用户名: 密码: 验证码:
袋式除尘设备用表面过滤材料净化性能的模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过滤净化是环境科学领域存在的较为重要的问题,对粉尘进行过滤净化存在着过滤介质随捕集粉尘的沉积,过滤介质压力损失及能耗随过滤时间剧烈增加,过滤介质需经常清灰及更换等问题,提高粉尘捕集效率、优化过滤运行过程、降低过滤运行成本,减少能耗,研发高效、低阻、易清灰的新型过滤介质是多年来众多学者及科研工作者的追求目标。为此,本课题围绕粉尘过滤净化问题,开展研究,研究重点为减少工业粉尘过滤压力损失及优化选择过滤材料等问题。
     本课题研究对如何进行优化过滤运行及优化选择和设计过滤介质等问题进行了理论、实验及模拟研究。
     本课题主要研究内容及研究结果包括:
     (1)考虑了粉尘颗粒在过滤介质中的沉积,根据质量守恒定律,建立了粉尘浓度在纤维过滤介质分布的数学模型,分别在单纤维捕集系数固定不变及随粉尘沉积质量变化两种情况下,对粉尘浓度分布数学模型进行了理论求解,得出了非稳态捕集效率的理论计算公式,传统过滤理论捕集效率计算公式为本模型理论的特例,通过相关实验研究分析,证明了本数学模型的两种理论求解结果,虽然在形式上有所不同,但计算结果基本一致。
     (2)通过对传统过滤效率理论计算公式中各影响因素进行分析计算,获得大量的数据,并对其进行回归统计分析,得出了捕集效率计算的经验模型,以便于预测及评价过滤介质的捕集效率,为计算多分散粉尘颗粒捕集总效率,提供了计算方法及途径。
     (3)建立非稳态压力损失的机理及经验模型,通过对国产纤维滤料的性能测试研究,对模型进行验证,为国产滤料应用于粉尘控制,积累了研究数据及资料。
     (4)在假设条件下,开发可视化粉尘颗粒物在纤维滤料中沉积的计算机仿真模拟程序,模拟粉尘沉积及过滤过程,研究滤料及粉尘颗粒物特性与过滤性能之间的相互关系,对模拟实验结果与实测结果进行对比,取得必要的修正及参数,便可利用计算机模拟研究替代实验进行过滤介质的优化选择及设计。
     (5)通过建立的计算机随机沉积模型,采用计算机进行大量的计算,研究不同粒径的颗粒物沉积与不同纤维直径及间距的互相关系等问题,为滤料结构的合理设计创立条件,为开发新型滤料提供理论依据。通过计算机模拟分析,得出了粉尘粒径、纤维直径及过滤介质填充率与捕集效率和压力损失的相关关系,提出梯度滤料具有较好的过滤特性的滤料设计思想。
     (6)对计算机模拟形成的粉尘层,引入分形理论,研究单分散和多分散粉尘颗粒群的几何特征,用分形维数这一简单的数值,表征复杂的粉尘颗粒物沉积群的形态,研究粉尘层的孔隙率与其粒径及分形维数的关系,探讨粉尘分维数在粉尘控制技术中应用的可行性及应用途经。
     (7)将新的滤料设计思想应用于新型滤料研发中,研制出具有高效、低阻及易清灰特性的梯度滤料,其压力损失低于覆膜滤料。并将其应用于电厂过滤除尘系统中,解决了过滤运行中能耗过大的问题,为袋式过滤除尘器应用于电厂除尘中积累了经验。
Particles deposit continuously on the surface of filter or inside filter media during dust filtration process and may cause filter clogging if they are not removed timely. The pressure drop of filtration and energy consumption would increase or even the filtration process can not conduct if the filter media are completely clogged. The properties of filter media and operation paramers are very important to the dust removal.
     The objectives of this study were: 1) to find way to enhance dust particles collection efficiency of filter media, 2) to optimize filtration process parameters to reduce pressure drop of filtration and 3) to develop new filter media. To achieve these goals, theoretical calculations, experimental examinations and simulation were carried out. The main research work and findings are as follows:
     (1) A mathematic model describing dust concentration change with time and space was established, based on the law of mass conservation in a bag house. The general theoretical solutions of collection efficiency were obtained on the conditions of steady or non-steady filtration processes. It is found that the logarithm formula was only a specific solution of the mathematical equation. Experimental results of this work were in agreement with the theoretical calculations.
     (2) The factors affecting filtration were examined and a statistical model to predict collection efficiency of filter was put forward, which is a useful tool for calculation of overall removal efficiency of dust.
     (3) An empirical model and a theoretical model describing pressure drop of filtration on the conditions of steady or non-steady filtration processes have also been established in this work. Using experimental set-up of filtration performance measurement, we set up the filtration performance database of filter media made in China.
     (4) The visual simulation program of particle deposition on filtration media has been developed, which can be used to choose or design filter media for the interest of reducing laboratory work.
     (5) The correlations of dust collection capacity of fiber and fiber diameters as well as fiber intervals have been investigated by means of the visual simulation program. Based on the simulation results of collection efficiency and pressure drop of filtration for different particle diameters and fiber diameters, the novel gradient filter media were developed.
     (6) Using fractural theory, we studied the geometry characteristics of dust cake for single-disperse and multi- disperse dust particles. The fractural dimension can be used to describe complicated shape of dust cake. In addition, it can also be used to study the relationship of porosity and dust diameter. The fractural dimension could ne used to control filtration processes.
     (7) The novel gradient filtration media have been utilized in the dust removal of power plants burning coal successfully, showing better filtration performances (higher efficiency and lower pressure drop than traditional membrane-covered filter media).
引文
[1] 克莱德.奥尔编.邵启祥译.过滤理论与实践.北京:国防工业出版社.1982
    [2] Yongcheng hi, C. -W. park. A predictive model for the removal of colloidal particles in fibrous filter media. Chemical Engineering Science. 1999, 54: 633~644
    [3] Orest Lastow, Albert Podgeorski. Single-fiber collection efficiency. Advances in aerosol filtration, 2000, Chapter 3: 25~51
    [4] D. Thomas, P. Penicot, P. Contal et al. Clogging of fibrous filters by solid aerosol particles Experimental and modeling study. Chemical Engineering Science. 2001, 56: 3549~3561
    [5] Yoshiyuki Endo, Da-Ren Chen, David et al. Effects of particles polydispersity and shapes factors during dust cake loading on air filters. Powers Technology, 1998, 98: 241~249
    [6] S. Calle, D. Bemer, D. Thomas et al. Change in the performance of filter media during clogging and cleaning cycles. Ann. Occup. Hyg., 2001, Vol. 45, No. 2: 115~121
    [7] Kvetoslav R. Spurny. The history of dust and aerosol filtration. Advances in aerosol filtration. 2000, Chapter1: 3~12
    [8] Kvetoslav R. Spurny. Aerosol filtration science at the end of the 2oth century. Advances in aerosol filtration, 2000, Chapter2: 13~24
    [9] C. R. N. Silva, V. S. Negrini, M. L. Aguiar et al. Influence of gas velocity on cake formation and detachment. Power Technolpgy, 1999, I01: 165~172
    [10] Chikao Kanaoka, Sotoji Hiragi. Pressure drop of air filter with dust load. J. aerosol. Sci., 1990, Vol. 21. Nol: 127~137
    [11] Duane H. Smith, Victor Powell, Goodarz Ahmadi, et al. Analysis of Operational filtration data Part Ⅲ: re-entrainment and incomplete cleaning of dust cake. Aerosol science and technology, 1998, September, 3
    [12] Gabriel I. rardos. Separation of airborne dust in deep-bed filtration. Advances in aerosol filtration, 2000, Chapter 12: 241~257
    [13] G. G. Chase, J. Arconti. The effect of filter cakes on the filter Media resistance. Separation Science and Technology, 1994, 29(16): 323~345
    [14] Davies, C N. Air Filtration[M]. Academic Press, London, 1~171, 1973
    [15] Kenneth L Rubow, Mott Ph D. Air filtration[A].'96 International Conference and Expositon[C]. 1996
    [16] Orest Lastow, Albert Podgorski. Single-Fiber Collection Efficiency[M]. Chapter3, advance in aerosol filtration, Lewis publishers, Boca Roton, 1997
    [17] Brown R C. Theory of Airflow through Filters Modelled as Arrays of Parallel Fibers[J]. Chemical Engnieering Science, 1993, 48(20): 3535~3543
    [18] Brown R C. Airflow through Filters—beyond Single-Fiber Theory[M]. Chapter8, advance in aerosol filtration, Lewis publishers, Boca Roton, 1997
    [19] Gabriel I. Tardos. Separation of Airborn Dust in Deep-Bed Filtration[M]. Chapter12, advance in aerosol filtration, Lewis publishers, Boca Roton, 1997
    [20] 林瑞泰著.多孔介质传热传质引论[M].北京:科学出版社,1995
    [21] 蔡杰.空气过滤ABC.北京:中国建筑工业出版社,2002
    [22] J. Juda, S. Chrosciel. Staub, 30, 196(1970)
    [23] Davices, C. N. The clogging of fibous aerosol filters. J. Aerosol science, 1970, Vol. 1
    
    
    [24]Bergman, W. et al. in 15 th DOE Nuclear air cleaning conference proceedings, CONF-760822
    
    [25]Kanaoka, C., Emi, H., Myojo, T. Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load. J. Aerosol Science, 1980, Vol. 11
    
    [26]Novick, V. J., Monson, P. R. et al. J. Aerosol Science, 1992, 23(6): 657- 665
    
    [27]Vincent J. Novick, Jane F. Klsaaen. Predicting pressure response characteristics across particle-loaded filters. Advance in aerosol filtration. 2000, Chapter 17:337-347
    
    [28] Yu-Hsiang cheng, Chuen-Jinn Tsai. Factors influencing pressure drop through a dust cake during filtration. Aerosol science and technology, 1998, 29(4): 315-328
    
    [29]V. J. Novick, P. R. Monson, P. E. Ellison. The effect of solid particle mass loading on the pressure drop of HEPA filters. J. Aerosol Sci., Vol. 23, No. 6, pp. 657-665, 1992
    
    [30] P. penicot, D. Thomas, P. Contal etal. Clogging of HEPA fibrous filters by solide and liquid aerosol particles: An Experimental Study. Filtration and Separation, 1999, Mrch: 59-64
    
    
    [31] D. Thomas, P. Contal, V. Renaudin et al. Modelling pressure drop in HEPA filters during dynamic filtration . J . Aerosol Sci. Vol. 1999, 30 No2: 235-246
    
    [32] T. Sakano, Y. Otani, N. Namiki etal. Particle collection of medium performance air filters consisting of binary fibers under dust loaded conditions. Separation and purication Technology, 2000, 19 .- 145-152
    
    [33] Ch. Stocklmayer, W. Hoflinger. Simulation of the filtration behaviour of dust filters. Simulation Parctice and Theory, 1998, 6: 281-296
    
    [34] Ch. Stocklmayer, W. Hoflinger. Simulation of the regeneration of dust filters. Mathematics and Computers in Simulation, 1998, 46: 601-609
    
    [35] W. Hoflinger, Ch. Stocklmayer, A. Hackl. Modal Calculation of the compression behaviour of dust filter cake. Filtration and Separation, 1994, December: 807-811
    
    [36]Eberhard Schmidt . Theoretical investigations into the compression of dust cakes deposited on filter media. Filtration and Separation, 1997, May: 365-368
    
    [37]M. S. Hall. Calculation of the drag on a sphere with an attached dendrite. J. Aerosol Sci.,1988,19(3): 317-331
    
    [38]A. C. Payatakes. Dendrites and air filter efficiency. Filtration and separation. 1976, 12: 602-607
    
    [39]Chi Tian. Effect of deposition on aerosol filtration. Advance in aerosol filtration. 2000, chapterl5: 301-321
    
    [40]Olga Fillippova , Dieter Hanel . Numerical simulation of gas-particles flow in filters by lattice bhatnagar-gross-krook model, Advances in aerosol filtration, Chapter 9: 173-192
    
    [41] Kvetoslav R. Spurny. Aeroaol Filtration science at the end of the 20~(th) century. Advances in aerosol filtration, Chapter 2: 13-24
    
    [42]Wilhelm Hoflinger. Fundamentals of the compression behavior of dust filter cakes. Advances in aerosol filtration. Chapter 18. 2000
    
    [43] D. Thomas, P. Penicot, P. Contal, D. Leclerc, J. Vendel. Clogging of fibrous filters by solid aerosol particles Experimental and modeling study.. Chemical Engineering Science 56(2001): 3549-3561
    
    [44]A. Schmidt-ott. New approaches to in situ characterization of ultrafine agglomerates. J. Aerosol Sci., 1988, 19(5): 553-563
    
    [45]Declan C. Walsh. Recent advance in the understanding of fibrous filter beheaver under solid particle load[J]. Filtration and separation, 1996, (7): 501~506
    [46] P. Letournceau, Ph Mulcey, J Vendel. Effect of Dust loading on pressure drop and efficiency of HEAP filters[J]. Filtration and separation, 1987, (7/8): 265~267
    [47] A. C. Payatakes. Dendrites and air filter efficiency. Filtration and Separation. 1976, (11/12): 602~607
    [48] J. I. T. Stenkouse. Particle capture mechanisms in fibrous filters. Filtration and Separation. 1971, (3/4): 169~172
    [49] R. C. Brown. A many-fiber model of airflow through a fibrous filter. J. Aerosol Sci., 1984, 15(5): 583~593
    [50] Hsu-Chi Yeh, Benjamin Y. H. Liu, Aerosol filtration by fibrous filters-Ⅰ: Theoretical. Aerosol Science. 1974, 5: 191~204
    [51] Hsu-Chi Yeh, Benjamin Y. H. Liu. Aerosol filtration by fibrous filters-Ⅱ: Experiment. Aerosol Science. 1974, 5: 205~217
    [52] Kuwabara, S. The foeces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers[J]. J. phys. Soc. Japan, 1959, 14(4): 257~268
    [53] Gabriel I Tardos. Separation of Airborne Dust in Deep-bed Filtration[A]. In: Spurny, Kvetoslav. Advances in aerosol filtration[C]. Boca Roton: Lewis publishers, c1998
    [54] Lee K W, liu B Y H. Theoretical study of aerosol filtration by fibrous filters[J]. Aerosol Sci Technol, 1982, 1: 147~161
    [55] Zhang Hongqing(张鸿庆),Yan Zhenya(阎振亚).New arithmetic way to resolve non-linear differential equation[J].Application Mathematics and Mechanics(应用数学和力学),2000,21(12):1285~1292
    [56] Zhang Xiaoli(张孝理).A new way of resolve two order non-linear differential equation[J].Hunan Teachers university Journal(湖南师范大学自然科学学报),2002,25(1):9~14
    [57] Davices, C. N. The clogging of fibous aerosol filters. J. Aerosol science, 1970, Vol. 1.
    [58] M. S. Hall. Calculation of the drag on a sphere with an attached dendrite. J. Aerosol Sci.,1988, 19(3): 317~331
    [59] Chi Tian. Effect of deposition on aerosol filtration. Advance in aerosol filtration. 2000, chapter15: 301~321
    [60] 董连科.分形动力学[M].沈阳市:辽宁科学技术出版社,1994:9~22
    [61] Brain H. Kaye. Describing filtration dynamics from the perspective fractal geometry[J]. KONA, 1991, (9): 48
    [62] H.Kaye.徐新阳,等译.分形漫步[M].沈阳:东北大学出版社,1994
    [63] 徐新阳.气压过滤的成饼动力学及其粉尘层的分形结构[J].化工学报,1995,46(1):5~14
    [64] 孔令德,张认成,王国林等.粉尘粘附过程的分形模拟[J].太原重型机械学院学报,1997,18(4):323~327
    [65] 蒋建忠,袁惠新.颗粒群的体积分维数对过滤性能的影响[J].过滤与分离,2002,12(2):12~14
    [66] 李(氵絜),朱金兆,朱清科.分形维数计算方法研究进展[J].北京林业大学学报,2002,24(2):71~78
    [67] D Houi, R Lenormand. Particle Accumulation at the Surface of a filter. Filtration and Separation, 1986, (7/8): 238~241
    [68] Chi Tien. Effect of Deposition on Aerosol Filtration[A]. Advance in Aerosol[C], Chaper15, 301~321
    [69] 蔡杰.空气过滤ABC(M).北京:中国建筑工业出版社.2002
    [70] 张继忠.分形.北京:清华大学出版社,1995
    [71] 向晓东,陈宝智,张国权.粉尘分形几何特征及在除尘技术中应用探讨.1999,(2):14~17
    [72] 徐新阳,邓常烈,罗倚.一种研究粉尘层结构的新方法[A].分形理论及应用[C],辛厚文.合肥市:中国科学技术大学出版社,1993
    [73] 余永宁,刘国权.体视学[M].北京:冶金工业出版社,1985
    [74] Mamdelbrot B. B. Fractal in physics. 1985: 476
    [75] 高安秀树[日].分维数.北京:地震出版社,1980
    [76] E. Rothwell. An analysis of fabric dust filtration Ⅰ: Model observations of dust cake formation, Filtration and separation. 1986: 113~118
    [77] Chikao Kanaoka. Performance of an air filter at dust-loaded condition. Advances in aerosol filtration, Chapter 16:323~335
    [78] 李恩良,王英敏.过滤除尘器收集效率的研究.环境科学学报,1989,9(2):249~253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700