用户名: 密码: 验证码:
长平高速公路K73+200~K73+500段路面塌陷勘察评价及治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展,一方面交通运输的需求急剧增长,我国修建了大量的高等级公路、铁路,一方面能源需求量增大,金属和煤矿等的开采规模也逐渐加大,不可避免的遇到了公路穿越采空区的问题。目前对于公路穿越采空区的研究,主要存在的难题如下:(1)采空区赋存的地质比较环境复杂,对其认识尚不够清晰;(2)影响采空区塌陷的因素具有多样性和复杂性,各因素之间没有明显的关联;(3)采空区地表移动的预测模型没有统一的认识,计算参数的确定尚待探讨。
     本文依托“长平高速公路K73+200-K73+500段路面塌陷勘察及评价”项目,系统给出了采空区地面塌陷灾害的勘察方法,在钻探和物探相结合的基础上对地面塌陷的规模和特征进行深入调查;通过地面塌陷沉降曲线的分析,给出公路通过采空区段的地面沉陷规律和趋势;采用概率积分法对高速公路变形破坏规律进行深入分析;在地面塌陷监测数据的基础上,提出了一种基于塌陷实测数据的地面塌陷预测模型;最后给出采空区高速公路路面恢复治理方法。本课题的研究为今后类似的工程地质问题研究和工程处理提供有益的借鉴。
With the rapid growth of the economy in china,on one hand, a large number of highways and railways are being constructed all over the country caused by the demand of transportation has shaply increase,on the other hand,the mining scale of the metal and coal mine hasgradually increase caused by the growth of the demand of energy sources.Based on the above reasons, the geologic engineering problem of the gob of the coal mine would be fallen across inevitably. We inherit the economic loss caused by geological disasters which bring us the problem of instability and damage of subgrade and pavement when the finishedstope sink.
     This paper supported by the research project -'research on stability evaluation and treatment of ground collapse at the k73+200-k73+500 section of Changping highway' According to the investigation and measurement of Jilin province highway design institute,we found a ground collapse happened at the k73+200-k73+500 section of Changping highway.This section located in the border of Liufangzi coal goaf which lies in Gongzhuling city of Jilin procince.There has been no subsidence happened on the highway during the 12 years.April4,2009,monitoring results showed that the road surface elevation has sinked 1.1m. On May23,2009,monitoring results showed that the total surface subsidence has reached to 1.5m.The subsidence of road surface is too large to directly affect the security of Changping highway.
     The paper provide the survey methods of mined-out area,and make the further investigation for the size and features of the ground collapse based on the combination of drilling and geophysical exploration. Through the subsidence curve analysis of mined-out area,the characteristic and the trend of groud subsidence was got.The probability integral method was used to analyze the collapse development tendency.According to the road collapse data,a new method based on empirical mode decomposition(EMD) and weighted least squares support vector machines(WLS-SVM) has been put forward to forecast the ground subsidence. Finally the recovery treatment of highway through mined-out area was put forward. The study of this subject is of great significance to the similar engineering geological problem and engineering treatment.The main research results were as follows:
     1.The engineering geological conditions,the basic characteristics and scale of collapse were found out. The formation conditions and processes, influencing factors and failure modes of collapse were deeply analyzed.
     2.According to the charateristic of the road collapse data,surface movement is at the decline stage currently.There are two characteristics of this stage,the rate ground of subsidence is small and the ground movement trend to be stable.After June 28,2009,the surface subsidence of Changping highway increase slowly,the average setting velocity was 0.032cm/month. the setting curve has tend to smooth and the ground deformation has remained stable.
     3.The maximum subsidence of the Changping highway k73+288 calculated by the probability integral method is 129.2cm.The current actual measurement is 43.4cm more than the calculated value.the current measurement of the maximum subsidence is 172.36cm.Ttough speculation its reasons might be:①there is a small circle mined-out area of group C coal seam under the k73+288 section,which would lead to a small range of caving;②it is the result of amplification of the F fault.At the present the mining inflence range on the right side of the Changping highway is 143m far from the road centerline.
     4. The empirical mode decomposition (EMD) and weighted least squares support vector machines (WLS-SVM) has been applied into the coal-mining-induced collapse prediction of a22 which is the biggest monitoring point. Three steps has been adopted to deal with the measured collapse data of a22 monitoring point:firstly, gain the smooth signal curve by cubic spline interpolation method; secondly, use EMD to deal with the time-space filtering and noise reduction to obtain the residual component which shows the collapse trend,the maximum relative error of measured data and calculated data is 0.87%; thirdly, input the dealt data to WLS-SVM model and then get the result of collapse prediction. The final collapse value has been predicted to be 174.34 cm,the average deviation of the final collapse prediction results using WLS-SVM is about 1.06%.
     5.For the settling section of k73+100-k73+420,the surface deformation has been remained stable according to the deformation curve if mining to keep in lane and mined-out area to maintain in statu quo.
     6. According to principles of technical feasibility and economic rationality, treatment of mined-out area collapse was carried out.Slip casting method is applied to the regulation project.The treatment width on both sides of the road is 263.65m,the treatment depth is 236m,and the treatment length along the road is 700m.
引文
[1]王玉标.采空区高速公路路基路面变形破坏规律与演化分析[D].长沙:长沙理工大学,2007.
    [2]中华人民共和国国土资源部,2005年度中国地质环境公报[J].人民日报,2006,(08)
    [3]中华人民共和国国土资源部,2006年度中国地质环境公报[J].甘肃政报,2007,(14).
    [4]吉林省地方志编纂委员会[M].吉林省志(卷四:自然地理志),2001。
    [5]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1994.
    [6]张玉卓.煤矿地表沉陷的预测与控制-世纪之交的回顾与展望[C].煤炭学会第五届青年科技学术研讨会论文集.北京:煤炭工业出版社,1998,11.
    [7]前苏联阿威尔辛著.煤矿地下开采的岩层移动[M].北京:煤炭工业出版社,1959,12.
    [8]赴波兰考察团.波兰采动区地面建筑[M].北京:科学技术文献出版社,1979.
    [9]M.鲍来茨基,M.胡戴克著,于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985,7..
    [10]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [11]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [12]何国清,马伟民,王金庄.威布尔型影响函数在地表移动的计算中的应用[J].中国矿业学院学报,1982,1.
    [13]周国铨,崔继宪等.建筑物下采煤[M].北京:煤炭工业出版社,1983.
    [14]郭增长,谢和平,王金庄.极不充分开采地表移动和变形预计的概率密度函数法[J].煤炭学报,2004,29(2):155~158.
    [15]谢和平,周宏伟,王金安. FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [16]杨伦.煤矿岩层与地表移动机理和规律的再认识[J].辽宁工程技术大学学报,1988,(01).
    [17]李增琪.计算矿山压力和岩层移动的三维层体模型[J].煤炭学报,1994,(02):109-121.
    [18]吴立新,王金庄.煤柱屈服区宽度计算及其影响因素分析[J].煤炭学报,1995,(06):625-631.
    [19]张玉卓,仲惟林等.岩层移动的错位理论解与边界元法计算[J].煤炭学报,1987.2.
    [20]何满潮,郭宏云,陈新,韩六平.基于和分解有限变形力学理论的深部软岩巷道开挖大变形数值模拟分析[J].岩石力学与工程学报,2010,(A02):4050-4055.
    [21]邓喀中,马伟民.开采沉陷模拟计算中的层面效应[J].矿山测量,1996,(04):39-44.
    [22]王泳嘉宋文洲赵艳娟.离散单元法软件系统2D-Block的现代化特点[J].岩石力学与工程学报,2000,(z1):1057-1060.
    [23]刘继东.物探方法在河北滦县地面塌陷勘察中的应用研究[D].北京:中国地质大学,2007.
    [24]郭建强.地质灾害勘察地球物理技术手册[M].北京:地质出版社,2003.
    [25]雷宛,肖宏跃,邓一谦.工程与环境物探教程[M].北京:地质出版社,2006.
    [26]刘春华,马宏伟,段先意.高密度电法勘探在高速公路勘察中的应用[J].山西能源与节能,2010 (05):29-31.
    [27]宋希利,宫述林,邢立亭.高密度电法在地下空洞探测中的应用研究[J].工程地球物理学报,2010,7(05):599-602.
    [28]Baker RL, Cull JP. Acquisition and signal processing of ground-penotrating radar forshallow exploration and open-pit mining[J]. Exploration Geophysics,1992,23(1-2):17.
    [29]Cheng Hui, Cao Fuxiang, Di Qingyun. Research and Application of Groundwater Geophysical Exploration on Drinking Water-born Endemic Fluorosis Area [A]. Abstracts of the 19th International Workshop on Electromagnetic Induction in the Earth (Volume 1)[C],2008.
    [30]Turner G, Yelf RJ, Haathely PJ. Coal mining application of ground radar [J]. Exploration Geophysics,1990,21(1-2):165.
    [31]El-Kakliouby HM,Eldiwany EA.Transient electromagnetic responses of 3D polarizable body[J].Geophysics,2004,169(2):426-430
    [32]王振东.浅层地震勘探应用技术[M].北京:地质出版社.1988.
    [33]杨成林.瑞雷波勘探[M].北京:地质出版社.1993.
    [34]王辉,丁志峰.浅层地震勘探资料处理中的速度分析参数选取[J].地震地质,2006,28(4):597-603.
    [35]吉林省第三地质调查所.刘房子煤、膨润土矿井下开采现状专题调研[M].2009
    [36]曹树刚,刘玉成,刘延保.基于观测资料的沉陷盆地主断面曲线拟合[J].重庆大学学报,2009,32(07):804-808
    [37]金日平,吴戈, 邢安士.典型曲线法予计的误差[J]. 山东科技大学学报(自然科学版),1984,(01):40-55
    [38]露天矿边坡滚石运动特征及控制[J].灾害学,2008,23(3):76-79.
    [39]Jonce CJFP, Rourke T.D. Mining subsidence effects on transportation facilities[J]. MIS,1988, (7):107-126.
    [40]Wang M C.Settlement behavior of footing above a void[A].In:Proc.of Geotechnical and Geo-environmental Engineering[C].NewOrleans:[s.n.],1982:168-183.
    [41]R.Begley, P.Beheler, A.W.Khair. A windows eased mechanistic subsidence prediction model for longwall mining[J]. Proceedings of the 5th Conference on the Use of Computer in the Coal Industry,1996:74-82.
    [42]Z.Agioutantis, M.Karmis. Correlation of subsidence parameters and damage assessment due to underground mining[J]. Proceedings of the 5th International Symposium on Environmental Issuesand Waste Management in Energy and MineralProduction,1998:,195-201.
    [43]M.I.alvarez-Fernandez,C.Gonzalez-Nicieza,A.Menendez-Diazb,A.E.alvarez-Vigil.Generalization of the n-k influence function to predict mining subsidence[J].EngineeringGeology.2005,(80):1-5.
    [44]AMBROZIC T, TURK G. Prediction of subsidence due to underground mining by artificialneural networks [J].Computers & Geosciences,2003,29 (5):627-637
    [45]SINGH R O, YADAV R N. Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India [J].. Engineering Geology,1995,39(1/2):103-111.
    [46]原煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,1985
    [47]孙超,薄景山,刘洪帅,等.采空区地表沉降影响因素研究[J].吉林大学学报:地球科学版,2009,39(3):498-502.
    [48]张发旺,贾秀梅,赵华.灰色统计方法及其在岩溶塌陷预测分析中的应用[J].河北地质学院院报,1996,19(2):557-562.
    [49][49]张文春,陈剑平,张丽.基于人工神经网络的三峡库区丰都县水库塌岸预测[J].吉林大学学报:地球科学版,2010,40(2):377-382.
    [50]包惠明,胡长顺.岩溶地面塌陷神经网络预测[J].工程地质学报,2002,10(3):299-306.
    [51]张学工.关于统计学习理论与支持向量机[J]自动化学报,2000,20(01):32-42.
    [52]赵洪波,冯夏庭,尹顺德.基于支持向量机的岩体工程分级[J].岩土力学,2002(06):698-701.
    [53]李爱兵,尹彦波.支持向量机对采空区稳定时间的预计[J].岩土力学,2005(26):231-238.
    [54]谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22.
    [55]耿艳,韩学山,韩力.基于最小二乘支持向量机的短期负荷预测[J].电网技术,2008,32(18):72-76.
    [56]Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines robustness and sparse approximation [J]. Neuron Computing,2001,48(2002):85-105.
    [57]范玉刚,李平,宋执环.动态加权最小二乘支持向量机[J].控制与决策,2006,21(10):1129-1133.
    [58]B.Baesens, S.Viaene, T.V.Gestel, et al. An empirical assessment of kernel type performance for LEAST squares support vector machine classifiers[J]. Proceedings of the Fourth International Conference on Knowledge based Intelligent Engineering Systems and Allied Technologies:2000, 1:313-316.
    [59]张阳荣.紫金山金矿露天开采中的地采空区危害及其技术对策.黄金,2002,23(5):11-14.
    [60]Bishop A W.The use of the slip circle in the stability analysis of slopes[J].Geotechnique, 1955.5(1):7-17.
    [61]Janbu N.Slope stability computation.In:Hirschfield, Poulos S J.Embankment-dam Engineering, Casagrande Volume, John Wiley&Sons, New York,1973,47-86.
    [62]Morgenstern N, Price V E.The analysis of the stability of general slip surfaces[J].Geotechniqie, 1965,15(1):79-93.
    [63]K.Mogi, Fracture frature and of rocks under general triaxial compression[J].J.Geophys.Res,1971, 76:1255-1269.
    [64]Wu L.X., Wang J.Z.Infrared radiation features of coal and rocks under loading[J].Int.J.Rock Mech.Min.Sci,1998,35(7):969-976.
    [65]K.kyuma.Soil resources and land use in tropical Asia[J].Pedosphere,2003,13(1):49-57.
    [66]Wang SQ,Zhou Y,et al.Design and applications of land resources and ecological environment information system:a case study of Zigui county in the three gorges area of China[J].Pedosphere,2002,12(4):373-381.
    [67]P.R.Stephens,A.E.Hewitt,et al.Assessing sustainability of land management using a risk identification model[J].Pedosphere,2003,13(1):41-48.
    [68]R.G.Darmody.Modelling agricultural impacts of longwall mine subsidence:A GIS approach[J].IJSM,R&E,1995(9):63-68.
    [69]张志沛.高速公路煤矿采空区地基注浆加固治理技术[J].中南公路工程,1996,(1):23-25
    [70]童立元,邱钰等.高速公路下伏多层采空区注浆充填法治理试验研究[J].公路交通科技,2002,19(5):19-22,27.
    [71]山西省交通厅.高速公路采空区(空硐)勘察设计与施工治理手册[M].2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700