用户名: 密码: 验证码:
基于有限元带扣环轮对机械特性研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路运输中带扣环轮对由于其结构的改变可能在静强度、疲劳强度、动力学性能、最小许用边界等诸多方面发生变化从而威胁到列车的安全运行。本文以带扣环的轮对为对象进行了理论和实验研究,主要研究结论及创新点为:
     (1)首次采用直接带扣环计算的方法,对本文中的各项研究内容进行了模拟、计算与分析。
     (2)提出了采用极限过盈量计算的方法,对本文中的各项研究内容进行了模拟、计算与分析。
     (3)对轨道车辆轮对装配应力研究结果表明,带扣环轮对在最大过盈量下的最大应力值为271.7MPa,扣环上的最大应力值为271.7MPa,这些应力值远小于其屈服极限420MPa,不会对轮对的强度构成威胁。扣环本身的应力值达到最大,说明扣环受到严重挤压,可见装配过程中产生的残余应力不容忽视,应尽量减小这种应力。
     (4)对带扣环轮对的热分析结果表明,在最小过盈量下,轮箍表面温度高达145.10℃,已超过轮箍弛缓临界值140℃,说明轮箍已接近弛缓,这是要尽量避免的。但车轮一般不会在最小过盈量下运行,所以紧急制动工况下轮箍仍不会弛缓。最高温度载荷以及最大过盈量下的热应力为236.1 MPa,比单独过盈装配时还小,说明热载荷使轮箍产生热膨胀,抵消了一部分过盈量,这种情况虽然不会对轮对强度构成威胁,但比较危险,应尽量避免。
     (5)首次对带扣环轮对进行了多场联合作用下的力学性能分析,并对轮对的静强度σ和疲劳安全系数σ_(-1d)进行了评定。对静强度评定结果表明,轮对上的最大平均应力为267MPa,远低于屈服极限420MPa;对疲劳强度评定结果表明,轮对的疲劳安全系数σ_(-1d)=20.65,由此可知轮对的静强度和疲劳强度均满足运行需要。
     (6)对加装扣环前后轮对进行模态分析的结果表明,二者前10阶固有频率最大相差12.7Hz,且它们的前10阶振幅几乎相等,振型基本一致。由于前10阶振型基本反映了车轮在运行过程中可能存在的振动情况,可知加装扣环后不会对车轮的动力学性能造成影响。而在轨缝冲击载荷作用下,扣环的存在虽对车轮动力学性能影响较大,但仍没引起质的变化。
     (7)使用逐次减小轮箍厚度的方法和优化两种方法,分别求得了轮箍最小理论许用边界为25mm和26.03mm,最终取26mm作为轮箍最小理论许用边界。证明了轮对加装扣环后铁道部规定的38mm许用边界仍满足运行要求。
     (8)首次采用虚拟工程的方法对带扣环轮对进行了疲劳寿命仿真。结果表明其疲劳寿命可达到5.05年。而且根据疲劳寿命仿真结果云图,可知轮对疲劳寿命的薄弱位置在轮箍的滚动圆处。
     (9)选取带扣环轮对作为试验对象,使用无线传输应力测试仪和相应的虚拟仪器采集试验数据,将所得数据与有限元计算的数据进行对比分析。通过对轮对静态情况下装配应力的测试分析,本论文计算的结果与测试结果的相对误差约为8%,说明本论文研究成果是可信的。
The snap ring of wheelset influences the wheelset's behavior in many aspects, such as the static intensity, the fatigue strength, the dynamics performance and the minimum allowable stress. This may be a threat to the train's operation safety. This essay aims to the theory and experimental research of the train wheel which installs the snap rings. The main conclusions and the creative points are as following:
     (1) Takes a method of calculating with a snap rings directly to carry on imitation, calculation and analysis to the various research contents in this essay.
     (2) Put forward a method of calculation with the adoption extreme limit to carry on imitation, calculation and analysis to the various research contents in this essay.
     (3) The conclusion from the research on the assemble stress of the wheels of the Orbit vehicle shows that the maximum stress of the wheels under the maximum extreme limit when installed with snap rings is 271.7MPa. These stresses are much smaller than its yield stress, which is 420MPa. So it doesn't threaten the intensity of the wheels. However, the stress of the snap rings reaches its maximum value, which means the snap rings are extruded seriously. We should note from this that the remaining stress produced in the assemble period can't be neglected. We should try to reduce this stress.
     (4) The conclusion from the thermal analysis of the wheels installed the snap rings shows that under the minimum extreme limit, the surface temperature of the tire . is as high as 145.10℃, which has exceeded the critical temperature of the relaxation of the tire. This means that the tire has approached relaxation. In general, the wheel does not work under the minimum extreme limit, so the tire would not relax when it work under emergency brake. The thermal stress under the maximum temperature load and the maximum extreme limit is 236.1Mpa, which is smaller than that under single extreme assembling. This means that the thermal stress cause the heat expansion of the tire, and counterbalances a portion of the extreme limit. It should be avoided because it is dangerous although it would not threat the strength of the wheel.
     (5) For the first time to carry on mechanical capability analysis of wheel set equipped with coupling collar, and to assess the static strength, the fatigue strength. The maximum average stress in wheel set is 267MPa,.far below the bend limit 420MPa. The fatigue strength is 20.65MPa. Thus, we can know that both the static strength and the fatigue strength meet the moving demands.
     (6) The result of modal analysis of front wheel set and rear wheel set equipped with coupling collar indicates that, the maximum discrepancy of the first ten ranks inherence frequency is 12.7Hz, and the swing of them is almost the same as the shake model. Because the shake type of the first ten ranks reflect wheel's oscillation might existing in the moving, we can know whether the equipped coupling collar will affect wheel's dynamic capability or not. Under rail slot's impulsion load, although the existing of coupling collar has serious effect on the wheel's dynamic capability, it doesn't result in qualitative change.
     (7) By optimizing the thickness of the wheel hoop, we get the minimum allowable boundary of wheel hoop, which are 25mm and 26.03mm. Theoretically, 26mm is the minimum allowable boundary. Proving that the allowed boundary 38mm set by railway department, after equipping coupling collar on wheel set, still meets moving demands.
     (8) Simulate the fatigue life of the wheel set equipped with circlet by means of dummy project for the first time. The result shows that its fatigue life can reach 5.05 years. Moreover, according to the fatigue life simulation result, the weakness position of the wheel set is on the roll circle of the tire.
     (9) Select wheelset equipped coupling collar for the test, gather the data of the test with wireless instruments, and contrast the data with the result of finite element analysis. The discrepancy between the calculation and experimental results is about 8%, which proves this paper' s result is believable.
引文
[1] 金学松,张雪珊,张剑等.轮轨关系研究中的力学问题[J].机械强度,2005,27(4):408-418.
    [2] 金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [3] 李述松,唐东平,宋春如.DF系列机车轮对轮箍加装扣环方案可行性分析.内燃机车.2003(5):18-19
    [4] 金学松.轮对/轨道滚动接触蠕滑率/力分析[J].铁道学报,1998(2):38~44
    [5] 金学松,张立民.轮轨蠕滑力分析计算中几种蠕滑力模型的比较[J].铁道学报(增刊),1998,20(4):56~61.
    [6] L.E.Goodman, Contact stress analysis of normally loaded rough spheres, Journal of Mechanics, Sept. 1962,515-522.
    [7] 冯登泰.磨耗型轮轨弹塑性静力接触得解析解[J].铁道学报,1998,10(2):1-13.
    [8] A. Ekberg, H.bjarnehed, R.Lunden. A fatigue life model for general rolling contact with application to wheel/rail damage, Fatigue Fract. Enging Mater. Struct, Vol. 18(10), 1995,1189-1199
    [9] 俞展猷.车轮轮缘接触应力与影响因素得研究[J].中国铁道科学,1996,17(1):68-82.
    [10] R.I.Mair, R.Groenhout, The growth of transverse fatigue defects in the head of railway rails, Rail International, Dec. 1980,675-689.
    [11] 任静,颜秉善.减缓轨头接触疲劳损伤得对策研究[J].铁道学报,1992,14(2):75-86.
    [12] D.A.Hills, D.W.Ashelby. The influence of residual stresses on contract-load-bearing capacity, Wear, 75,1982,221-240.
    [13] Y.Y.Jiang, H.Sehitoglu. Analytical to elastic stress analysis of rolling contact, Journal of Tribology, Vol. 116,1994,577-587.
    [14] Y.Y.Jiang, H.Sehitoglu. Rolling contact stress analysis with the application of a new plasticity model, the 4th international conference contact mechanics and wear of rail/wheel system, Canada, July 24-28,1994
    [15] A.F.Bower, K.L.Johnson. Plastic flow and shakedown of the rail surface in repeated wheel-rail contact, Wear, 144,1991,1-18.
    [16] D.L.Mcdowell,n G.J.Moyar. Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact, Wear 144,1991,19-37.
    [17] 吴鸿遥,程育仁.轮轨接触应力问题的安定性分析.铁道学报,Vol.4(1):76—83.
    [18] 魏先祥.轮轨静接触时的应力状态.铁道学报,1991,13(2):1—11.
    [19] 丁殿明,吕宪,梁中宇,徐苏宁.铁路车轮应力的分析与计算.铁道学报,1984,6(2):35—42.
    [20] 王成国,梁国平.车辆动力学的多体有限元方法.中国铁道科学,1996,17(1):79—85.
    [21] A.K.Hellier, M.B.McGirr, D.J.H.Corderoy, A finite element and fatigue study of shelling in heavy haul rails,Wear, 144,1991,289-306.
    [22] R.Lunden, Contact region fatigue of railway wheels under combined mechanics rolling pressure arts themal brake loading, Wear,144,1991,57-70.
    [23] J.E.Merwin, K.J.Johnson, An analysis of plastic deformation in rolling contacts, Proc. Inst. Mech. Engs., Vol. 177,1963,667.
    [24] V.Bhargava, G.T.Halm, C.A.Rubin. An elastic-plastic finite element model of rollingcontact,part1: Analysis of single contacts, Journal of Mechanics, Vol.52, 1985,67-74.
    [25] V.Bhargava, G.T.Hahn, C.A.Rubin. An elastic-plastic finite element model of rollingcontact,part2: Analysis of repeated contacts, Journal of Mechanics, Vol.52, 1985,75-82.
    [26] G. T.Hahn, V.Bhargava, C.A.Rubin, Q.Chen, K.Kin. Analysis of the rolling contact residual stress and cyclic plastic deformation of SAE 52100 steel ball bearing, Journal of Tribology, Vol. 109,1987,618-626.
    [27] G.Ham, C.A.Rubin, G.T.Hahn, V.Bhargava. Elasto-pladstic finite element analysis of repeated, two-dimensional rolling-sliding contacts,Journal of Triboligy, Vol. 110,1988,44.
    [28] S.M.Kulkami, G.T.Hahn, C.A.Rubin, V.Bhargava. Elasto-plastic finite element analysis of repeated three-dimensional, elliptical rolling contact with rail wheel properties, Journal of Tribology, Vol.113, 1991,434-441.
    [29] S.M.Kulkami, G.T.Hahn, C.A.Rubin, V.Bhargava. Elasto-plastic finite element analysis of repeated three-dimensional, purerolling contact at the shakedown limit, Journal of Applied Mechanics, Voi.57, 1990,57-65.
    [30] Y.C.Li. Analysis of fatigue phenomena in railway rails and wheels, handbbok of Fatigue Crack Propagation in Metallic Structures, 1994.
    [31] 颜秉善,王其昌.钢轨力学与钢轨损伤,成都:西南交通大学出版社,1989,5—273.
    [32] K.L.Johnson, In elastic contact: Plastic flow and shakedown, Contact Mechanics Engineering Science, Vol.203,1989,151-163.
    [33] K.L.Johnson, Contact mechanics and the wear of metals, Wear 190,1995,162-170.
    [34] K.L.Johnson, The strength of surface in rolling contact, Journal of Mechanics Engineering Science, Vol.203,1989,151-163.
    [35] K.L.Johnson, Contact Mechanics, Cambridge University Press,1985.
    [36] 徐必强.弹塑性拟静态接触问题的研究,西南交通大学博士学位论文,1996.
    [37] 刘建新.无孔幅板轮对的结构强度分析.电力机车技术,2000(1):17—21.
    [38] 许小强,赵洪伦.铁道车辆轮轴装配应力的接触非线性有限元分析.上海铁道大学学报,1999,20(12):76—80.
    [39] 余红英,樊永生.火车车轮非线性有限元热应力分析.华北工学院学报,2001,22(1):25—28
    [40] 温泽峰,金学松,张卫华.钢轨轨缝接触-冲击的有限元分析.摩擦学学报,2003,23(3):240-244.
    [41] 王宗彦,余红英,刘卫玲,王爱玲。复杂载荷下火车轮轴的有限元分析.华北工学院学报,2002,23(5):318—321.
    [42] 黄继雄.加装扣环机车轮对的力学行为研究.武汉理工大学博士学位论文,2006.
    [43] 张伟.机车轮对轮箍加装扣环方案的力学性能分析.武汉理工大学硕士学位论文,2005.
    [44] 卫凌云.轮对加装扣环方案的结构及温度场分析.武汉理工大学硕士学位论文,2005.
    [45] 宋志坤,何复庆等.车轮制动热疲劳损伤研究综述.铁道车辆,1997,35(9):43-47.
    [46] 魏先祥.东风系列机车车轮滚动接触疲劳.内燃机车,1994(6):17—21.
    [47] 金学松,张继业,温泽峰,李芾.轮轨滚动接触疲劳现象分析.机械强度,2002,24(2):250-257.
    [48] Peter J.Heyes,林晓斌译.基于有限元的疲劳设计分析系统MSC/FATIGUE.中国机械工程,1998,9(11):12—15.
    [49] 梁红琴,邬平波,关雪梅.随机载荷作用下货车车轴的疲劳应力计算.机械,2004,31(4):36-39.
    [50] 孟广伟,王成国,刘敬辉,原亮明.用虚拟疲劳样机机技术分析转8A型转向架侧架的疲劳寿命.中国铁道科学,2002,23(4):8—11.
    [51] 倪栋,段进,徐久成等.通用有限元分析ANSYS7.0实例精解[M],北京:电子工业出版社,2003.
    [52] http://www.ansys.com.cn
    [53] 张家华,王国俭.The Structural Analysis of the Space Truss Roof of Shenyang Exhibition Center.2000ANSYS中国用户年会论文集,成都,2000:123—124.
    [54] 李文喜,范瑞祥.温度对星箭锁紧包带预紧力的影响研究.2000ANSYS中国用户年会论文集,成都,2000:3—8.
    [55] 王淑范.子结构法在大型有限元分析中的运用.2000ANSYS中国用户年会论文集,成都,2000:13—16
    [56] 岳川.球封头与筒体过渡段应力及疲劳分析.2000ANSYS中国用户年会论文集,成都,2000:343—348.
    [57] 孙英学.稳压器中下支撑板地震响应分析.2000ANSYS中国用户年会论文集,成都,2000:359—362.
    [58] 藏峰刚.反应堆吊篮在静水中的模态分析研究.2000ANSYS中国用户年会论文集,成都,2000:363—368.
    [59] 冯锦良.通讯设备的热设计仿真分析.2000ANSYS中国用户年会论文集,成都,2000:175—180.
    [60] 美国ANSYS公司北京办事处.ANSYS非线性分析指南.北京,1998:5—15.
    [61] 任辉启.ANSYS7.0工程分析实例详解,北京:清华大学出版社,2003.
    [62] JIN XueSong,SHEN ZhiYun. Development of rolling contact mechanics and its application in reseach on wheel -rail performance. Mechanics in Advance, 2001,31(1):33-46(In Chinese)(金学松,沈志云.轮轨滚动接触力学的发展.力学进展,2001,31(1):33~46). Research Institute. Wear, 1996, 191: 1-13.
    [64] JIN XueSong,SHEN ZhiYun. Roiling contact fatigue of wheel rail and its advanced researchprogress. Journal of the Chinese Railway Society ,2001,23(2):92~108(In Chinese)(金学松,沈志云.轮轨滚动接触疲劳研究的最新进展.铁道学报,2001,23(2):92~108).
    [65] JIN XueSong, ZHANG JiYe, WEN ZeFeng, LI Fu. Overview of phenomena of rolling contact fatigue of wheel rail. Journal of Mechanical Strength,2002,240:250-257(In Chinese)(金学松,张继业,温泽峰,李芾.轮轨滚动接触疲劳现象分析.机械强度,2002,2492:250-257).
    [66] Sato, Yoshihiko, Matsumoto, Akira, Knothe Klaus. Review on rail corrugation studies. Wear,2002,253(1-2):130-139.
    [67] Bohmer A, Klimpel T. Plastic deformation of corrugated—a numerical approach using material data of rail steel .Wear,2002,253:150-161.
    [68] Clayton P. Tribological aspects of wheel-rail contact: a review of recent experimental research.. Wear,1996,191:170-183.
    [69] XUE BiYi. Study on derailment mechanicsm and its experiment (Ph D Thesis). Chengdu: Southwest Jiaotong University,1998(In Chinese)(薛碧一.脱轨机理及试验研究(博士学位论文).成都:西南交通大学,1998).
    [70] GONG JiQi, XIE XinZhong.In summer, frequent occurring of trainsde railments. Railway Knowledge, 2002,(2): 28-29(In Chinese)(龚积球,谢兴中.夏天:列车脱轨事故的频发期.铁道知识,2002,2:28-29).
    [71] Kalker J J, Periard F. Wheel rail noise:impact, random,corrugation and tonal noise .Wear, 1996,191:184-187.
    [72] Thompson D J, Fodiman P, Mate H. Experimental validation of the TWINS prediction program for rolling noise, part1: description of the model and method. Journal of Sound & Vibration, 1996,193:137-147.
    [73] 萨殊利.机车总体与走行部.北京:北方交通大学出版社,2002.8,156
    [74] 张中央.列车牵引计算.北京:中国铁道出版社,2002,36
    [75] 李晓村.内燃机车总体.北京:中国铁道出版社,2002,112
    [76] 刘达德.东风4B型内燃机车结构.原理.检修.北京:中国铁道出版社,2002,4
    [77] 孙竹生.内燃机车总体及机车走行部.北京:人民铁道出版社,1980,136
    [78] 沙杜尔等[苏]著,苏宝瑛等译.车辆构造理论与计算.北京:中国铁道出版社,1988,74
    [79] 陈胜利.铁路轮轴配合有限元分析.铁道车辆,2003,41(5):16—18.
    [80] 刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002.
    [82] 王兴才,张建柏,王建党.DF_4型内燃机车单个制动缸上闸抱轮的原因分析及防止措施.内容机车,1999(9):37—40.
    [83] 唐旭晟.盘式制动器热—结构非线性分析与计算.福州大学硕士学位论文,2003.
    [84] 邵红艳等.结构温度场和温度应力场的有限元分析[J].宁波大学学报(理工版),2003,16(1):57—60.
    [85] 丁群.制动盘温度场及应力场分析模拟计算.北方交通大学硕士学位论文,2001.
    [86] 詹斐生编著.机车动力学.北京:中国铁道出版社,1990.
    [87] 黄问盈,杨宁清,黄民.我国铁道列车紧急制动距离限值标准的探讨.中国铁道科学.2003,10:84-90
    [88] 林祜亭.列车制动距离的论证.铁道机车车辆,1996(2):12-17。
    [89] 徐灏.新编机械设计师手册(上册).北京:机械工业出版社,1995.
    [90] 李建军.一种防止动轮迟缓的新型报警器.机车电传动,1999(3):43—45.
    [91] 巨建民,吴昌华.机车轮心轮辋温度应力分析及形状优化.大连铁道学报.1998,9(3):14-17
    [92] 吴洪才,刘本鸿,张国强.物理学概念公式及计算,西安:陕西科学技术出版社,1982.
    [93] S-660-83.Association of American Railroads Technical Services Division-Mechanical Section Manual of Standards and Recommended Practices.Procedure for the Analytic Evaluation of Locomotive and Freight Car Wheel Designs [S]. 1983.
    [94] 丁辉.铁道车辆车轮强度分析和评定方法.铁道机车车辆,2003,23(4):12-14.
    [95] 米彩盈,李芾.高速动力车车轮强度分析的工程方法[J].内燃机车,2005(9):11-15.
    [96] 赵少汴,王忠保.抗疲劳设计—方法与数据[M].北京:机械工业出版社,1997.
    [97] 孙永鹏.KZ4A型机车车轮强度计算和轮对模态分析[J].电力机车与城轨车辆,2005,28(5):27-30.
    [98] 缪炳荣,肖守纳.机车车体结构模态的有限元分析.机械与电子,2002(5):58-60.
    [99] prEN13979—1,铁路应用轮对与转向架车轮技术验收程序 第1部分:锻制和轧制车轮[S].
    [100] 胡用生,谭复兴,陆正刚.TBDS轮轨耦合模型的仿真验证及其应用.铁道学报,1996,18(3):29-36.
    [101] 王家玉,王顺福.机车磨耗型踏面与踏面剥离.铁路运营技术,2004,10(4):26-28.
    [102] 周传月,郑红霞等.MSC.Fatigue疲劳分析由于与实例,北京:科学出版社,2005.3.
    [103] 胡平,王成国,庄茁.虚拟工程与科学,北京:气象出版社,2001.5.
    [104] 林晓斌,P.J.Heyes,A.Buczynski,M.W.Brown.多轴疲劳寿命工程预测方法.中国机械工程,1998,9(11):20—23.
    [105] X.B. Lin et al. Isothermal and thermo-mechanical fatigue life modeling of components and structrures at elevated temperature, The Ninth International Spring Meeting on "Temperature-Fatigue Interaction"(SF2M), Paris, France,29th-31st, May,2001.
    [106] A.Halfpenny.基于功率谱密度信号的疲劳寿命估计.中国机械工程,1998,9(11):16—19.
    [107] P.J.Heyes,Mikael Fermer.工程预测焊点疲劳寿命.中国机械工程,1998,9(11):35—38.
    [108] 吕彭民.随机载荷下机车车辆承载构件可靠性疲劳设计计算方法研究[D,成都:西南交通大学,1996.
    [109] 徐灏.疲劳理论[M].北京:高等教育出版社,1998.
    [110] TY1337.铁路常用材料P-S-N曲线Goodman图册[R].北京:铁道部科学研究院金属及化学研究所,1994.
    [111] Telliskivi, T. Olofsson, U. Wheel-rail wear simulation. Wear. Vol.257, 2004(11): 1145-1153
    [112] Zhu, X.Q. Law, S.S. Dynamic axle and wheel loads identification: laboratory studies. Journal of Sound and Vibration. Vol.268, 2003(5): 855-879
    [113] Paul, M. America, F. Genius, F. Distribution of contact pressure in wheel-rail contact area. Wear.vol.253, 2002(1-2): 265-274
    [114] Kinshasa, H. Fujioka, T. Measuring rail/wheel contact points of running railway vehicles. Wear. Vol.253, 2002(1-2): 275-283
    [115] Efthimeros G A; Photeinos D I; Diamantes Z G; Tsahalis D T. Vibration/noise optimization of a FEM railway wheel model. Engineering computations vol. 19, 2002(7-8): 922-931
    [116] Ikeda K, Sumi T, Sasaki S. Characteristics of irregular inclination of rail vibration in the rail joint[C]. In: Proceedings of the Western Branch in JSCE, 1998,136-138.
    [117] Amanan L, Krishna Kumar R, Sriraman R. Thermo-mechanical finite element analysis is of a rail wheel[J]. International Journal of Mechanical Science, 1999,41:487-505
    [118] Ullah I, Kota S.Optimal Synthesis of mechanisms of path generation using fourier descriptors and gloabal search methods. ASME Journal of Mechaniacl Design, 1997, 119(4):504-510
    [119] Kags H. Stress analysis of a tire undervertical load by a finite element method[J]. Tire Science & Technology, TSTCA, 1997,5(2): 102-118.
    [120] K.J. Miller. A historical perspective of the important parameters of metal fatigue and problems for the next century, In: Fatigue99, edited by X.R. Wu and Z.G. Wang, Beijing, 1999;Vol.1, pp. 15-39.
    [121] X.B. Lin, R.A. Smith. An improved numerical technique for simulating the growth of planar fatigue cracks, Fatigue and Fracture of Engineering Materials and Structures,1997; 20(10):1363-1373.
    [122] X.B. Lin, R.A. Smith. Fatigue growth simulation for cracks in notched and unnotched round bars, International Journal of Mechanical Sciences, 1998; 40(5): 405-419.
    [123] X.B. Lin, R.A. Smith. Direct simulation of fatigue crack growth for arbitrary shape defects in pressure vessels,Journal of Mechanical Engineering Science,Proceedings of the Institution of Mechanical Engineers Part C, 1999; 213: 175-189.
    [124] Stefen Dietz et al. Fatigue Life Prediction of a Railway Bogie Under Dynamic Loads Through Simulation. Vehicle System Dynamics, 1998,29(3):385-402.
    [125] Hongwei Shen, Jizhong Lin, Ensheng Mu. Probabilistic model on stochastic fatigue damage. International Journal of Fatigue 2000; 22:569-572.
    [126] Wirsching, PH., Paez, T. and Koritz. Vibration Theory and Practice[M]. John wiley and Sons, Inc.(1995).
    [127] Wu Hu-ming. Designing wheel profiles for optimum wear performance[A]. Proceeding of 12th International Wheelset Congress[C]. Qingdao:China Railway Society, 1998:172-180.
    [128] Oscarsson J. Dynamic Train-track-ballast Interaction with Unevenly Distributed Track Properties[C]. 17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Lyngby, Denmark,2001.
    [129] Shen Z Y(沈志云), Hedrick J K, Elkins J A. A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis[C]. proc. 8th IA VSD Symposium,MIT, Cambridge, 1983,591-605.
    [130] Efthimeros G A, Photeinos D I, Diamantes Z G, Tsahalis D T. Vibration/noise optimization of a FEM railway wheel model. Engineering computations vol. 19, 2002(7-8):922-931.
    [131] Kinshasa, H. Fujioka, T. Measuring rail/wheel contact points of running railway vehicles. Wear, Vol.253,2002(1-2):275-283.
    [132] Zhu, X.Q. Law, S.S. Dynamic axle and wheel loads identification: laboratory studies. Journal of Sound and Vibration, Vol.268, 2003(5):855-879.
    [133] Paul, M. America, F. Genius, F. Distribution of contact pressure in wheel-rail contact area. Wear, Vol.253,2002(1-2):265-274.
    [134] Cannon D F, Sinclair J, Sharp K A. Improving the fatigue performance of bolt holes in railway rails by cold expansion [C]. In The International Conference on Fatigue Correction Cracking, Fracture Mechanics and Failure Analysis, Salt Lake City, USA, December, 1985.
    [135] John O Hallquist. LS-DYNA User's Manual-Version 940[M]. Livermore: Livermore Software Technology Corporation, 1997.
    [136] Popp K, Kruse H, Kaiser I. Vehicle-track Dynamics in the Mid-frequency Range[J]. Vehicle System Dynamics,1999,31(5-6):423-464.
    [137] Makoto ISH IDA. The effect of resilient wheel on track dynamic[J]. Foreign Rolling Stock, 1998, 35(6): 105-110.
    [138] Farris, T.N. Effect of overlapping wheel passages on residual stress in rail Corners. Vol.191, 1996(1-2).
    [139] http://www.tdaq.org/safety/jczj.htm——铁道安全网

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700