,21:1756-1760.
    [46] Yu, T., Zhu, Y., Xu, X., Shen, Z., Chen, P., Lim, C. T., Thong, J. T. L., Sow, C. H.Controlled growth and field-emission properties of cobalt oxide nanowalls [J]. Adv. Mater.2005,17:1595-1599.
    [47] Al-Tabbakh, A. A., More, M. A., Joag, D. S., Mulla, I. S., Pillai, V. K. Thefowler-nordheim plot behavior and mechanism of field electron emission from ZnOtetrapod structures [J]. ACS Nano.2010,4:5585-5590.
    [48] Vila, L., Vincent, P., Pra, L. D., Pirio, G., Minoux, E., Gangloff, L.,Demoustier-Champagne, S., Sarazin, N., Ferain, E., Legras, R., Piraux, L., Legagneux, P.Growth and field-emission properties of vertically aligned cobalt nanowire arrays [J]. Nanolett.2004,4:521-524
    [49] Feizi, E., Scott, K., Baxendale, M., Pal, C., Ray, A. K., Wang, W., Pang, Y., Hodgson,S. N. B. Synthesis and characterisation of nickel nanorods for cold cathode fluorescentlamps [J]. Mater. Chem. Phys.2012,135:832-836.
    [50] Hang, T., Ling, H., Hu, A., Li, M. Growth mechanism and field emission properties ofnickel nanocones array fabricated by one-step electrodeposition [J]. J. Electrochem. Soc.2010,157: D624-D627.
    [51] Lee, C. Y., Lu, M. P., Liao, K. F., Lee, W. F., Huang, C. T., Chen, S. Y., Chen, L. J.Free-Standing Single-Crystal NiSi2Nanowires with Excellent Electrical Transport andField Emission Properties [J]. J. Phys. Chem. C.2009,113:2286-2289.
    [52] Kim, J., Lee, E. S., Han, C. S., Kang, Y., Kim, D., Anderson, W. A. Observation ofNi silicide formations and field emission properties of Ni silicide nanowires [J].Microelectron. Eng.2008,85:1709-1712.
    [53] Ren, Y., Chim, W. K., Chiam, S. Y., Huang, J. Q., Pi, C., Pan, J. S. Formation ofnickel oxide nanotubes with uniform wall thickness by low-temperature thermal oxidationthrough understanding the limiting effect of vacancy diffusion and the kirkendallphenomenon [J]. Adv. Funct. Mater.2012,20:3336-3342.
    [54] Wei, Z. P., Arredondo, M., Peng, H. Y., Zhang, Z., Guo, D. L., Xing, G. Z., Li, Y. F.,Wong, L. M., Wang, S. J., Valanoor, N., Wu, T. A template and catalyst-freemetal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as anexample [J]. ACS Nano.2010,4:4785-4791.
    [55] Yang, Y., Liu, L. F., Guder, F., Berger, A., Scholz, R., Albrecht, O., Zacharias, M.Regulated oxidation of nickel in multisegmented nickel–platinum nanowires: an entry towavy nanopeapods [J]. Angew. Chem. Int. Ed.2011,50:10855-10858.
    [56] He, L., Liao, Z. M., Wu, H. C., Tian, X. X., Xu, D. S., Cross, G. L. W., Duesberg, G.S., Shvets, I. V., Yu, D. P. Memory and threshold resistance switching in Ni/NiO core shellnanowires [J]. Nono Lett.2011,11:4601-4606.
    [57] Zhou, W., Yao, M., Guo, L., Li, Y. M., Li, J. H., Yang, S. H. Hydrazine-linkedconvergent self-assembly of sophisticated concave polyhedrons of β-Ni(OH)2and NiOfrom nanoplate building blocks [J]. J. Am. Chem. Soc.2009,131:2959-2964.
    [58] Bai, L. Y., Yuan, F. L., Hu, P., Yan, S. K., Wang, X., Li, S. H. A facile route to seaurchin-like NiO architectures [J]. Mater. Lett.2007,61:1698-1700.
    [59] Wu, L. L., Wu, Y. S., Wei, H. Y., Shi, Y. C., Hu, C. X. Synthesis and characteristicsof NiO nanowire by a solution method [J]. Mater. Lett.2004,58:2700-2703.
    [60]肖君佳.氧化镍纳米材料的合成和性能研究[硕士论文].北京:北京化工大学.2011年.
    [61] Yu, M., Liu, J. H., Li, S. M. Preparation and characterization of highly ordered NiOnanowire arrays by sol-gel template method [J]. J. Univ. Sci. Technol. Beijing.2006,13:169-173.
    [62] Yang, Q., Sha, J., Ma, X. Y., Yang, D. R. Synthesis of NiO nanowires by a sol-gelprocess [J]. Mater. Lett.2005,59:1967-1970.
    [63] Palanisamy, P., Raichur, A. M. Synthesis of spherical NiO nanoparticles through anovel biosurfactant mediated emulsion technique [J]. Mater. Sci. Eng. C.2009,29:199-204.
    [64] Hana, D. Y., Yang, H. Y., Shen, C. B., Zhou, X., Wang, F. H. Synthesis and sizecontrol of NiO nanoparticles by water-in-oil microemulsion [J]. Powder Technol.2004,147:113-116.
    [65] Huang, Y., Huang, X. L., Lian, J. S., Xu, D., Wang, L. M., Zhang, X. B.Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure forhigh-capacity and high-rate lithium storage [J]. J. Mater. Chem.2012,22:2844-2847.
    [66] Wang, X., Yu, L. J., Hu,P., Yuan, F. L. Synthesis of single-crystalline hollowoctahedral NiO [J]. Cryst. Growth Des.2007,7:2415-2418.
    [67]吴莉莉.纳米碳管气敏传感器及随机共振检测系统的研究[博士论文].杭州:浙江大学.2007.
    [68]何希才.传感器技术及应用.北京:北京航天航空大学出版社.2004:1-89.
    [69]刘延霞.低维氧化锌功能材料的气敏、发光及场发射性质的研究[博士论文].兰州:兰州大学.2006.
    [70]惠国华.基于随机共振和定向多壁纳米碳管气敏传感器阵列的SF6气体检测系统的研究[博士论文].杭州:浙江大学.2008.
    [71]刘锦淮,黄行九.纳米敏感材料与传感技术.北京:科学出版社.2011:48-110.
    [72]漆奇.低维纳米金属氧化物半导体敏感特性的研究[博士论文].长春:吉林大学.2009.
    [73]吴兴惠.敏感元器件及材料.北京:电子工业出版社.1991:281-303.
    [74] Hotovy, I., Huran, J., Spiess, L., Capkovic, R. Hascik, S. Preparation andcharacterization of NiO thin films for gas sensor applications [J]. Vac.2000,58:300-307.
    [75] Hotovy, I., Rehacek, V., Siciliano, P., Capone, S., Spiess, L. Sensing characteristics ofNiO thin films as NO2gas sensor [J]. Thin Solid Films.2002,418:9-15.
    [76] Hotovy, I., Huran, J., Siciliano, P., Capone, S., Spiess, Rehacek, V. Enhancement ofH2sensing properties of NiO-based thin films with a Pt surface modification [J]. Sens.Actuators B.2004,103:300-311.
    [77] Brilis, N., Foukaraki, C., Bourithis, E., Tsamakis, D., Giannoudakos, A., Kompitsas,M., Xenidou, T., Boudouvis, A. Development of NiO-based thin film structures as efficientH2gas sensors operating at room temperatures [J]. Thin Solid Films.2007,515:8484-8489.
    [78] Lee, C. Y., Chiang, C. M., Wang, Y. H., Ma, R. H. A self-heating gas sensor withintegrated NiO thin-film for formaldehyde detection [J]. Sens. Actuators B.2007,122:503-510.
    [79] Wang, Z., Li, Z., Sun, J., Zhang, W., Wang, H., Zheng, W., Wang, C. Improvedhydrogen monitoring properties based on p-NiO/n-SnO2heterojunction compositenanofibers [J]. J. Phys. Chem. C.2010,114:6100–6105.
    [80] Song, X., Gao, L., Mathur, S. Synthesis, characterization, and gas sensing propertiesof porous nickel oxide nanotubes [J]. J. Phys. Chem. C.2011,115:21730-21735.
    [81] Cho, N. G., Woo, H. S., Lee, J. H., Kim, Il. D. Thin-walled NiO tubes functionalizedwith catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as asacrificial template [J]. Chem. Comm.2011,47:11300-11302.
    [1] Sun, L., Chen, Q., Tang, Y., Xiong, Y. Formation of one-dimensional nickel wires bychemical reduction of nickel ions under magnetic fields [J]. Chem. Commun.2007,2844-2846.
    [2] Cordente, N., Respaud, M., Senocq, F., Casanove, M., Amiens, C., Chaudret, B.Synthesis and magnetic properties of nickel nanorods [J]. Nano Lett.2001,1:565~568.
    [3] Niu, H. L., Chen, Q. W., Ning, M., Jia, Y., Wang, X. Synthesis and one-dimensionalself-assembly of acicular nickel nanocrystallites under magnetic fields [J]. J. Phys. Chem.B.2004,108:3996~3999.
    [4]周苇,郭林.化学法制备金属镍纳米材料研究进展[J].化学通报.2006,69: w063.
    [5]雅典波罗.一维纳米导电材料的制备和研究[硕士论文].上海:上海交通大学.2009.
    [6] Dunin-Borkowski, R. E., McCartney, M. R., Frankel, R. B., Bazylinski, D. A., Po′sfai,M., Busek, P. R. Magnetic microstructure of magnetotatic bacteria by electron holography[J]. Science.1998,282:1868-1870.
    [7] Wu, S. H., Chen, D. H. Synthesis and characterization of nickel nanoparticles byhydrazine reduction in ethylene glycol [J]. J. Colloid Interface Sci.2003,259:282-286.
    [8] Gong, C., Yu, L., Duan, Y., Tian, J., Wu, Z., Zhang, Z. The fabrication and magneticproperties of Ni fibers synthesized under external magnetic fields [J]. Eur. J. Inorg. Chem.2008,2884–2891.
    [9] Wan, D. F. Ma, X. L. Magnetic Physics. Beijing: Publishing House of ElectronicsIndustry.1999,178-205.
    [10] Zhang, L. Y., Wang, J., Wei, L. M., Liu, P., Wei, H., Zhang, Y. F. Synthesis of Ninanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by externalmagnetic fields [J]. Nano-Micro Lett.2009,1:49-52.
    [11] Tian, F., Zhu, J., Wei, D. Fabrication and Magnetism of Radial-easy-magnetized NiNanowire Arrays [J]. J. Phys. Chem. C.2007,111:12669-12672.
    [12] Yu, K. N., Kim, D. J., Chung, H. S., Liang, H. Z. Dispersed rodlike nickel powdersynthesized by modified polyol process [J]. Mater. Lett.2003,57:3992–3997.
    [13] Liu, Z. Li, S. Yang, Y. Peng, S. Hu, Z. Qian, Y. Complex-surfactant-assistedhydrothermal route to ferromagnetic nickel nanobelts [J]. Adv. Mater.2003,15:1946-1948.
    [14] Athanassiou, E. K., Grossmann, P., Grass, R. N., Stark, W. J. Template free, largescale synthesis of cobalt nanowires using magnetic fields for alignment [J].Nanotechnology.200718:165606.
    [15] Hou, Y., Gao, S., Ohta, T., Kondoh, H. Towards3-D spherical self-assemblybyternary surfactant combinations: the case of magnetite nanoparticles [J]. Eur. J. Inorg.Chem.2004,4:1169-1173.
    [16] Wang, J. Zhang, L. Y. Liu, P. Lan, T. M. Zhang, J. Wei, L. M. Zhang, Y. F. Jiang, C.H. Preparation and growth mechanism of nickel nanowires under magnetic field assistance[J]. Nano-Micro Lett.2010,2:134-138.
    [17]张亚非,张丽英,王剑.用于制备磁性金属及合金一维纳米材料的装置.中国实用新型专利. ZL201020294419.X.1-3.
    [18]贾冲,林青,姚连增,蔡维理,李晓光.一种用于电化学沉积纳米线阵列的电解槽.中国实用新型专利. ZL200520071475.6.1-3.
    [1]刘延霞.低维氧化锌功能材料的气敏、发光及场发射性质的研究[博士论文].兰州:兰州大学.2006.
    [2]王君,凌振宝.传感器原理及检测技术.长春:吉林大学出版社,2003:260-280.
    [3]刘锦淮,黄行九.纳米敏感材料与传感技术.北京:科学出版社.2011:48-110.
    [4]王艳艳.单壁碳纳米管网络结构气敏传感器研究[博士论文].上海:上海交通大学.2011.
    [5] He, L., Liao, Z. M., Wu, H. C., Tian, X. X., Xu, D. S., Cross, G. L. W., Duesberg, G. S.,Shvets, I. V., Yu, D. P. Memory and threshold resistance switching in Ni-NiO core-shellnanowires [J]. Nano Lett.2011,11:4601-4606.
    [6] Ren, Y., Chim, W. K., Chiam, S. Y., Huang, J. Q., Pi, C., Pan, J. S. Formation of nickeloxide nanotubes with uniform wall thickness by low-temperature thermal oxidationthrough understanding the limiting effect of vacancy diffusion and Kirkendall phenomenon[J]. Adv. Funct. Mater.2010,20:3336-3339.
    [7] Zhou, G. Nucleation thermodynamics of oxide during metal oxidation [J]. Appl. Phys.Lett.2009,94:201905.
    [8] Rossetti, R., Hull, R., Gibson, J. M., Brus, L-E. Excited electronic states and opticalspectra of ZnS and CdS crystallites in the15to50range: evolution from molecular tobulk semiconducting properties [J]. J. Chem. Phys.1985,82:552.
    [9] Hagfeldt, A., Gratzel, M. Light-induced redox reactions in nanocrystalline systems [J].Chem. Rev.1995,95:49-68.
    [10] Song, X., Gao, L., Mathur,S. Synthesis, characterization, and gas sensing properties ofporous nickel oxide nanotubes [J]. J. Phys. Chem. C.2011,115:21730-21735.
    [11] Wang, Y., Hu, N., Zhou, Z., Xu, D., Wang, Z., Yang, Z., Wei, H., Kong, E. S. W.,Zhang, Y. Single-walled carbon nanotube-cobalt phthalocyanine derivative hybrid material:preparation, characterization and its gas sensing properties [J]. J. Mater. Chem.2011,21:3779-3787.
    [12] Cho, N. G., Woo, H. S., Lee, J. H., Kim, Il. D. Thin-walled NiO tubes functionalizedwith catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as asacrificial template [J]. Chem. Comm.2011,47:11300-11302.
    [1] Mandelbrot, B. B. The fractal geometry of nature. New York: Henry Holt andCompany.1982:1-210.
    [2]叶婧. Ni薄膜等材料制备过程中外加磁场效应的研究[博士论文].浙江大学.2008.
    [3]吴黎黎.分形生长的图像生成及其处理[硕士论文].浙江工业大学.2003.
    [4] Liu, X. Y., Wang, M., Li, D. W. Nucleation limited aggregation of crystallites in fractalgrowth [J]. J. Cryst. Growth.2000,208:687-695.
    [5] Zhu, J., Peng, H., Chan, C. K., Jarausch, K., Zhang, X. F., Cui, Y. Hyperbranched leadselenide nanowire networks [J]. Nano. Lett.2007,7:1095-1099.
    [6] Sukhnova, A., Baranov, A. V., Perova, T. S., Cohen, J. H. M., Nabiev, I. Controlledself-assembly of nanocrystals into polycrystalline fluorescent dendrites withenergy-transfer properties [J]. Angew. Chem., Int. Ed.2006,45:2048-2052.
    [7] Tian, Z. G. R., Liu, J., Voigt, J. A., Xu, H. F., Mcdermott, M. J. Dendritic growth ofcubically ordered nanoporous materials through self-assembly [J]. Nano Lett.2003,3:89-92.
    [8] Yan, H., He, R., Johnson, J., Law, M., Saykally, R. J., Yang, P. Dendritic nanowireultraviolet laser array [J]. J. Am. Chem. Soc.2003,1235:4728-4729.
    [9] Zhu, G. X., Wei, X. W., Xia, C. J., Ye, Y. Solution route to single crystalline dendriticcobalt nanostructures coated with carbon shells [J]. Carbon.2007,45:1160-1166.
    [10] Liu, X. M., Fu, S. Y. High-yield synthesis of dendritic Ni nanostructures byhydrothermal reduction [J]. J. Cryst. Growth.2007,306:428-432.
    [11] Zhu, L. P., Xiao, H. M., Zhang, W. D., Yang, Y., Fu, S. Y. Synthesis andcharacterization of novel three-dimensional metallic Co dendritic superstructures by asimple hydrothermal reduction route [J]. Cryst. Growth Des.2008,8:1113-1118.
    [12] Zhou, X. M., Wei, X. W. Single crystalline FeNi3dendrites: large scale synthesis,formation mechanism, and magnetic properties [J]. Cryst. Growth Des.2009,9:7-12.
    [13] Gorobets, O. Y., Gorobets, V. Y., Derecha, D. O., Brukva, O. M. Nickelelectrodeposition under influence of constant homogeneous and high-gradient magneticfield [J]. J. Phys. Chem. C.2008,112:3373-3375.
    [14] Nikolic, N. D. Some aspects of nickel electrodeposition in the presence of a magneticfield [J]. J. Serb. Chem. Soc.2005,70:1213-1217.
    [15] Mallavajula, R. K., Archer, L. A. Nanocrystal self-assembly assisted by orientedAttachment [J]. Angew. Chem. Int. Ed.2011,50:578-580.
    [16] Banfield, J. F., Welch, S. A., Zhang, H. Z., Ebert, T. T., Penn, R-L. Aggregation basedcrystal growth and microstructure development in natural iron oxyhydroxidebiomineralization products [J]. Science.2000,289:751-754.
    [17] Penn, R. L. Kinetics of oriented aggregation [J]. J. Phys. Chem. B.2004,108:12707-12712.
    [18] Penn, R. L., Banfield, J-F. Morphology development and crystal growth innanocrystalline aggregates under hydrothermal conditions: insights from titania [J].Geochim. Cosmochim. Acta.1999,63:1549-1557.
    [19] Gao, Y., Jiang, P., Liu, D. F., Yuan, H. J., Yan, X. Q., Zhou, Z. P., Wang, J. X., Song,L., Liu, L. F., Zhou, W. Y., Wang, G., Wang, C. Y., Xie, S. S. Evidence for the monolayerassembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires [J]. J. Phys. Chem.B.2004,108:12877.
    [20] Ye, J., Chen, Q. W., Qi, H. P., Tao, N. Formation of nickel dendritic crystals withpeculiar orientations by magnetic-induced aggregation and limited diffusion [J]. Cryst.Growth Des.2008,8:2464-2468.
    [21] Chen, D. H., Hsieh, C. H. Synthesis of nickel nanoparticles in aqueous cationicsurfactant solutions [J]. J. Mater. Chem.2002,12:2412-2415.
    [22] Wu, S. H., Chen, D. H. Synthesis and characterization of nickel nanoparticles byhydrazine reduction in ethylene glycol [J]. J. Colloid Interface Sci.2003,259:282-286.
    [23] Liu, C., Guo, L., Wang, R., Deng, Y., Xu, H., Yang, S. Magnetic nanochains of metalformed by assembly of small nanoparticles [J]. Chem. Commun.2004,2726-2727.
    [1] Kauffman, D. R., Star, A. Electronically monitoring biological interactions with carbonnanotube field-effect transistors [J]. Chem. Soc. Rev.2008,37:1197-1206.
    [2] Snow, E. S., Perkins, F. K., Robinson, J. A. Chemical vapor detection usingsingle-walled carbon nanotubes [J]. Chem. Soc. Rev.2006,35:790-798.
    [3] Kauffman, D. R., Star, A. Carbon nanotube gas and vapor sensors [J]. Angew. Chem.Int. Ed.2008,47:6550-6570.
    [4] Kida, T., Doi, T., Shimanoe, K. Synthesis of monodispersed SnO2nanocrystals andtheir remarkably high sensitivity to volatile organic compounds [J]. Chem. Mater.2010,22:2662-2667.
    [5] Yan, J., Zhou, H. J., Yu, P., Su, L., Mao, L. Q. Rational functionalization of carbonnanotubes leading to electrochemical devices with striking applications [J]. Adv. Mater.2008,20:2899-2906.
    [6] Wang, F., Gu, H. W., Swager, T. M. Carbon nanotube/polythiophene chemiresistivesensors for chemical warfare agents [J]. J. Am. Chem. Soc.2008,130:5392-5393.
    [7] Kong, L. T., Wang, J., Fu, X. C., Zhong, Y., Meng, F. L., Luo, T., Liu, J. H.,p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubesfor detection of nerve agents [J]. Carbon.2010,48:1262-1270.
    [8] Chen, P. C., Sukcharoenchoke, S., Ryu, K., Arco, L. G., Badmaev, A., Wang, C., Zhou,C. W.2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbonnanotubes and ZnO nanowires [J]. Adv. Mater.2010,22:1900-1904.
    [9] Kong, L. T., Wang, J., Luo, T., Meng, F. L., Chen, X., Li, M. Q., Liu, J. H. Novelpyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes fordetection of nerve agents by strong hydrogen-bonding interaction [J]. Analyst.2010,135:368-374.
    [10] Polleux, J., Gurlo, A., Barsan, N., Weimar, U., Antonietti, M., Niederberger, M.Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires andtheir gas-sensing properties [J]. Angew. Chem. Int. Ed.2006,45:261-265.
    [11] Chen, J. J., Wang, K., Hartman, L., Zhou, W. L. H2S detection by vertically alignedCuO nanowire array sensors [J]. J. Phys. Chem. C.2008,112:16017-16021.
    [12] Francioso, L., Taurino, A. M., Forleo, A., Siciliano, P. TiO2nanowires arrayfabrication and gas sensing properties [J]. Sens. Actuators B.2008,130:70-76.
    [13] Nayral, C., Ould-Ely, T., Maisonnat, A., Chaudret, B., Fau, P., Lescouzères, L.,Peyre-Lavigne, A. A novel mechanism for the synthesis of tin/tin oxide nanoparticles oflow size dispersion and of nanostructured SnO2for the sensitive layers of gas sensors [J].Adv. Mater.1999,11:61-63.
    [14] Zhang, J., Wang, S. R., Xu, M. J., Wang, Y., Zhu, B. L., Zhang, S. M., Huang, W. P.,Wu, S-H. Hierarchically porous ZnO architectures for gas sensor application [J]. Cryst.Growth Des.2009,9:3552-3537.
    [15] Zhang, Y. D., Zheng, Z., Yang, F. L. Highly sensitive and selective alcohol sensorsbased on Ag-doped In2O3coating [J]. Ind. Eng. Chem. Res.2010,49:3539-3543.
    [16] Wei, Z. P., Arredondo, M., Peng, H. Y., Zhang, Z., Guo, D. L., Xing, G. Z., Li, Y. F.,Wong, L. M., Wang, S. J., Valanoor, N., Wu, T. A template and catalyst-freemetal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as anexample [J]. ACS Nano.2010,4:4785-4791.
    [17] Zhang, X. L., Huang, F. Z., Nattestad, A., Wang, K., Fu, D. C., Mishra, A., B uerle,P., Bach, U., Cheng, Y. B. Enhanced open-circuit voltage of p-type DSC with highlycrystalline NiO nanoparticles [J]. Chem. Commun.2011,47:4808-4810.
    [18] Li, Y. G., Tan, B., Wu, Y. Y. Ammonia-evaporation-induced synthetic method formetal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures [J]. Chem. Mater.2008,20:567-576.
    [19] Zheng, Z., Huang, L., Zhou, Y., Hu, X. W., Ni, X. M. Large-scale synthesis ofmesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemicalperformance [J]. Solid State Sci.2009,11:1439-1443.
    [20] Ren, Y., Chim, W. K., Chiam, S. Y., Huang, J. Q., Pi, C., Pan, J. S. Formation ofnickel oxide nanotubes with uniform wall thickness by low-temperature thermal oxidationthrough understanding the limiting effect of vacancy diffusion and the kirkendallphenomenon [J]. Adv. Funct. Mater.2010,20:3336-3342.
    [21] Liu, B., Yang, H. Q., Zhao, H., An, L. J., Zhang, L. H., Shi, R. Y., Wang, L., Bao, L.,Chen, Y. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowiresassembled with NiO nanocrystals [J]. Sens. Actuators B.2011,156:251-262.
    [22] Zhou, W., Yao, M., Guo, L., Li, Y. M., Li, J. H., Yang, S. H. Hydrazine-linkedconvergent self-assembly of sophisticated concave polyhedrons of β-Ni(OH)2and NiOfrom nanoplate building blocks [J]. J. Am. Chem. Soc.2009,131:2959-2964.
    [23] Zhang, K. L., Rossi1, C., Alphonse, P., Tenailleau, C. Synthesis of NiO nanowalls bythermal treatment of Ni film deposited onto a stainless steel substrate [J]. Nanotechnology.2008,19:155605.
    [24] Lee, J-H. Gas sensors using hierarchical and hollow oxide nanostructures: overview[J]. Sens. Actuators B.2009,140:319-336.
    [25] Kim, H. R., Haensch, A., Kim, ll-D., Barsan, N., Weimar, U., Lee, J. H. The role ofNiO doping in reducing the impact of humidity on the performance of SnO2-based gassensors: synthesis strategies, and phenomenological and spectroscopic studies [J]. Adv.Funct. Mater.2011,21:4456-4463.
    [26] Zhu, G. X., Xu, H., Liu, Y. J., Xu, X., Ji, Z. Y., Shen, X. P., Xu, Z., Enhanced gassensing performance of Co-doped ZnO hierarchical microspheres to1,2-dichloroethane [J].Sens. Actuators B.2012,166-167:36-43.
    [27] Cho, N. G., Woo, H. S., Lee, J. H., Kim, ll-D. Thin-walled NiO tubes functionalizedwith catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as asacrificial template [J]. Chem. Commun.2011,47:11300-11302.
    [28] Ahsan, M., Tesfamichael, T., Ionescu, M., Bell, J., Motta, N., Low temperature COsensitive nanostructured WO3thin films doped with Fe [J]. Sens. Actuators B.2012,162:14-21.
    [29] Chen, X., Guo, Z., Xu, W. H., Yao, H. B., Li, M. Q., Liu, J. H., Huang, X. J., Yu, S. H.Templating synthesis of SnO2nanotubes loaded with Ag2O nanoparticles and theirenhanced gas sensing properties [J]. Adv. Funct. Mater.2011,21:2049-2056.
    [30] Sun, P., You, L., Sun, Y. F., Chen, N. K., Li, X. B., Sun, H. B., Ma, J., Lu, G. Y.Novel Zn-doped SnO2hierarchical architectures: synthesis, characterization, and gassensing properties [J]. CrystEngComm.2012,14:1701-1708.
    [31] Wang, Z., Li, Z., Sun, J., Zhang, H., Wang, W., Zheng, W., Wang, C. Improvedhydrogen monitoring properties based on p-NiO/n-SnO2heterojunction compositenanofibers [J]. J. Phys. Chem. C.2010,114:6100-6105.
    [32] Wang, J., Wei, L. M., Zhang, L. Y., Zhang, Y. F., Jiang, C. H., Zhang, Y. F.Electrolytic approach towards the controllable synthesis of symmetric, hierarchical, andhighly ordered nickel dendritic crystals [J]. CrystEngComm.2012,14:1629-1636.
    [33] Wang, J., Zhang, L. Y., Wei, L. M., Jiang, C. H., Zhang, Y. F. Novel nanotrees ofcrystalline nickel formed via electrolytic approach [J]. Nano-Micro Lett.2011,3:264-269.
    [34] Wang, Y. Y., Hu, N. T., Zhou, Z. H., Xu, D., Wang, Z., Yang, Z., Wei, H., Kong, E. S.W., Zhang, Y. F. Single-walled carbon nanotube-cobalt phthalocyanine derivative hybridmaterial: preparation,characterization and its gas sensing properties [J]. J. Mater. Chem.2011,21:3779-3787.
    [35] Hagfeldt, A. Gratzel, M. Light-induced redox reactions in nanocrystalline systems [J].Chem. Rev.1995,95:49-68.
    [36] Liu, Y., Dong, J., Hesketh, P. J., Liu, M. Synthesis and gas sensing properties of ZnOsingle crystal flakes [J]. J. Mater. Chem.2005,15:2316-2320.
    [37] Bedi, R. K., Singh, I. Room-temperature ammonia sensor based on cationicsurfactant-assisted nanocrystalline CuO [J]. ACS Appl. Mater. Inter.2010,2:1361.
    [38] Han, L. N., Wang, D. J., Lu, Y. C., Jiang, T. F., Liu, B. K., Lin, Y. H.Visible-light-assisted HCHO gas sensing based on Fe-doped flowerlike ZnO at roomtemperature [J]. J. Phys. Chem. C.2011,115:22939-22944.
    [1] De Heer, W. A., Chatelain, A., Ugarte, D. A carbon nanotube field-emission electronsource [J]. Science.1995,270:1179-1180.
    [2] Dean, K. A. A new era: nanotube displays [J]. Nat. Photonics.2007,1:273-275.
    [3] Wei, W., Jiang, K., Wei, Y., Liu, P., Liu, K., Zhang, L., Li, Q., Fan, S. LaB6tip-modified multiwalled carbon nanotube as high quality field emission electron source [J].Appl. Phys. Lett.2006,89:203112.
    [4] Li, L. A., Cheng, S. H., Li, H. D., Yu, Q., Liu, J. W., Lv, X. Y. Effect of nitrogen ondeposition and field emission properties of boron-doped micro-and nano-crystallinediamond films [J]. Nano-Micro Lett.2010,2:154-159.
    [5] Hernandez-Garcia, C., O’Shea, P. G., Stutzman, M. L. Electron sources for accelerators[J]. Phys. Today,2008,61:44-49.
    [6] Jensen, K. L., Field emitter arrays for plasma and microwave source applications [J].Phys. Plasmas,1999,6:2241-22533.
    [7] Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., Pirio, G.,Legagneux, P., Wyczisk, F., Pribat, D., Hasko, D. G. Field emission from dense, sparse,and patterned arrays of carbon nanofibers [J]. Appl. Phys. Lett.2002,80:2011-2013.
    [8] Modinos, A. Field, thermionic and secondary electron emission spectroscopy. NewYork: Plenum Press. USA.1984.
    [9] Gomer, R. Field emission and field ionization. Cambridge: Harvard University Press.USA.1961.
    [10] Yamaguchi, H., Murakami, K., Eda, G., Fujita, T., Guan, P., Wang, W., Gong, C.,Boisse, J., Miller, S., Acik, M., Cho, K., Chabal, Y. J., Chen, M., Wakaya, F., Takai, M.,Chhowalla, M. Field emission from atomically thin edges of reduced graphene oxide [J].ACS Nano.2011,5:4945-4952.
    [11] Bonard, J. M., Salvetat, J. P., Stockli, T., Forro, L., Chatelain, A. Field emission fromcarbon nanotubes: perspectives for applications and clues to the emission mechanism [J].Appl. Phys. A.1999,69:245-254.
    [12] Ye, D., Moussa, S. Ferguson, J. D., Baski, A. A., El-Shall, M. S. Highly efficientelectron field emission from graphene oxide sheets supported by nickel nanotip arrays [J].Nano lett.2012,12:1265-1268.
    [13] Fowler, R. H., Nordheim, L. Electron emission in intense electric fields [J]. Proc. R.Soc. Lond. A.1928,119:173-181.
    [14] Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., Dai, H. J.Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].Science.1999,283:512-514.
    [15] Wu, L., Li, Q., Zhang, X., Zhai, T., Bando, Y., Golberg, D. Enhanced field emissionperformance of Ga-doped In2O3(ZnO)3superlattice nanobelts [J]. J. Phys. Chem. C.2011,115:24564-24568.
    [16] Rinzler, A. G., Hafner, J. H., Nikolaev, P., Nordlander, P., Colbert, D. T., Smalley, R.E., Lou, L., Kim, S. G., Tomanek, D. Unraveling nanotubes-field-emission from an atomicwire [J]. Science.1995,269:1550-1553.
    [17] Wu, Z. S., Pei, S., Ren, W., Tang, D., Gao, L., Liu, B., Li, F., Liu, C., Cheng, H. M.Field emission of single-layer graphene films prepared by electrophoresis deposition [J].Adv. Mater.2009,21:1756-1760.
    [18] Yu, T., Zhu, Y., Xu, X., Shen, Z., Chen, P., Lim, C. T., Thong, J. T. L., Sow, C. H.Controlled growth and field-emission properties of cobalt oxide nanowalls [J]. Adv. Mater.2005,17:1595-1599.
    [19] Al-Tabbakh, A. A., More, M. A., Joag, D. S., Mulla, I. S., Pillai, V. K. Thefowler-nordheim plot behavior and mechanism of field electron emission from ZnOtetrapod structures [J]. ACS Nano.2010,4:5585-5590.
    [20] Vila, L., Vincent, P., Pra, L. D., Pirio, G., Minoux, E., Gangloff, L.,Demoustier-Champagne, S., Sarazin, N., Ferain, E., Legras, R., Piraux, L., Legagneux, P.Growth and field-emission properties of vertically aligned cobalt nanowire arrays [J]. Nanolett.2004,4:521-524.
    [21] Nagaura1, T., Wada1, K., Inoue, S. Hexagonally ordered Ni nanocone array;controlling the aspect ratio [J]. Mater. Trans.2010,51:1237-1241.
    [22] Hang, T., Ling, H., Hu, A., Li, M. Growth mechanism and field emission properties ofnickel nanocones array fabricated by one-step electrodeposition [J] J. Electrochem. Soc.2010,157: D624-D627.
    [23] Zou, Q., Hatta, A. Electron field emission from carbon nanotubes in Ar gas [J].Plasma Process. Polym.2007,4: S982-S985.
    [24] Yeong, K. S., Maung, K. H., Thong, J. T. L. The effects of gas exposure and UVillumination on field emission from individual ZnO nanowires [J]. Nanotechnology.2007,18:185608.
    [25] Zhao, Q., Xu, X. Y., Song, X. F., Zhang, X. Z., Yu, D. P., Li, C. P., Guo, L. Enhancedfield emission from ZnO nanorods via thermal annealing in oxygen [J]. Appl. Phys. Lett.2006,88:033102.
    [26] Lim, S. C., Choi, Y. C., Jeong, H. J., Shin, Y. M., An, K. H., Bae, D. J., Lee, Y. H.,Lee, N. S., Kim, J. M. Effect of gas exposure on field emission properties of carbonnanotube arrays [J]. Adv. Mater.2001,13:1563-1567.
    [27] Guo, L., Liu, C., Wang, R., Xu, H., Wu, Z., Yang, S. Large-scale synthesis of uniformnanotubes of a nickel complex by a solution chemical route [J]. J. Am. Chem. Soc.2004,126:4530-4531.
    [28] Ahmadi, T-S., Wang, Z-L., Green, T-C., Henglein, A., El-Sayed, M-A. Shapecontrolled synthesis of colloidal platinum nanoparticles [J]. Science.1996,272:1924-1926.
    [29] Sun, Y-G., Xia, Y-N. Shape-controlled synthesis of gold and silver nanoparticles [J].Science.2002,298:2176-2179.
    [30] Mallavajula, R. K., Archer, L. A. Nanocrystal self-assembly assisted by orientedattachment [J]. Angew. Chem. Int. Ed.2011,50:578-580.
    [31] Banfield, J-F., Welch, S-A., Zhang, H-Z., Ebert, T-T., Penn, R-L. Aggregation-basedcrystal growth and microstructure development in natural iron oxyhydroxidebiomineralization products [J]. Science.2000,289:751.
    [32] Baughman, R-H., Zrkhidov, A-A., De Heer, W-A. Carbon nanotubes-the route towardapplications [J]. Science.2002,297:787-792.
    [33] Jeong, H-J., Jeong, H-D., Kim, H-Y., Kim, J-S., Jeong, S-Y., Han, J-T., Bang, D-S.,Lee, G-W. All-carbon nanotube-based flexible field-emission devices: from cathode toanode [J]. Adv. Funct. Mater.2011,21:1526-1532.
    [34] Gautam, U. K., Fang, X. S., Bando, Y., Zhan, J. H., Golberg, D. Synthesis structureand multiply enhanced field-emission properties of branched ZnS nanotube-In nanowirecore-shell heterostructures [J]. ACS Nano.2008,2:1015-1021.
    [35] Zhai, T., Fang, X., Bando, Y., Liao, Q., Xu, X., Zeng, H., Ma, Y., Yao, J., Golberg, D.Morphology-dependent stimulated emission and field-emission of ordered CdSnanostructure arrays [J]. ACS Nano.2009,3:949-959.
    [36] Liu, B. D., Bando, Y., Jiang, X., Li, C., Fang, X. S., Zeng, H. B., Terao, T., Tang, C.C., Mitome, M., Golberg, D. Self-assembled ZnS nanowire arrays: synthesis in situ Cudoping and field emission [J]. Nanotechnology.2010,21:375601.
    [37] Zhu, X. Y., Lee, S. M., Lee, Y. H., Frauenheim, T. Adsorption and desorption of anO2molecule on carbon nanotubes [J]. Phys. Rev. Lett.2000,85:2757-2760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700