用户名: 密码: 验证码:
微化蒙脱土悬浮液的制备及其处理材性能和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒙脱土是粘土的一种,是一类层状硅酸盐类化合物,在我国资源丰富,价格低廉,广泛应用于高分子材料的改性中。为了改善木材的物理、力学等性能,本研究制备了微化蒙脱土悬浮液并对木材进行改性。研究采用一步法以及两步法制备工艺,利用蒙脱土的阳离子可交换性、添加化学分散剂和物理分散方式提高有机蒙脱土颗粒在水相中的分散稳定性,制备稳定的微化蒙脱土悬浮液,通过满细胞法真空-加压浸注杉木试材,制备微化蒙脱土悬浮液改性处理材(以下简称改性处理材),并采用X-射线衍射分析(XRD)、傅里叶红外光谱分析(FTIR)、扫描电镜-能谱分析(SEM-EDXA)、差热-热重分析(DTA-TG)、Zeta电位仪以及激光粒度仪进行表征及分析,得到如下主要结论:
     (1)采用二甲基双癸基氯化铵(DDAC)对蒙脱土进行有机改性可以明显提高层间距以及表面疏水性,降低吸水膨胀性。其中影响蒙脱土改性效果的各因素的影响因子的顺序为:改性剂的加入量>改性体系的pH值>蒙脱土的分散浓度>改性时间>陈化时间>改性温度。制备有机蒙脱土的优化工艺为:DDAC过量150%,原土分散浓度为5%,体系pH值为10,改性时间为2h,陈化24h,改性温度为50℃。在该工艺下制备的有机蒙脱土的层间距达到27.34 A,部分片层甚至完全剥离,疏水性得到明显改善。
     (2)采用聚乙烯醇(PVA)或聚乙二醇(PEG)作为分散剂均能有效提高有机蒙脱土在水相中的分散稳定性,其效果与分散剂浓度等因素相关。研究结果表明,制备微化蒙脱土悬浮液分散剂的优化参数为:(1)当高分子分散剂浓度>1%时,选择PVA高分子分散剂,DDAC浓度为1.4%,高分子分散剂浓度为2%或者1%,pH值为8-10;OMMT分散浓度为5%。(2)当高分子分散剂浓度<1%时,选择PEG高分子分散剂,DDAC浓度为<0.7%,高分子分散剂浓度为0.5%或者0.25%,pH值为8-10,OMMT分散浓度为2%。分散方式对微化蒙脱土悬浮液制备的影响顺序:球磨分散>机械搅拌分散>超声波分散。
     (3)使用PVA复配分散剂,分别采用一步法以及两步法制备稳定的PVA微化蒙脱土悬浮液,通过满细胞法真空-加压浸注处理木材,制备PVA微化蒙脱土悬浮液改性处理材(PVDMW)。结果表明,两步法制备的改性处理材中蒙脱土主要以大颗粒的形式填充在木材管胞腔等大细胞腔中,而未进入木材细胞壁中与其主要成分发生作用,因此改性处理材的性能提高较小。而一步法制备改性处理材中一小部分剥离的蒙脱土小片层进入了木材细胞壁的非结晶区,并与木材的主要成分发生一定的化学反应,使木材细胞壁中含有部分的Si元素,改性处理材的结晶度提高,对应的改性处理材的热稳定性、抗水流失性、尺寸稳定性、表面硬度、抗压强度等都有一定程度的提高,改性处理材的性能在一定程度上得到改善。然而由于PVA过长的分子长链降低了球磨效果,剥离的蒙脱土小片层含量较低,因此改性处理材各项性能虽然各有提高,但效果却并不显著。
     (4)使用PEG复配分散剂,分别采用一步法以及两步法制备稳定的PEG微化蒙脱土悬浮液,通过满细胞法浸注真空-加压浸注处理木材,制备PEG微化蒙脱土悬浮液改性处理材(PEDMW),其中添加PEG1000的一步法制备改性处理材中,蒙脱土主要以小颗粒状以及纳米片状的形式分布在木材细胞腔以及进入木材细胞壁中,使木材细胞壁中Si元素的含量显著提高,其中OMMT通过PEG的络合作用进一步与木材纤维素及半纤维中的醇羟基发生络合反应,生成新的络合物,还可以与木素中的羰基发生作用。而随着蒙脱土纳米片层进入木材细胞壁的非结晶区使改性处理材的结晶度显著提高,蒙脱土纳米效应的发挥使相应的一步法改性处理材在抗水流失性、尺寸稳定性、表面硬度以及抗压强度等方面都得到显著的提高。而两步法制备改性处理材中由于蒙脱土片层的粒度没有降低,蒙脱土主要以大颗粒的形式吸附在木材的大孔隙中,没有进入木材的细胞壁,导致两步法制备改性处理材在性能提高方面低于一步法制备改性处理材。而当添加PEG8000时,PEG8000降低木材的渗透性,阻止了蒙脱土等有效成分进入木材细胞腔中,改性处理材的各项性能的提高也明显低于PEG1000作为分散剂的一步法制备改性处理材。
Montmorillonite (MMT) is a crystalline aluminosilicate with a platete morphology. Because of its rich resources and low price, it has been widely used to prepare montmorillonte/polymer nanocomposite to improve the properties of polymer. In order to improve the properties of wood, micronized montmorillonite suspension as a wood modifier was prepared in this study by using the exchangeable cations in MMT, proper dispersion method and compound dispersants in both one-step and two-step methods. It was then used to treat wood through a full-cell process and the X-ray diffractometer (XRD), fourier transform infraredspectroscopy (FTIR), scanning electron microscope with energy dispersive X-ray analysis (SEM-EDXA), differential thermal analysis-thermogravimetric analysis (DTA-TG), Zeta potential analyzer and laser particle instrument were used to analysis and character, and the following results are obtained:
     (1) The interlayer distance and surface hydrophobicity of organic montmorillonite modified with DDAC was obviously improved. The order of main factors which influence the modification effect of MMT is:addition amount of modification agent> pH value of system>MMT diffraction concentration>reaction time> aging time>reaction temperature. The optimized process is as follows: modification agent:DDAC; addition amount of DDAC:150%; pH value:10; reaction time:2h; aging time:24h; reaction temperature:50℃. By using this modification process, the interlayer distance of organic montmorillonite (OMMT) was enlarged to a maximum of 27.34 (?) with some layers exfoliated totally. Besides, the surface hydrophobicity of OMMT is obviously improved.
     (2) The stability of OMMT suspension in aqueous solution was greatly improved by using polyvinyl alcohol (PVA) or polyethylene glycol (PEG) dispersants. The optimized parameters vary with the polymer concentrations. (1) at polymer concentrations higher than 1%, PVA is preferred and the parameters are as follows:DDAC concentration:1.4%; PVA concentration:1% or 2%; pH value: 8-10; OMMT concentration:5%. (2) at polymer concentrations lower than 1%, PEG is preferred and the parameters are as follows:DDAC concentration:<0.7%; PEG concentration:0.25% or 0.5%; pH value:8-10; OMMT concentration:2%. The dispersion method in a order of best to worst is:ball milling>mechanical stirring>ultrasonic dispersion.
     (3) Samples treated with micronized montmorillonte suspension using PVA as dispersant (PVDMW) were characterized and the properties were tested. PVDMW-2 treated with suspension prepared by two step method showed a great amount of large OMMT clusters blocking in wood cell lumen or covering on the surface of wood cell wall without penetrating into the wood cell wall. As a result, the properties of treated wood are not improved significantly. However, PVDMW-1 treated with suspension prepared by the one-step method showed some exfoliated OMMT layers entering into the amorphous region of wood cell wall, which increased the crystallinity of wood and consequently improved the wood properties to some extent including the thermal property, leaching resistance, dimensional stability, surface hardness and compression strength.
     (4) Samples treated with micronized organic montmorillonite suspension using PEG1000 or PEG8000 as dispersants (PEDMW) were characterized and the properties were tested. In PEDMW-1 samples treated with suspension prepared by one-step method, the small particles or exfoliated layers of OMMT filled the cell lumen or wood cell wall, which was demonstrated in the detected increasing content of Si element in the wood cell wall. OMMT layers formed complex bonds with alcoholic hydroxyl groups in wood cellulouse and hemicelluloses as well as the carboxyl group in lignin through PEG. As a result, the wood crtstallinity was greated increased and the properties including the thermal property, leaching resistance, dimensional stability, surface hardness and compression streangth of PEDMW-1 were improved significantly. The performance of PEDMW-2 treated with suspension prepared by two-step method is similar to that of PVDMW-2. In PEDMW-8 samples treated with suspension dispersed by PEG8000 in one-step method, the OMMT nano-layers could not get into wood cell wall due to the long chains of PEG8000, which also led to relatively low properties of PEDMW-8.
引文
[1]蔡宁,马荣,乔冠军.木材陶瓷化反应机理的研究[J].无机材料学报,2001,16(4):763-768.
    [2]常鹰,李溪滨.球形纳米氧化锆粉末的制备[J].中南大学学报自然科学版,2007,38(1):46-50.
    [3]陈海群,王海靖,朱俊武,等.二聚阳离子表面活性剂改性蒙脱土的制备和表征[J].精细化工,2004,21(7):489-495.
    [4]陈文娟,吴武伟,尹向阳,等.有机蒙脱土制备实验研究[J].河南建材,2005,(1):10-12.
    [5]大森英三.新高分子文库:高分子凝聚剂[M].北京:化学工业社,1973.
    [6]邓斌,广小飞,侯耀永.几种分散剂对a-Al203悬浮液稳定性的影响[J].零陵学院学报,2002,23(4):138-140.
    [7]董如林,马丽,张锋,等.聚乙二醇对水系介质中Al203粒子的分散作用[J].江苏工业学院学报,2009,21(1):28-33.
    [8]方桂珍,任世学.3种季铵盐木材防腐剂的防腐性能和抗流失性比较[J].林产化学与工业,2002,22(2):61-64.
    [9]郜君鹏,李阳,梁伯润.蒙脱土对PET结晶性能、热稳定性和力学性能的影响[J].中国塑料,2004,1 8(8):23-28.
    [10]郜君鹏,李阳,滦广贵,等.有机蒙脱土的制备及表征[J].合成技术及应用,2005,20(1):15-17.
    [11]胡大双,鲁亚明,李珊.分散剂在铁氧体浆料中的分散作用[J].磁性材料及器件,2009,40(3):64-66.
    [12]黄双路.短链季铵盐表明活性剂对改性膨润土结构的影响[J].福建医科大学学报,2005,39(1):65-68.
    [13]黄文勇,庞浩,廖兵.聚氨酯/蒙脱土纳米复合弹性体材料-(Ⅱ)结构及性能的表征[J].高分子材料科学与工程,2005,21(1):195-198.
    [14]姜桂兰,张培萍.膨润土加工与应用[M].北京:化学工业出版社,2005:93.
    [15]蒋涛,王玉花,姚丽.蒙脱土的有机化改性[J].胶体与聚合物,2003,21(3):21-30.
    [16]孔万力,包永忠,黄志明.分散剂和非离子型表面活性剂对悬浮聚氯乙烯树脂颗粒特性的影响[J].中国氯碱,2004,(3):7-9.
    [17]李登好.a-Al203-H20-PAA系统稳定性控制研究[D].南京:南京工业大学,2004.
    [18]李坚.走向21世纪的木质复合材料[J].世界林业研究,1995,(3):34-40.
    [19]李淑君,李坚,刘一星.木陶瓷的制造(Ⅰ)-实木陶瓷[J].东北林业大学学报,2002.30(4):5-7.
    [20]李晓冰,刘宇光.乙酰胺/蒙脱土吸附嵌入机理的研究[J].哈尔滨商业大学学报(自然科学版),2003,19(2):233-237.
    [21]李阳,郜君鹏,沈勤,等.PET/蒙脱土纳米复合材料的增韧研究[J].工程塑料应用,2004,32(10):55.
    [22]李益民,朱利中,王钰,等.有机膨润土的吸附性能研究[J].高等学校化学学报,1997,18(5):723-725.
    [23]梁虎南,龙柱,皮成忠.酸化膨润土的分散性研究[J].中华纸业,2008,24:48-51.
    [24]廖秋霞,卢灿辉,许晨.原位溶胶-凝胶制备木材—PMMA—SiO2复合材料及其显微结构[J].福建化工,2001,(1):21-23.
    [25]刘付胜聪,肖汉宁,李玉平.纳米Si02表面吸附聚乙烯酰胺及其液相分散稳定性[J].随酸盐学报,2004,32(7):816-821.
    [26]刘宏生,高芒来,杨莉,等.不同烷基季铵盐对膨润土絮凝性的影响.西安石油大学学报(自然科学版),2007,22(3):84-88
    [27]刘吉起,薄玉霞,王靖,等.十二烷基二甲基苄基氯化铵性能的实验观察[J].医学动物防制,2003,19(1):1-3.
    [28]刘一星,李淑君,李坚.木陶瓷的制造(Ⅱ)-中密度纤维板木陶瓷[J].东北林业大学,2002,30(5):47-49.
    [29]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社,2004.
    [30]龙石红,邓斌.不同分散剂对二氧化钛颗粒分散稳定性的影响[J].渝西学院学报,2003,2(4):12-18.
    [31]吕建坤,柯毓才,漆宗能.环氧树脂/粘土纳米复合材料的制备与性能研究[J].复合材料学报,2002,19(1):117-121.
    [32]吕文华,赵广杰.杉木木材/蒙脱土纳米复合材料的结构和表征[J].北京林业大学学报,2007,1:131-135.
    [33]吕文华.木材/蒙脱土纳米插层复合材料的制备[D].北京:北京林业大学,2004.
    [34]马继盛,漆宗能,张树范.聚氨酯弹性体/蒙脱土纳米复合材料的合成、结构与性能[J].高分子学报,2001,(3):325-328.
    [35]马建杰,王娟丽,李奠础,等.六偏磷酸钠对陶瓷釉料中纳米ZnO分散作用的研究[J].山西化工,2008,28(5):1-4.
    [36]马强,赵苏,孙亮等.改性超细A1(OH)3水悬浮液的稳定性[J].材料与冶金学报,2009,8(2):151-155.
    [37]莫世清,陈衍夏,施亦东,等.羧甲基纤维素钠对蒙脱土分散性能的影响[J].印染助剂,2009,36(3):27-30.
    [38]牟国栋,王晓刚,贺丽,等.纳米科学技术的发展和纳米材料的特性[J].西安矿业学院学报,1998,18(4):332-335.
    [39]宁炜,张璧光,黄淑芹,等.国内木质复合材料的研究与发展[J].木材加工机械,2004,1:34-36.
    [40]潘慧,蓝咏,吴锐钊,等.CTAB与SDS对膨润土改性的界面性质研究[J].华南师范大学学报(自然科学版),2008,(1):88-92.
    [41]潘竟军,阎海科.十六烷基三甲基溴化铵在钠、铝蒙脱土吸附研究[J].油田化学,2000,17(3):204-207.
    [42]漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料理论与实践[J].北京:化学工业出版社,2002:9.
    [43]邱坚,李坚,刘迎涛.无机质复合木材研究进展[J].东北林业大学学报,2004,32(1):64-67.
    [44]邱坚,李坚.超临界干燥制备木材-Si02气凝胶复合材料及其纳米结构[J].东北林业大学学报,2005,33(3):3-4.
    [45]邱坚,李坚.纳米科技及其在木材科学中的应用前景(Ⅰ)-纳米材料的概况、制备和应用前景.东北林业大学学报,2003,31(1):1-5.
    [46]邱俊,刘玉芹,王桂芳,等.十八烷基三甲基铵用量与蒙脱土烷基铵复合物结构关系研究[J].矿物岩石,2008,28(2):22-27.
    [47]饶久平.木材复合材料的发展与展望[J].福建林学院学报,2003,23(3):284-287.
    [48]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005:184.
    [49]师瑞霞,杨中喜,王冬至.pH值及分散剂质量分数对纳米TiC粉体水溶液分散性的影响[J].山东交通学院学报,2008,16(4):74-77.
    [50]孙美娟.正负离子表面活性剂混合水溶液性质研究[D].青岛:青岛科技大学,2005.
    [51]索大鹏,陈志刚,杨娟.季铵盐插层钠基蒙脱土的工艺研究[J].硅酸盐通报,2004,(4):98-]00.
    [52]田在龙.杀菌剂长链单、双烷基季铵盐的合成[J].天然气化工,1990,21:36-40.
    [53]汪亮.DDAC-OMMT复合防腐剂的制备及其在木材中的应用[D].北京:北京林业大学,2010.
    [54]王恺主编.木材工业使用大全(木材保护卷)[M].北京:中国林业出版社,2001:59.
    [55]王萍,李璐璐,刘素文,等.分散剂对纳米Ti02悬浮液稳定性的影响[J].中国陶瓷,2008,44(12):21-22.
    [56]王世容,李祥高,刘东志.表面活性剂化学[M].北京:化学工业出版社,2005.
    [57]王文波,刘玉芬,申书昌.表面活性剂使用仪器分析[M].北京:化学工业出版社,2003.
    [58]王西成,程之强,莫小洪,等.木材/二氧化硅原位复合材料的界面研究[J].材料工程,1998,(5):16-18.
    [59]王西成,史淑兰,程之强.(Si,Al-)陶瓷化木材的化学方法[J].材料研究学报,2000,14(1):51-55.
    [60]王西成,田杰.陶瓷化木材的复合机理[J].材料研究学报,1996,10(4):435-440.
    [61]翁祖华,黄双路,郑玉婴.季铵盐表面活性剂烷烃链数目对改性蒙脱石结构的影响[J].日用化学工业,2001,31(5):8-10.
    [62]吴建军,徐仁扣,肖双成,等.阳离子表面活性剂用量对改性沸石吸附铬酸跟的影响[J].生态与农村环境学报,2007,23(3):82-85.
    [63]吴平霄.污染物与蒙脱石层间域的界面反应及其环境意义[J].环境污染治理技术与设备,3003,4(5):37-41.
    [64]熊满珍,鲍甫成,候元兆,等.发展木材工业,促进林业可持续发展[J].木材工业,2005,19(1):11-15.
    [65]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002:3-4.
    [66]徐有明,林汉,张卓文,等.火炬松种源顺纹抗压强度变异及与树龄、晚材率、木材密度相关分析[J].东北林业大学,2005,33(4):19-22.
    [67]薛凤莲.杉木/钙基蒙脱土复合板材的制备工艺及性能检测[D].北京:北京林业大学,2005.
    [68]薛振华.蒙脱土/木材复合材料的构造与流变学特性[D].北京:北京林业大学,2006.
    [69]杨红霞,刘卫东.分散剂在陶瓷浆料制备中的应用[J].中国陶瓷工业,2005,12(2):27-35.
    [70]杨江海,张振忠,赵芳霞,等.不同分散剂对纳米铋粉在无水乙醇中分散性能影响[J].铸造技术,2008,2008,29(12):1709-1711.
    [71]杨威,王鹏,胡万里,等.双烷基季铵盐的制备与杀菌性能研究[J].工业水处理,2002,20(6):13-16.
    [72]余丽萍,曹金珍.醇类化合物对硼基木材防腐剂抗流失性的影响[J].北京林业大学学报,2009,31(supp.1):6-10.
    [73]袁茂全,李明,潘祥江.PET/蒙脱土纳米复合材料的制备及其性能研究[J].中国塑料,2004, 18(8):29-33.
    [74]张葵花,谭绍早,刘应亮.季铵盐改性蒙脱土抗菌活性及抗菌机理[J].硅酸盐学报,2006,34(1):87-92.
    [75]张坤,王林江,张国伟.反应配比对纳米有机蒙脱土层间结构的影响[J].矿产保护与利用,2007,3:17-20.
    [76]张双保,杨小军.木质复合材料的研究现状与前景[J].建筑人造板,2001,(2):3-6.
    [77]张孝彬,许平聪.我国纳米科技的现状与发展[J].材料科学与工程学报,2003,21(4):596-601.
    [78]张忠安,徐锦龙,李乃祥,等.PET/蒙脱土纳米复合材料的流变性能[J].合成树脂及塑料,2003,20(3):32-35.
    [79]赵光好,周新木,徐招弟,等.纳米二氧化锆悬浮液分散稳定性研究[J].无机盐工业,2006,38(1):23-25.
    [80]赵广杰.木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J].北京林业大学学报,2002,24(5/6):204-207
    [81]赵俊卿,王喜明,高志悦,等.白桦材聚乙二醇改性技术的研究[J].内蒙古林业科技,1995,(1):44-47
    [82]郑华,张勇,彭宗林,等.三元乙丙橡胶蒙脱土纳米复合材料的制备与性能研究[J].世界橡胶工业,2005,32(6):10-13.
    [83]郑环宇,安茂忠,陈龙,等.分散剂对(Zn-Ni)-Al203复合镀中纳米Al203分散性能的影响[J].电镀与环保,2006,26(2):11-14.
    [84]周盾白,蔡长庚,贾德民.PEO处理蒙脱土填充PVC的制备与力学性能[J].塑料工业,2005,33(3):25-28.
    [85]周平,张志毅,梁树平.毛白杨无机复合木材研究[J].北京林业大学学报,2000,22(6):39-42.
    [86]周卫平,樊芷芸,庄萍.陶瓷复合木材处理技术[J].化学建材,1997,(1):27-28.
    [87]朱建喜,何宏平,郭九皋.HDTMA+柱撑离子空间几何尺寸与柱撑蒙脱石层间排列方式的研究[J].矿物岩石,2003,23(4):1-4.
    [88]朱建喜,何宏平,郭九皋.不同链长烷基季铵离子在蒙脱石层间域内排列方式的对比[J].矿物学报,2003,23(3):193-198.
    [89]朱利中,李益民,张建英.有机膨润土吸附水中萘胺、萘酚的性能及其应用[J].环境科学学报A,1997,17(4):445-449.
    [90]Akyuz S, Akyuz T. FT-IR Spectroscopic Investigation of Adsorption of Pyrimidine on Sepiolite and Montmorillonite from Anatolia[J]. Journal of Inclusion Phenomena and Marcrocylic Chemistry,2003,46:51-55.
    [91]Akyuz S, Akyuz T. FT-IR Spectroscopic Investigations Adsorption of Pyrazinamide and 4-Aminopyrimidine by Clays[J]. Journal of Inclusion Phenomena and Marcrocylic Chemistry, 2004,48:75-80.
    [92]Alma M H, Hafizoglu H and Maldas D. Dimensional stability of several wood species treated with vinyl monomers and polyethylene glycol-1000[J]. International journal of Polymeric Materials, 1996,32(1-4):93-99.
    [93]Ashori A, Nourbakhsh A. Effects of nanoclay as reinforcement filler on the physical and mechanical properties of wood-based composite[J]. Journal of Composite Materials,2009,43(18): 1869-1875.
    [94]AWPA,2007 America Wood Preservers Association. Book of Standards,2007.
    [95]Bala P, Samantaray B K. Effect of alkylammonium intercalated montmorillonite as filler on natural rubber[J]. Journal of Mmaterials Science Letters,2001,20:563-564.
    [96]Butcher J A, Drysdale. Effect of acidic and alkaline solutions of alkylammonium compounds as wood preservatives[J]. N.Z. For. Sci,1978,8(3):403-409.
    [97]Butcher J A. Alan F P, Drysdale J. Initial screening trials of some quaternary ammonium compounds and amine salts as wood preservatives[J]. Forest Produ-ction Journal,1976,27(7): 19-25.
    [98]Butcher J A. Currents status of AAC wood preservatives in New Zealand. The 11th annual meeting of the international research group on wood preservation, Raleigh, North Carolina, USA,1980, Doc.No:IRG/WP/80-3141.
    [99]Butcher J A. Test method to simulate Above-ground exposures. The 10th annual meeting of the international research group on wood preservation, Peebles, Scotland,1978, Doc. No: IRG/WP/78-2112.
    [100]Carretero G J, Valentin J L, Arroyo M et al. Natural rubber/clay nanocomposites:influence of poly(ethylene glycol) on the silicate dispersion and local chain orger of rubber network[J]. European Polymer Journal,2008,44(11):3493-3500.
    [101]Cesarano I J, Aksay I A. Processing of high conerntrated aqueous a-alumina suspension stabilized with polyelectrolytes[J]. Jour Am Ceram Soc,1988,71(12):1062-1067.
    [102]Chen Z J, Luo P, Fu Q. Preparation and properties of organo-modifier free PET/MMT nanocomposites via monomer intercalation and in situ polymerization[J]. Polymer for Advanced Technology,2009,20(12):916-925.
    [103]Cheng F O, Mong T H, Jia R L. The nucleating effect of montmorillonite on crystallization of PET/Montmorillonite nanocomposite[J]. Journal of Polymer Research,2003, (10):127-132.
    [104]Chung S J, Leonard J P, Nettleship I et al. Characterization of ZnO nanopaticles suspension in water:effectiveness of ultrasonic dispersion. Powder Technology,2009,194(1-2):75-80.
    [105]Creffield J W. A study on the effectness of didecydimethylammonium chloride to protect wood from atack by subterranean termites [C]. The 24th annual meeting of the international research group on wood preservation, Orlando, Florida, USA,1993, Doc. No:IRG/WP/93-30009.
    [106]Dupont L, Foissy Y A, Mercier R et al. Effect of calcium ions on the adsorption of polyacrylic acid onto alumina[J]. Colloid Interface Sic,1993,161:455-464.
    [107]Faruk O, Matuana L M. Nanoclay reinforced HDPE as a matrix for wood-plastic composites[J]. Composites Science and Technology,2008,68(9):2073-2077.
    [108]Fu Y L, Zhao G J. Microstructure and physical properties of silicon dioxide/wood composite[J] Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica.2006,23(4):52-59.
    [109]Fu Y L, Zhao G J. Dielectric properties of silicon dioxide/wood composite[J]. Wood Science and Technology,2007,41(6):511-522.
    [110]Fujita S, Miyafuji H, Saka S. Antimicrobial SiO2 wood-inorganic composites as prepared by the sol-gel process with water-soluble silicon oligomer agents[J]. Journal of the Japan Wood Research Society,2003,49(5):365-370.
    [111]Gnanaharan R. Anti-sapstain chemical for diffusion treatment of rubber wood[C]. The 17th annual meeting of the international research group on wood preservation, France,1986, Document No. IRG/WP/86-3367.
    [112]Gong F L, Zhao C G, Feng M et al,. Synthesis and characterizati-on of PVC/montmorillonite nanocomposite[J]. Journal of Materials Science,2004,39:293-294.
    [113]Guo G, Wang K H, Park C B et al. Effects of nano-particles on density reduction and cell morphology of extruded mPE/wood-fiber/nano-composites[J]. Annual Technical Conference Proceedings,2004, (2):2620-2625.
    [114]Guo Z X, Xiong J, Yang M et al. Dispersion of nano-TiN powder in aqueous media[J]. Journal of Alloys and Compounds,2010,493(1-2):362-367.
    [115]Hetzr M, Naiki J, Zhou H X et al. Thermal dependence of Young's modulus of wood/polymer/clay nanocomposites[J]. Journal of Composite Materials,2009,43(20):2285-2301.
    [116]Hetzr M, Poloso T, Daniel D K et al. Effect of compatiblizer blends on polyethylene/wood/clay nanocomposites[J]. Technical papers, Regional technical Conference Society of Plastics Engineers, 2008,(2):1203-1207
    [117]Hlavaty V, Fajnor V S. Thermal stability of clay/organic-intercalation complexes[J]. Journal of Thermal Analysis and Calorimetry,2002,67:113-118.
    [118]Hoffmann P, Singh A and Kin Y S et al. The bremen cog of 1380-an electron microscopic study of its degraded wood before and after stabilization with PEG [J]. Holzforschung,2004,58(3): 211-218.
    [119]Hu Y H, Liu J P, Xu J et al. Dispersion mechanism of nano-magnetite coated with oleate in aqueous carrier[J]. Journal of Central South University of Technology(English Edition),15(5): 663-668.
    [120]Hwang W J, Kartal S N, Shinoda K et al. Surface treatment for preventing decay and termite attack in wood using didecyl dimethyl ammonium tetrafluoroborate (DBF) incorporated with acryl-silicon type resin[J]. Holz als Roh-und Werkstoff,2005,63:204-208.
    [121]Isobe T, Hotta Y, Watari K. Dispersion of nano-and submicron-sized A12O3 particles by wet-jet milling method[J]. Materials Science and Engineering B:Solid-stated Materials for Advanced Technology,2008,148(1-3):192-195.
    [122]Jadwiga Z M. Antigungal properties of new quaternary ammonium compounds in relation to their surface activity[J]. Wood Sci.Technol.,2005,39:235-243.
    [123]Jadwiga Z M. The influence of cation and anion structure of new quaternary ammonium salts on adsorption and leaching[J]. Holzforschung,2005,59:190-198.
    [124]Joly S, Garnaud G, Ollitrault R. Organically modified layered silicates as reinforcing fillers for natrural rubber[J]. Chem. Mater,2002,14:4202-4208.
    [125]Kartal S N, Brischke C, Rapp A O et al. Biological effectiveness of didecyl demethyl ammonium tetrafluoroborate (DBF) against basidiomycetes following preconditioning in soil test[J]. Wood Sci. Technol,2006,40:63-71.
    [126]Kartal S N, Hang W J, Shinoda K et al. Laboratory evaluation of boron-containing quaternary ammonia compound, didecyl dimethyl ammonum tetrafluoroborate (DBF) for control of decay and termite attack and fungal staining of wood[J]. Holz als Roh-und Werkstoff,2006,64:62-67.
    [127]Kartal S N, Shinoda K, Imamura Y J. Laboratory evaluation of boron-containing quaternary ammonium compound, didecyl dimethyl ammonium tetrafluoroborate (DBF) for inhibition of mold and stain fungi[J]. Holz als Roh-und Werkstoff,2005,63:73-77.
    [128]Lapides I, Yariv S, Golodnitsky D. Simultaneous DTA-TG study of mont-morillonite mechanochemically treated with crystal-violet[J]. Journal of Thermal Analysis and Calorimetry, 2002,67:99-112.
    [129]Lee H K, Su K D. Preparation and physical properties of wood/polypropylene/clay nanocomposites[J]. Journal of Applied Polymer Science,2009,111(6):2765-2776.
    [130]Lee Y H, Sain M, Kuboki T et al. Extrusion foaming of nano-clay-filled wood fiber composites for automotive applications[J]. SAE International Journal of Materials and Manufacturing,2009,1(1): 641-647.
    [131]Li H M, Guo X Z and Zhu X Y et al. Effect of TMAH on dispersion behavior of TiN nanopaticles[J]. Journal of Inorganic Chemistry,2008,24(3):456-460.
    [132]Li X F, Zhu D S, Wang X J. Evaluation on disperson behavior of the aqueous copper nano-suspensions[J]. Journal of Colloid and Interface Science,2007,310(2):456-463.
    [133]Loubinoux B, Malek H and Joly J P et al. Interactions of quaternary ammonium salts with wood: influence of cation and anion structure on fixation and leaching[J]. Forest Products Research Society,1992,42(10):55-58.
    [134]Loyens W, Jannasch P, Maurer F. Poly(Ethylene oxide)/Laponite nanocomposites via melt-compounding:effect of clay modification and matrix molar mass[J]. Polymer,2005,46(3): 915-928.
    [135]Manaoranjan P, Sumitra K B. Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces[J]. Materials letters,2000,44:352-360
    [136]Mohaddespur A, Ahmadi S J, Abolghasemi H. The comparison of the behaviors of polymer/clay nanocomposites based on high dendity polyethylene and polypropylene in exposure of electron-irradiation[J]. Polymer Composites,2010,31(1):128-135.
    [137]Okada A, Kurauchi T, Kawasumi M et al. Synthesis of nylon6-clay hybrid[J]. Polymer Preparation, 1987,28:447-449.
    [138]Persenaire O, Alexandre M, Degee P et al. End-grained wood-polyurethane composites,2: Dimensional stability and mechanical properties [J]. Macromolecular Materials and Engineering, 2004,289(10):903-909.
    [139]Ruddick J N R. Field testing of alkylammonium wood preservatives. The 14th annual meeting of the international research group on wood preservation, Paradise, Australia,1983, Doc. No: IRG/WP/83-3248.
    [140]Ruddick J N R. Testing of alkylammonium compounds[C]. The 12th annual meeting of the international research group on wood preservation, Stockholm, Sweden,1981, Doc. No: IRG/WP/81-2152
    [141]Ruddick J N R. The Influence of Staining Fungi on the Decay Resistance of Wood Treated with alkylammonium compounds. The 15th annual meeting of the international research group on wood preservation, Sweden,1984, Doc. No:IRG/WP/84-3308.
    [142]Sarraf H, Sabet A, Herbig R et al. Advanced colloidal techniques for characterization of the effect of electrosteric dispersant on the colloidal stability of nanocrystalline ZrO2 suspension[J]. Journal of the Ceramic Society of Japan,2009,117(1363):302-307.
    [143]Singh B P, Jena J, Besra L et al. Dispersion of nano-silicon carbide (SiC) power in aqueous suspensions[J]. Journal of nanoparticle research,2007,9(5):797-806.
    [144]Soares V L P, Nascimento R S V, Menezes V J. TG characterization of organically modified montmorillonite[J]. Journal of Thermal Analysis and Calorimetry,2004,75:671-676.
    [145]Song J G, Li Y L, Ji G C et al. Influence of dispersion on coating effect of ZrB2-Al(OH)(3)-Y(OH)(3) core-shell composite particles[J]. Surface Review and Letters,2009, 16(2):231-239.
    [146]Sun Y H, Xiong W H and Li C H. Study on dispersion behavior of ZnO-Al2O3 powders aqueous suspension[J]. Journal of Inorganic Materials,2009,24(2):413-416.
    [147]Sundman C E. Test with ammonical copper and alkyl ammonium compounds as wood preservatives[C]. The 15th annual meeting of the international research group on wood preservation, Stockholm, Sweden,1984, Doc. No:IRG/WP/84-3299.
    [148]Suntako R, Laoratanakul P, Traiphol N. Effect of dispersant concentration and pH on properties of lead zirconate titanate aqueous suspension[J]. Ceramics International,2009,35(3):1227-1233.
    [149]Temiz A, Terziev N, Eikenes B M. Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood[J]. Journal of Applied Polymer Science,2006,102(5): 4506-4513
    [150]Tien Y I, Wei K H. Thermal tranisitions of montmorillonite/polyurethane nanocomposites[J]. Journal of Polymer Research,2000,7(4):245-250.
    [151]Tomita Y, Guo L C, Zhang G Y et al. Effect of temperature on the slurry characteristics and green bodies of alumina[J]. Jour Am Ceram Soc,1995,78(8):2153-2156.
    [152]Velurugan R, Mohan T P. Room temperature processing of epoxy-clay nanocomposites[J]. Journal of Materials Science,2004,39:7333-7339.
    [153]Vinden P. The effect of temperature on the rate of fixation of an alky ammonium compound (AAC) wood preservative[C]. The 15th annual meeting of the international research group on wood preservation, Stockholm, Sweden,1984, Doc. No:IRG/WP/84-3293.
    [154]Wang X C, Cheng Z Q, Mo X H et al. Interface characterization for the in-situ wood/silica composites. Journal of Materials Engineering,1998, (5):16-18
    [155]Wang X J, Li X F, Wang N et al. Influence of SDBS on stability of A12O3 nano-suspensions. Proceedings of SPIE-The International Society for Optical Engineering,2008,6:831.
    [156]Wang Y M, Gao J P, Ma Y Q et al. Study on mechanical properties thermal stability and crystallization behavior of PET/MMT nanocomposites[J].
    [157]Wu Q, Lei Y, Yao F et al. Properties of HDPE/clay/wood nanocomposites[J]. Proceeding of International Conference on Integration and Commercialization of Micro and Nanosystems,2007, (A):181-188.
    [158]Xie W, Xie R, Pan W. Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater,2002,14:4837-4845.
    [159]Xu W B, Zhou Z F, Ge M L et al. Polyvinyl chloride/montmorillonite nanocomposites-glass transition temperature and mechanical properties[J]. Journal of Thermal Analysis and Calorimetry, 2004,78:91-99.
    [160]Yamaguchi T, Ishimaru Y, Urakami H. Effect of temperature on dimensional stability of wood with polyethylene glycol. II. Temperature dependence of PEG adsorption and mechanical properties of treated wood[J]. Mokuzai Gakkaishy Journal of Japan,1999,45(6):441-4447
    [161]Ying K L, Hsieh T E. Dispersion of nanoscale BaTioO3 suspension by a combination of chemical and mechanical grinding/mixing process[J]. Journal of applied polymer science,2007,106(3): 1550-1556.
    [162]Zeng Q H, Yu A B, Lu G Q. Molecular dynamics simulation of organic-inorganic nanocomposites: layering behavior and interlayer structure of organoclays[J]. Chem. Mater,2003,15:4732-4738.
    [163]Zhang J, Kamdem D P. Interaction of copper-amine complexes with wood:influence of copper source, amine ligands and amine to copper molar ratio on copper retention and leaching[C]. The 30th annual meeting of the international research group on wood preservation, Rosenheim, Germany,1999, Doc. No:IRG/WP 99-30203.
    [164]Zhang Y W, Tang M, Jin X el al. Polymeric adorption behavior of nanoparticulate yttria stabilized zirconia and the deposition of as-formed suspensions on dense a-A12O3 substrates[J]. Solid state Science,2003,5(3):435-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700