用户名: 密码: 验证码:
高速铁路无碴轨道过渡段路基的动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武广客运专线要求全线铺设无碴轨道,与普通线路的有碴轨道相比,对路基的变形要求更严、更高,工后沉降不能超过30mm,甚至要求地基为“零沉降”,任意路基地段20m长度范围的不均匀沉降不得大于20mm/20m,路桥(涵、隧)过渡段或任意两段路基沉降造成的折角不得大于1/1000,沉降差异造成的错台不大于5mm。因此,无碴轨道过渡段的刚度值平稳变化以及减少差异沉降和控制轨面弯折变形等措施,是保证线路平顺性的关键。由于线路过渡段刚度值不连续、差异沉降、轨面弯折的存在,将使路面在台背回填土处发生沉陷或开裂,从而会破坏线路的平顺、危害行车安全,并影响到旅客乘车的舒适度。随着我国高速铁路无碴轨道的建设,对过渡段问题的重视就显得比以前更为重要,本文基于国内外过渡段的研究现状,结合博士点基金项目和铁道部科技攻关课题,通过理论分析、室内试验、现场测试和数值模拟等方法,对无碴轨道路-桥-隧过渡段结构系统的动力计算模型进行了深入的探讨,取得了以下几方面的主要研究成果和结论:
     (1)基于D’Alembert原理的弱变分和整体Lagrange格式,建立了无碴轨道路-桥-隧过渡段半无限三维空间动力有限元计算模型。该模型视路-桥-隧过渡段结构为一个相互作用的整体,不同的结构采用不同的单元离散,其中,地基层采用无限元,以消除边界效应的影响。不同材料接触面之间相互耦合,无相对位移。该模型充分地考虑了系统的空间、时变、耦合特性及路-桥-隧过渡段的设计断面和设计参数,可提供无碴轨道路-桥-隧过渡段系统的动态响应时程及动态响应场分布等,具有合理选择无碴轨道过渡段设计参数、优化设计及预测动力性能等功能,从而为高速铁路无碴轨道过渡段系统的设计提供了理论分析依据。
     (2)基于Timoshenko梁假设和刚体力学理论,建立了各种不同性质的单元耦合约束方程,并使用Lagrange增广法,对其进行了有效的处理,很好地解决了无碴轨道路-桥-隧过渡段结构系统因相互衔接而引起的建模问题。
     (3)材料变形特性的计算模型采用了线性、非线性弹性、Drucker-Prager、混凝土弹塑性等本构模型;车辆系统与无碴轨道路-桥-隧过渡段系统之间的耦合作用,是通过垂向平面内对外力输入来进行的。整体刚度矩阵方程的求解采用Newmark隐式积分法进行,因计算模型中包含有大量的耦合约束方程,采用了波前求解器和缩减法求解器。
     (4)利用道床荷载“锥体分布”和“质量-弹簧-阻尼”理论,获得了过渡段结构等效刚度及刚度变异阈值的一般列式,并对过渡段两侧等效刚度进行了仔细讨论,进而指出过渡段刚度小的一侧刚度取值不仅与过渡段刚性大一侧的材料属性有关,而且还与其自身的材料属性有关,除此之外,还与其两侧不平顺波的振幅、波长和车速有关。
     (5)引入小波分析和现场大量实测数据的时频分析,获取了路基面动应力、振动加速度、动应力速度动力系数变化特征,进而提出了各类过渡段都存在相应“临界速度”,并指出过渡段路基合适的“超高”填筑可以减小过渡段的动态响应。
     (6)通过对水泥稳定碎石层各种性能的试验分析,得出级配碎石掺入5%~5.5%水泥剂量是合适的,能满足过渡段各类功能的要求。试验还发现不同级配碎石都存在一个动应力的临界值,此时动弹模量最大。
     (7)运用无碴轨道路-桥-隧过渡段耦合动力学理论,建立了高速铁路路-桥-隧过渡段与无碴轨道相互作用的动力学模型,研究了轮重、车速、不平顺和材料特性与无碴轨道过渡段结构系统相互作用的动态响应特征,并指明了在车辆移动荷载作用下,确定过渡段轨下结构型式、不平顺、材料特性、基床表层厚度和动态响应分布、传递特征、路堤本体工后沉降以及刚度值差异、轨面弯折的控制参数等,是高速铁路过渡段路基结构设计的必然要求和技术保证。
It is requested to paved by ballastless tracks on the whole line ofWu-Guang express railway engineering, compared with common railwayof ballast tracks, it is stricter in deformation of the subgrade. Thesettlement of post construction on high-speed railway is required less than30 mm, even of road foundation no settlement. The subsidence differencemust not exceed 20 mm with any 20 m in length section of the subgrade.Making an angle must not exceed 1/1000 within a railway-bridge(ortunnel, or culvert) transition section or the settlement of any two sectionssubgrades. Stagger for subsidence difference must not exceed 5mm. Thus,it's the key of subgrade design to control the stiffness discrepancy and thesubsidence difference and the bending of the track, which reduces greatlythe safety and ride comfort of the train in motion. With the rapiddevelopment of the high-speed railway in our country, the question oftransition zone come into view obviously than before. The dissertationcombines the research projects supported by National Doctor ScienceFund and railway ministry, it generalizes the previous achievements, andreviews the advanced development of the transitional sections, thedynamic analysis model of the railway-bridge-tunnel transition under theballastless tracks, with theory analysis and indoor test and site test andnumerical simulation, was studied thoroughly, and some originalconclusions are obtained as following:
     (1) A analysis model of semi-infinite tri-dimensional spatial finiteelements has been founded for the ballasfless track-bridge-tunneltransition system, based on weak variational form of the equilibriumequations for the transitional section in D'Alembert method and wholeLagrangian form. In the model, the track structure and the transitionsystem are dispersed to different elements and infinite element method isapplied to eradicate boundary effects. There is relative restricted couplingbetween contact interfaces of various materials of the system. It canprovide dynamic responses of the system with changes of wheel load,vehicle velocity, frequency and irregularities of the track, and distribution of dynamic responses in the subgrade can be given, also beused to select parameters, optimize designs and forecast dynamicproperties of the system, etc.
     (2) Based on Timoshenko beam and geostatic theory, couplingrestricted equations of various finite elements are founded. The restrictedequations have been dealt with by Lagrangian enlarging multipliers. Bythis way, the difficult problem of the coupling between the contactinterfaces of various materials of the ballastless track-bridge-tnnneltransition has been solved effectively.
     (3) Based on deformation characteristics of materials, the dissertationadopts analysis models, such as linear, nonlinear elasticity,Drucker-Prager, reinforced concrete elastic-plasticity constitutive model,etc. The coupling between vehicles system and the ballastless track-bridge-tunnel transition is affected by putting external simplified force onthe plane of the track vertically. The matrices equations as a whole havebeen solved, using implicit time integration of Newmark. Because thereare many restricted equations in the dynamic model, frontal solution isadopted to the modal analyses, and reduced solution is adopted totransient dynamic analysis.
     (4) Based on cone-shaped distributing of railway bed load and amass-spring-damper model, the equivalent stiffness and variogramstiffness thresholds of the system are acquired, which have something todo with the material properties of its oneself, besides the effects of thevertical amplitude and wavelength and irregularities of the track and thevehicle moving velocity on the system.
     (5) Based on wavelet theory and analysis of the time domain andfrequency domain with a great deal of field test data, and study oncharacteristics of the roadbed surface dynamic stress, vibrationacceleration, dynamic coefficient of the dynamic-stress speed, a "criticalspeed"conception is advanced, and it will influence the change trend onthe dynamic response of railway roadbed. At one time, a design idea isadvanced that "appropriate excess height"of roadbed can reduce thedifferential settlement and the dynamic response of transition sectionroadbed.
     (6) Test analyses on various function of stable graded crushed stoneslayer of cement additives have been accomplished, it is fit with thegraded crushed stones doped in adaptive 5%~5.5% cement additivesamount, can satisfy to transfer an each kind of function of the transition.It is advanced that critical value of dynamic stress exists in gradedcrushed stones. At one time, it is biggest for dynamic modulus ofelasticity in the graded crushed stones.
     (7) Applying the system dynamic model above-mentioned, theinfluences of wheel load, vehicle velocity, irregularity, materialparameter, stiffness and subsidence discrepancy on the dynamicresponses of the system were studied systematically. As for the furtherresearch on the same work and on the optimizing design of thetransition system, such a work may provide a helpful reference.
引文
[1] 周镜,钱立新.风驰电掣走世界:高速铁路工程[M].杭州:浙江科学技术出版社,1999,1-30
    [2] 孔祥安.TGV-法国高速铁路[M].成都:西南交通大学出版社,1997,1-19
    [3] 钱仲侯.高速公路j慨论[M].北京:中国铁道出版社,1999,1-19
    [4] 王其昌.高速铁路:土木工程[M].成都:西南交通大学出版社,1999,297-363
    [5] 杨广庆,刘树山,刘田明.高速铁路路基设计与施工[M].北京:中国铁道出版社,1999,95-111
    [6] 白海峰.铁路路桥过渡段加固处理施工技术[J].铁道建筑,2001,12:33-34
    [7] 杨广庆,刘宪福,叶朝良.高速铁路路基与桥梁过渡段技术措施分析[J].铁道标准设计 2001,5:38-39
    [8] 杨广庆,贾志武.高速铁路路基与桥梁过渡段施工技术研究[J].铁道标准设计,2000.20(2):21-23
    [9] Gobel C H, Weisemann U C. Effectiveness of a reinforcing geogrid ina railway subbase under dvnamic loads[J]. Geotextiles and Geomembranes. 1994.13: 91-99
    [10] 张宏,王劲松.路桥过渡段结构型式设计与施工方法探讨[J].公路,2001,9:49-53
    [11] 陈鹏,郑伟超.路桥过渡段搭板受力分析[J].西安公路交通大学学报,1998,18(3):244-251
    [12] 徐浚,宁士亮.秦沈客运专线过渡段的设计和施工[J].铁道建筑,2001,2:8-10
    [13] 常晶,陈云敏.列车荷载在地基中引起的应力响应分析.岩石力学与工程学报,2005,24(7):1178-1186
    [14] 刘向东,毛世福.路基过渡段级配碎石生产与施工技术[J].西部探矿工程;2001,4:25-27
    [15] 尹建勋,刘扬.秦沈客运专线路桥过渡段级配砂砾石填筑技术[J].铁道标准设计,2001,21(10):48-50
    [16] 毛世福,马克相,刘向东.某路涵过渡段级配砂砾石填筑工艺试验研究[J].西部探矿工程,2001(:噌刊):45-48
    [17] 李守鹏,柳杨春.高速铁路路基级配碎石过渡段填筑技术[J].西部探矿工程,2001,2:3-4
    [18] 邹振华.秦沈客运专线路桥过渡段施工技术[J].铁道标准设计,2001,21(10):13-14
    [19] 刘曌,谢前军.水泥粉喷桩在路桥过渡段软基处理中的应用[J].铁道标准设计,2001,21(10);22-23
    [20] 谢一振.深层搅拌桩进行软基处理的施工技术[J].铁道标准设计,2001,21(10):24-28
    [21] 庞吉鸿.提速铁路桥路、涵路过渡段的加固处理[J].铁路地质与路基,2003,1:35-37
    [22] Fannin R J, Sigurdsson O. Field observation on stabilization of Unpaved roads with Geosytheties[J]. J. Geotech. Engr. ASCE, 1996, 544-553
    [23] Hall L. Simulations and analyses of train-induced ground vibrations, a comparative study of two-and three-dimensional calculations with actual measurements[Ph. D. Thesis] [D]. Sweden: Department of Civil and Environmental Engineering, Royal Institute of Technology, 2000. 95-108
    [24] 铁道第三勘察设计院.京沪高速铁路设计暂行规定(上册)[S].北京:中国铁道出版社,2003
    [25] 铁道第四勘察设计院.《无碴轨道客运专线铁路设计暂行规定》(S),2005
    [26] 罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999,16(5):65-70
    [27] 王于,翟婉明,王其昌等.一种确定轨道过渡段长度的新方法[J].铁道工程,1999,4:25-28
    [28] 蔡成标,翟婉明;赵铁军等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1:17-19
    [29] 曹新文,罗强,薜双纲.土工格室和土工网加固基床效果静态模型试验[J].西南交通大学学报,2001,36(2,3):322-326,20-62
    [30] 翟婉明.车辆—轨道耦合动力学[M].北京:中国铁道出版社,1997
    [31] 罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999,16(5):65-70
    [32] 李献民,王永和等.高速下过渡段路基动响应特性研究[J].岩土工程学报,2004,26(1):100-104
    [33] 李献民,王永和等.动力分散型机车在路涵过渡段的动应力-应变研究[J].岩土力学,2004,25(7):1167-1170
    [34] Golden B C. Controlled tests and coal train monitoring with the salient wheel impact detector[J]. CP Rail, Report No. T-993-88
    [35] 刘增杰.轮轨横向力测试方法的研究[C].铁道部科学研究院铁道建筑研究所.1994年度学术论文集
    [36] 赵国堂,田越,刘铁.轮轨水平力连续测试技术的研究[J].铁道学报,2000,22(3):69-73
    [37] 黄林,袁向荣.小波分析在桥上移动荷载识别中的应用[J].铁道学报,2003,25(4):97-101
    [38] 袁向荣,卜建清,满红高.移动荷载识别的函数逼近法[J].振动与冲击,2000,19(1):58-70
    [39] 陈锋,袁向荣,李明.移动载荷识别的B样条函数逼近法[J].石家庄铁道学院学报,2003,16(1):11-14
    [40] 李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1998,17(1):66-75
    [41] Yoshihiko S. Theoretical analysis on vibration of ballasted track[J]. QR&RTRI, 1988, 29(1):41-46
    [42] 翟婉明,韩卫军,蔡成标等.高速铁路板式轨道动力特征研究[J].铁道学报,1999,21(6):65-69
    [43] Van der Raadt. Field measurement of soil suction using thermal conductivity matrie potential sensors[J]. M. Sc. the Sis. Univ. of Saskatchewan, Saskatoon Sask., Canada, 1988, 210-224
    [44] Satter P J, Fredlund D G. Use of thermal conductivity sensors to measure matrie suction in laboratory Can[J]. Geoteeh.J., 1989, 26(3):491-498
    [45] Li. Wheel-track dynamic interaction track substructure perspective[J]. Vehicle System Supplement, 1995, 24:183-196
    [46] Cao Y L, Law K T. Energy dissipation and dynamic behavior of clay under cyclic loading[J]. Can. Geoteeh., 1992, 103-112.
    [47] Eugene A V. Dynamic instability of clays: an energy approaeh[J]. Soil Dynamics and Earthquake Engineering, 1999, 125-133.
    [48] 翟婉明.车辆-轨道藕合动力学研究的新进展[J].中国铁道科学,2002,23(2):1-14
    [49] Diana G, Cheli F, Bnmi S, Collina A.Interaction between Railroad Superstructure and Railway Vehicles [J].Vehicle System Dynamics, 1994, 23(Suppl.):75-86.
    [50] Fermer M, Nielsen J C O. Wheel/rail Contact Forces for Flexible versus Solid Wheels due to Tread[J].Vehiele System Dynamics, 1994, 23 (Suppl): 142-157.
    [51] Ripke B, Knothe K. Simulation of "high Frequency Vehicle-rack Interaetions[J].Vehicle System Dynamics, 1995, 24(Suppl):72-85
    [52] Oscarsson J, Dahlbern T. Dynamic Train/Track/Ballast Interaction-computer Models and Pull-scale Experiments[J].Vehicle System Dynamics, 1998, 28(Suppl.):73-84.
    [53] Frohling R D. Low frequency Dynamic Vehicle-rack Interaction: Modelling and Simulation[J]. Vehicle System Dynamics,1998, 28(Suppl.):30-46
    [54] Auersch L.Vehicle/track/interaction and Soil Dynamics[J].Vehicle System Dynamics,1998,28(Suppl.):553-558.
    [55] Popp K,Kruse H,Kaiser I. Vehicle/rack Dynamics in the Mid-frequency Range[J].Vehicle System Dynamics,1999, (5-6):423-464
    [56] Andersson C,Oscarsson J, Nielsen J. Dynamic Train/track Interaction Including State-dependent Track Properties and Flexible Vehicle Components[J].Vehicle System Dynamics, 1999,33(Suppl.):47-55.
    [57] Drozdziel J,Sowinsld B, Groll W. The effect of Railway Vehicle track System Geometric Deviation on its Dynamics. in the Turnout Zone[J] .Vehicle System Dynamics,1999, 33(Suppl.):641-652.
    [58] Gurule S,Wikon N. Simulation of wheel/rail Interaction in Turnouts and Special Track work [J]. Vehicle System Dynamics,1999,33(Suppl.):143-154.
    [59] Oscarsson J.Dynamie Train/rack-ballast Interaction with Unevenly Distributed Track Properties[C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks,Lyngby, Denmark, 2001
    [60] Dietz S, Hippmann G,Schupp G.. Interaction of Vehicles and Flexible Tracks by Co-simulation of Multibody Vehicle System and Finite Element Track Models[C].17th IAVSD Symposium. on Dynamics of Vehicles on Roads and on Tracks,Lyngby, Denmark,2001
    [61] Stole T, Piotrowske J, Nanorski Z. Simulation of Vehicle track Interaction in the Medium Frequency Range with Application to Analysis of Mechanical and Thermal Loading in Contact[C].17th IAVSD Symposium on Dynamics. Lyngby, Denmark,2001
    [62] 铁道第三勘察设计院.路桥过渡段设置方式试验研究报告[R].秦沈客运专线综合试验科技攻关项目(项目编号:2000G47-C),天津:2003
    [63] 铁道第三勘察设计院.涵洞洞顶不同填土厚度试验研究报告[R].秦沈客运专线综合试验科技攻关项目(项目编号:2000G48-F)北京:2003
    [64] 蔡英.高速重载铁路的若干技术题[J].铁路高速客运研究论文选集,1992,223-232
    [65] 蔡英.高速铁路路基研究[M].成都:西南交通大学,1995,1-30
    [66] 周镜,杨灿文.国外路基技术标准[J].路基工程,1985,2:6-8
    [67] 周神根.铁路路基设计动荷载研究[J].路基工程,1996,68(5):6-11
    [68] 梁波.高速铁路路基的动力特性及土工合成材料的应用研究[D].西南交通大学博士论文.1998
    [69] Knotho K.Past and future of vehicle/track interaction[J]. Vehicle System Dynamics Supplement, 1995, 24:1-3
    [70] Harrison H B. General Computer Analysis of Beard and Elastic Foundations[J]. Proceeding of Inst. of Civil Engineers, 1973, 55(2):605-618,
    [71] Kennedy J C. Development of Multilayer Analysis model for Tie/Ballast Track Structures.57 th Transportation Research Board Annual Meeting, 1978
    [72] Ching S.Chang, Geotrack model for railroad track performance[J]. J. of Geo. Engrg. Div. ASCE.1980, 106(11):1201-1218。
    [73] Kuang H C, Geegory C, Martin.Track Foundation Stresses under Vertical Loading.Rail International, 1997
    [74] Toshikazu H, Keizo U, Mlchio M, Rikuo S. Three-dimensional analysis of traffic-Induced ground vibrations[J].Joumal of Geotechnical Engineering, 1991, 117(8):1133-1151
    [75] Ahlbeck D R, Meacham H C, Prause R H. The development of analytical models for railroad track dynamics[J].Railroad rack Mechanics and Technology, 1978:239-263
    [76] Lyon D. The Cactdation of track forces due to dipped rail joints. Wheel-fiats and Rail Welds, British Rail Research Department Track Group, Technical Notes 7s.2, 1972, Febr
    [77] Lyon D. The effect of vehicle and track parameters upon the loads at the dipped rail joints. B.R.B Research and Development Division Technical Memorandumm, TMT36, 1974, June
    [78] Jenkins H, Stephenson J E, Clayton G A et al. The effect of track and vehicle parameters on wheel/rail vertical dynamical forces. The Railway Engineering J., 1974, 2(2), 2-16
    [79] Jenkins H. The effect of track and vehicle parameter on wheel-rail vertical dynamic forces[J]. Railway Engineering, 1974, 3(1):21-27
    [80] 左滕裕.轨道力学.北京:中国铁道出版社,1981
    [81] 左滕吉彦.高周波轨道振动理论解析[R].铁道技术研究报告,N1013,1976
    [82] 左滕吉彦著,徐涌等译.新轨道力学[M].北京:中国铁道出版社,2001,56—97
    [83] Ahlbeck O R. Effects of track dynamics impedance on vehicle-track interactions [J]. vehicle System Dynamics Supplement, 1995, 24:58-71
    [84] Fannin R J. Geogrid reinforcement of granular layers on soft clay. PhD Thesis, Unversity of oxford, England, 1987
    [85] Lipen A B, Chigarev A V. The displacements in an elastic half-space when a load moves along a beam lying on its surface[J]. Journal ofApplied Maths Mechanics, 1998, 62(5):791-796
    [86] Birmann F. Recent investigaions of the dynamic modulus, of elasticity of the track in ballast with regard to high speeds. Railroad Track Mechanics and Technology, 1978:197-220
    [87] Birmann F.The importance of permanent way elasticity for the rolling Stability of Vehicles[J].RR&EN, 1992, 14(3):78-81
    [88] G-rassie S L.Track deflections and macroscopic movement of railway embankment[J].Vehicle System Dynamics Supplement, 1995, 24:154-163
    [89] 翟婉明.车辆-轨道相互作用理论研究进展及发展趋势.力学进展,1998,28(3):339-348
    [90] Sheng X, Jones C J C, Petyt M harmonic load acting on Ground vibration generated by a railway track[J]. Journal of Sound and Vibration, 1999, 225(1):3-28
    [91] 雷晓燕,陈水生.高速铁路轨道结构空间动力分析[J].铁道学报,2000,22(5):76-80
    [92] Jan H Z.High-Speed Rail Track Design[J]. J.of.Trans.Engrg.Div.ASCE, 1989, 115(1):12-16
    [93] 卿启湘.高速铁路无碴轨道-软岩路基系统动力特性研究[D].中南大学博士论文,2005
    [94] 张建辉,邓安福,何水源.三维无限元的映射函数.岩石力学与工程学报,2000,19(1):97-100
    [95] Bettess P. More on infinite element.Int.J.Numer.Mech.Eng.1980, 15 : 613-1626
    [96] 饶寿期.有限元法和边界元法基础.北京:北京航空航天大学出版社,1996
    [97] Beer G, Meek J L.Infmite domain element.Int.J.Numer.Mech. Eng., 1981, 17:43-52
    [98] Zienkiewicz O C Emson C. A novel boundary infinite element.Int.J.Numer.Mech.Eng., 1983, 17:393-404
    [99] Chung L, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized a-method[J]. J.Appl. Mech., 1993, 60:371-375
    [100] 阿部和久,古田腾.时间域积分表现式轨道振动解析法[J].日本土木工 程学报,1997,3:9-16
    [101] Bertsekas D E Constrained Optimization and Lagrange MultipIier Methods[M]. Academic Press,New York, 1984
    [102] Zienkiewiez O C,Taylor R L, Too J M. The Finite Elernent Method[M]. McGraw-Hill,New York, 1991
    [103] Selig E T, and Li D. Track modulus: Its meaning and factors influencing it. Transportation Research Record 1470, Transportation Research Board, Washington, D.C., 1994,17-25
    [104] Redden J W, Selig E T, Zaremsbki A M. Stifftrack modulus considerations. Rail Track Struct., 2002,2, 25-30
    [105] 铁道部第三勘察设计院.《京沪高速铁路线桥隧站设计暂行规定》[S].北京:中国铁道出版社,2003
    [106] 罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度研究[J].铁道标准设计,2000,20(6~7):2-4
    [107] 江成,林之珉.高速铁路无碴轨道结构的试验研究口[M].中国铁路,2000,7:21-24
    [108] 翟婉明,蔡成标,王其昌.高速铁路轨道刚度与胶垫应用[J].中国铁道科学,2000,12(4):10-15
    [109] Love A E.H. A Treatise on Mathematical Theory[M].Fourth edition, Combridge: Combridge University Press, 1927
    [110] Lure A L.Three Dimensional Problems of Theory of Elasticity[M].New York: Interscience Pubushers, 1964.
    [111] Burden L. Stresses and displacement in a cross anisotropy soil[J].Geotechnique,1963, 13(3):198-209
    [112] Gibson R E. The analytical method in soil mechanics[J].Geotechnique, 1974, 24(2):115-140
    [113] Mitchell J H. The stress in an aerotropic elastic solid with an infinite plane boundary[J] .Proc London Math Soc.,1984,32(3):247-258
    [114] Lekhnitskii S G.., Theory of Elasticity of an Anisotropy Elastic Body[M] . Boston: Mir Publishers 1981
    [115] Haichang H U. On the equilibrium of.transversely isotropic elastic half space[J] . Scientia Sinica,1954,3(3):453-479
    [116] Mccarthy D F. Lssentials of Soil Mechanics and Foundations[M].New York: Reston Publishing Company Inc., 1977, 162-178
    [117] Gazetas C T. Stresses and displacements in cross anisotropy soils[J].ASCL Proc., 1982, 108(GT4): 532-553.
    [118] 陈列峰,龚晓南,曾国熙.考虑地基各向异性的沉降计算[J].土木工程学报,1991,24(1):1-7
    [119] Hanson M T, Puja I W. Love' s circular patch problem revisited: Closed form solutions for transversely isotropy and shear loading[J] .Quarterly of Applied Mathematics,1996, 54(2): 120-143
    [120] 吴世明,梁剑,胡亚元.横观各向同性半无限空间表面典型荷载作用下的地基附加应力系数[J].应用数学和力学,2000,24(8):809-816
    [121] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000,88-89
    [122] 王其昌,韩启孟.板式轨道设计与施工[M].成都:西南交通大学出版社,2000
    [123] 金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展,2001,31(1):33-46
    [124] Eisenmann J, Leykauf G, Mattner L. Zukunftsperspektiven Zum Eisenbahnoberbau.Der Eisenbahn Ingenieur, 1992
    [125] Garg V K, Dukkipati R V. Dynamics of Rail Vehicle System. Academic press, 1984
    [126] Remington P J, et al. Wheel-rail noise, part Ⅰ-Ⅳ[J]. Journal of Sound and vibration, 1976, 46(3): 359-451
    [127] Thompson D J. Wheel-rail noise generation, part Ⅰ-Ⅴ. Journal of Sound and vibration, 1993, 161(3): 387-482
    [128] Grassie S L, et al. The dynamic response of railway track to high frequency vertical-lateral-longitudinal excitation. [J]. J. Mech. Eng. Se., 1982, 24(2): 77-102
    [129] Grassie S L, et al. The behaviour of railway wheelsets and track at high frequencies of excitation. J Mech. Eng. Se., 1982, 24(2): 103-110
    [130] Knothe. K, Stoyzakowsld Z, Willner K. Rail vibrations in the high frequency range[J]. Journal of Sound and vibration, 1994, 169(1): 111-123
    [131] Ripke B. Hochfrequente Geismodellierung und Simulation der Fahrzeug-Gleis-Dynamik unter Verwendungeiner nichtlinearen Kontaktmechanik[J]. VDI Fortschritt Berichte Reihe 12 Nr 249 Dusselorf VDI-Verlag, 1995
    [132] Hempelmann K. Short pitch corrugation on railway rails-A linear model for prediction[J]. VDI Fortschritt Berichte Reihe 12 Nr 231 Dusselorf VDI-Verlag, 1994
    [133] Knothe K, Grassie S L .Modelling of railway track and vehicle/track interaction at high frequencies[J]. Vehicle System Dynamis 1993, 22(3/4): 209-262
    [134] 陈果,翟婉明,左洪福.250km/h高速铁路轨道不平顺的安全管理[J].西南交大 学学报,2001,36(5):495-499
    [135] 蔡成标,翟婉明,王其昌.轨道几几何不平顺安全限值的研究[J].铁道学报,1995,17(4):82-87
    [136] 罗林.轨道随机干扰函数.中国铁道科学,1982,13(1):74-110
    [137] 长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究[J].长沙铁道学院学报,1985,2,1-36
    [138] 铁道部科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究(TY-1215)[R].北京:铁道部科学研究院,1999
    [139] 夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002
    [140] 黄俊飞,练松良,宗德明等.轨道随机不平顺与车辆动力响应的相干分析.同济大学学报[J],2003,31(1):16-20
    [141] Mallatve. A theory for multriesonluti0n signal decomposition, the wavelet representation[J]. IEEE Trans on pattern Analysis- and Machine Intellegence, 1989, 11: 674-898
    [142] Mallat S, Multh'esolution Apptroximations and Wavelet Orthonormal Bases of L2(R). Trans. of Amer. Math Society,1989, 315(1): 45-51
    [143] Mallat S, Wang L H. Singttladty Detection and Proessing with Wavelets[J]. IEEE Trans. on Info. Theory, 1992, 38(2): 67-73
    [144] 徐佩霞,孙功宪.小波分析与应用实例[M].合肥:中国科学技术大学出版社,1996
    [145] 王永刚,张景绘小波变换在结构动力学识别中的应用[J].强度与环境,1997,4(6):22-29
    [146] Fasana A, GariSaldi L. Identification of the Dynamic Behaviour of Bridges Under Ambient Excitation Using Wavelet Transform[A]. Proceedings of the Non-Destructive Evaluation(NDE) SPIE Conference[C]. Scottsdalc, AZ, 1996, 187-205
    [147] Fasna A, GariSaldi L. Application of the Wavelet Estimation Technique for the Analysis of a Motorway Bridge[A].Proceedings of the Damas Conference[C]. Sheffield U K, 1997, 355-367
    [148] 徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社,2001
    [149] 肖尚,张国样.小波滤波在秦沈客运专线动土压力测试中的应用[J].岩土工程界,2005,7(7):67-68
    [150] 张磊等小波域滤波值参数的选取[J].电子学报,2004(3):400-402
    [151] 孙杰慧,王岳平.水泥稳定碎石基层中水泥剂量范围试验.公路,2001,5,37-41
    [152] 王哲人,曹建新,王龙等人.级配碎石混合料的动力变形特性[J丁.中国公路学报,2003,16(1):22-26
    [153] 杨广庆,张保俭.高速铁路路基施工质量检测方法[J].铁道标准设计,2001,3(21):33-36
    [154] 邓学钧.路基路面工程[M].北京:人民交通出版社,2000
    [155] Eisenmann J. Railroad track structure for high-speed lines[J]. Rail road Track Mechanics and Technology, 1978, 1: 39-61
    [156] 须长诚等.经济的强化路盘开发与研究.铁道总研报告[R],1991,5(10):89-97
    [157] Chen Yunmin, Wang Changjing, Ji Meixiu, et al. Train-induced ground vibration and deformation[A]. In: Environmental Vibration Prediction, Monitoring and Evaluation[C]. Beijing: China Conmmunieations Press, 2003, 158-174
    [158] Sunaga M, Sekine E, Ito T. Vibration behaviorof roadbed on soft grounds under trainload[J]. Quarterly Report of the Railway Technical Research Institute, 1990, 31(1): 29-35
    [159] 蔡成标,翟婉明,王其昌.不同轨下基础轨道连接的动力特性分析[J].铁道学报,2002,24(2):79-82
    [160] Michaltsos G, Sophianopoulos D, Kounadis A N. The effect of a moving mass and other parameters on the dynamic respones of a simply supported Seam[J]. Journal of sound and Vibration, 1990, 191(3): 357-362
    [161] 蔡成标,翟婉明,王其昌.高速列车与高架桥上无碴轨道相互作用研究[J].铁道工程学报,2000,67(3):29-32
    [162] 铁道部科学研究院铁道建筑研究所.高速铁路无碴轨道结构设计参数的研究[R].北京:1996,12
    [163] 国外高速铁路标准及规范汇编(第四、五册).德国铁路土工建筑物规范(D5836).铁道部标准计量研究所.1991
    [164] Chul Kwon H, Chcol Kim M, Won Lee I. Vibration Control of Bridges under Moving Loads[J]. Computcrs&S tinctures, 1998 66(4): 473-480
    [165] 梁波,韩自力,张艳美.京秦线提速路涵过渡段动力仿真与试验对比[J].铁道学报,2003,25(3):92-96
    [166] LinggBo, et al. Dynamic Analysis Model of Vertical Coupled System of the Vehicle Subnrade[J]. Tournal of Sound and Vibration(SCI), 2001, (1): 79-93
    [167] 孙宏林,尤昌龙,陈占.客运专线土质路基地段铺设无碴轨道调研及分析[J].铁道标准设计,2005,5,1-4
    [168] 石田诚,三浦重,河野昭子.桥台背部填上沉降引起的轨道变形及车辆运行特性[A].轨道结构刚度合理值及其合理匹配的研究资料集[C],1999
    [169] 律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报,2004,23(3):501-504
    [170] Wu T H. Tensile-reinforcement effects on bridge approach settlement[J]. Journal of Geotechnical engineering, 1993, 119(4):749-762
    [171] 杨广庆,张保俭,岳祖润.秦沈铁路客运专线高填方路桥过渡段试验研究[J].路基工程,2004,117(6):29-32
    [172] 梁波,罗强,曹新文等.土工合成材料用于减少高速铁路桥路过渡段沉降的试验研究[J].路基工程,1998,78(3):36-41
    [173] Puri VK, et al. Cyclic Load Induced settlement of Square Foundation on Geogrid Reinforced Sand. Geotextiles 1993, 12:587-597
    [174] 黄克智,黄永刚周体本构关系[M].北京:清华大学出版社,1999
    [175] 王勖成,邵敏编著.有限元法基本原理和数值方法[M].北京:清华大学出版社.1997
    [176] Ted Belytschko, Wing Kam Liu, Brian Moran.Nonlinear Finite Elements for Continua and Structures.2000, John Wily& SonsLtd. London, UK WIP 9HE US.
    [177] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002
    [178] 汪闻韶.往返荷载下饱和砂土的强度、液化和破环问题[J].水利学报,1980,1:14-27
    [179] 铁道部科情所编译.国外高速铁路技术发展研究资料之四:法国TGV高速铁路[R],1991.
    [180] 潘昌实,Pande G N.黄土隧道列车动荷载响应有限元初步数据分析研究[J].土木工程学报,1984,17(4):19-28
    [181] 国家“八五”科技攻关项目:高速铁路线桥隧设计参数选择的研究:高速铁路路基设计技术条件研究[R].北京:1995
    [182] 铁道科学研究院铁道建筑研究所.跨区间无缝线路关键技:术试验研究报告[R].秦沈客运专线综合试验科技攻关项目(项目编号:2000G49-C),北京:2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700