用户名: 密码: 验证码:
轮轨滚动接触疲劳损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车速度的提高和轴重的加大,铁路运输向科学研究提出一系列挑战,许多关键科学技术问题急需解决,其中轮轨滚动接触疲劳损伤就是最复杂问题之一,它的解决对列车安全运营和降低运输成本以及发展高速列车具有重要的意义。
     本文在详细论述轮轨滚动接触疲劳破坏现象分类及其研究历史与现状的基础上,主要以轮轨制动损伤、轮轨冲击损伤、轮轨磨损和高速线路钢轨斜裂纹等几种典型破坏现象为研究对象,以机车车辆—轨道耦合动力学、轮轨滚动接触理论、材料摩擦磨损模型、传热学、弹塑性力学和有限元方法为基础,应用数值仿真和试验方法来研究以上几种常见损伤产生和发展的机理和关键影响因素,并提出具体的损伤预防和减缓措施。具体来说,本文主要开展了以下几方面的研究工作。
     采用有限元法从摩擦引起的热效应角度来探寻轮轨表面破坏的原因,建立了轮轨热—机械载荷耦合接触模型,分析制动工况即纯滑动接触过程中轮轨温升以及热应力,模型中考虑了轮轨间非稳态热传导、与环境的热对流和热辐射以及轮轨间的接触计算,研究了滑动接触过程中应力场的分布特点以及速度的影响。研究表明,轮轨间摩擦热响应的影响深度很浅(大约2mm以下),且随着深度增加而变小;热载荷加大了轮轨表层材料的应力水平;相对滑动速度越大,轮轨热响应越明显。
     建立了钢轨错牙接头处三维动态弹塑性接触有限元模型,模型中考虑车轮与钢轨、钢轨与夹板、夹板与螺栓和螺栓与钢轨之间的接触。研究列车速度、轴重和错牙接头高度差对钢轨轨头处应力和应变的影响。结果表明,当车轮通过钢轨错牙接头时,车轮对钢轨的冲击作用强烈,容易导致轨端产生压溃和碎裂等损伤。车速和错牙高度对钢轨应力和应变的影响比轴重大。
     详细分析了轮轨作用力与钢轨斜裂纹的关系。建立了适合于广深线机车车辆—轨道空间耦合模型,进行机车车辆曲线通过动力学分析,从轮轨动态接触点和作用力大小及方向确定引起钢轨斜裂纹的机车车辆类型。还分析了京广线直线段钢轨焊接不平顺对钢轨斜裂纹的影响。理论分析发现,“蓝剑”动车组动车和SS8机车对钢轨斜裂纹形成和发展的影响最大。通过测量和分析列车通过发生钢轨斜裂纹区段时钢轨的变形和变形方向,判断轮对和钢轨作用特点,验证了理论计算结果的可靠性。通过大量的动力学仿真计算,对比分析不同超高、轨底坡、曲线半径、轨距和轨下垫层刚度情况下的轮轨作用力和轮轨接触点位置,得到了轨道结构参数的优化结果。分析计算结果为现场部门预防和减缓钢轨斜裂纹形成和扩展提供理论指导和参考。
     采用数值方法研究车辆曲线通过对钢轨磨损和接触应力的影响,该方法综合考虑了Kalker三维非赫兹滚动接触理论、材料磨损模型、车辆—轨道垂横向耦合动力学模型和轮轨接触几何计算,可以同时预测同一转向架四个车轮下的钢轨磨损。研究表明,改进轮轨型面是减小接触应力的主要方法;增大曲线轨道的超高能改善车辆曲线通过性能,减小接触应力和钢轨磨损;轨底坡对钢轨磨损和接触应力有显著的影响。
     建立了轮轨三维弹塑性滚动接触计算模型。针对广深线发生钢轨斜裂纹区段运行情况,分析不同硬度钢轨接触表面附近材料残余应力分布和塑性流动的大小和方向,由此判断钢轨滚动接触疲劳裂纹萌生的位置和方向。利用Kalker三维非赫兹滚动接触理论及其数值程序CONTACT研究轨底坡、轨距和曲线半径等轨道结构参数对轮轨静态接触应力的影响。计算结果发现,与轨距和曲线半径相比,轨底坡对轮轨接触应力的影响较大。数值结果对我国铁路轨道结构的优化设计提供了有力的参考依据。
     综述了各种钢轨打磨方法的原理和作用。通过对广深线路的运营特点和损伤类型分析,提出了广深线使用预防性打磨和曲线轨头非对称打磨两种打磨方法。根据线路钢轨表面裂纹出现的时间及通过的年运量情况,建议广深线曲线钢轨预防性打磨周期为6个月。钢轨曲线非对称打磨可以使接触点在轨面上向中心移动,避免接触点靠近轨肩位置,降低轮轨之间的接触应力,从而减轻斜裂纹的发生。
With increases of train speed and axle load, railway transportation put forward a series of challenges to science and research. Many key problems of science and technology need to be urgently solved. Wheel-rail rolling contact fatigue and damage is one of the most serious problems. The solution to the problem is very important to the train running safety, decreasing of the transportation cost and developing high speed train.
     Firstly the classes of wheel-rail rolling contact fatigue and the studies on it in the past and now in the world are reviewed in detail. Based on the vehicle-track coupling dynamics theory, wheel-rail rolling contact theory, material wear model, heat transfer, plasiticity theory and finite element method, the initiation and development mechanisms and key impacting factors of some typical phenomena of wheel-rail rolling contact fatigue, such as wheel-rail braking damage, impact damage, wear and rail oblique crack, are investigated numerically and by experiment. Many measures are put forward to preventing and lightening the above damages. The main research and results are given as follows.
     Temperature rise and thermal stress due to wheel/rail friction play an important role in the failure of wear, flatting and checking. In this thesis, a thermal-mechanical coupling contact model of wheel/rail in sliding contact or braking is put forward to calculate the temperature rise and thermal stress with finite element method. The non-steady heat conduction between the contacting surfaces of the wheel/rail, heat-convection and radiation between the wheel/rail and an ambient are taken into consideration. The contact pressure distribution is gotten by contact element method. The numerical results show that the contact element method is effective. The thermal effects only exist in the thin layer of wheel/rail, and its effect decreases as the depth increases. The total stress levels near wheel-rail surfaces become larger due to the thermal load. Higher sliding speed leads to stronger thermal effects.
     A three dimensional dynamic elastic-plastic finite element model of the traditional rail joint with height difference is established, which considers the contacting interactions between the wheel and the rails, the rails and the joint bars, the joint bars and the bolts, the bolts and the rails. The influences of train speed, axle load and height difference of rail joint on the contact stresses and strains at rail head are investigated. The results obtained show that when the wheel rolls over the joint rails with height difference, the impact action between the wheel and rails is strong, which easily causes crushing and crack of rail head. The train speed and height difference have greater effect on rail stresses and strains than the axle load does.
     The thesis detailedly analyzes the relation between the wheel-rail contact traction and rail oblique crack. Spatial coupling dynamics models of rolling stock and track for Guang-Shen Line are established. The rolling stock types causing rail oblique crack are determined on the basis of the location of wheel-rail contact point and the magnitude and direction of the contact traction obtained from the vehicle curving dynamic analysis. The effect of rail weld irregularity in Jing-Guang Line on rail oblique is also studied. The numerical results show that Blue-Arrow power car and "SS8" locomotive car play the most important role in the initiation and evolution of rail oblique crack. The theory results are validated by experiments in which the displacement and its direction are measured when the trains pass through the tracks with rail oblique cracks. Through investigating the influences of curved track super-elevation, rail cant, curve radius, rail gauge and railpad stiffness on wheel-rail contact force and location, the optimal results of track structure parameters are obtained. The results provide theoretic basis and guidance for preventing and lightening the formation and development of rail oblique crack.
     The present thesis utilizes a numerical method to analyze the effect of railway vehicle curving on the wear and contact stresses of wheel/rail. The numerical method considers a combination of Kalker's non-Hertzian rolling contact theory, a material wear model, a vertical and lateral coupling dynamics model of the vehicle and the curved track and the three-dimensional contact geometry analysis of wheel-rail. The developed numerical program can consider a feedback process between the rail wear and the transient coupling dynamics of four wheels of a same bogie and the track. Through the detailed numerical analysis, it is found that the difference between the normal loads of the left and right wheels of the wheelset increases linearly with increasing the vehicle curving speed. The material wear volume per length along the rail running surface has a tendency to grow. However, the maximum normal contact stress fluctuates largely with the increasing curving speed. The increase of the maximum contact stress depends greatly not only on the normal load but also on the profiles of the wheel/rail. Increasing the track super elevation efficiently lowers the normal load difference between the left and right wheels of the wheelset, the contact stresses and the wear. Increasing the rail cant leads to the great growth of the low rail wear of the curved track, the reduction in the outside rail wear. The results are very useful in the maintenance of the track.
     A three-dimensional elastic-plastic stress analysis model for wheel-rail rolling contact is established. The model is applied to a case study of a section of Guang-Shen Line with rail oblique crack. Under the condition of different rail hardness, the residual stresses distributions and the magnitude and direction of the material plastic deformation are calculated. Besides, the effects of rail cant, rail gauge and curve radius on the static contact stresses of wheel-rail are investigated using Kalker's non-Hertzian rolling contact theory and its numerical program CONTACT. It is found that the rail cant has a greater effect on static contact stresses of wheel-rail than rail gauge and curve radius. The results provide a powerful tool for the optimal design of track structure.
     The princible and function of many types of rail grinding techniques are stated. Through the analysis of the operation character and damage type of Guang-Shen Line, the thesis introduces that the preventive grinding and asymmetric grinding of curved rail head should be applied to Guang-Shen Line. Based on the period when the rail obligue crack initiates and annual volume of the Guang-Shen Line, it is proposed that the preventive grinding interval of the curved track is about 6 months. The asymmetric grinding of curved rail head can make the wheel-rail contact point move toward rail centre and apart from rail shoulder. Accordingly, the contact stress between the wheel and rail decreases and the rail obligue crack can be eliminated and lightened.
引文
1 沈志云.关于高速铁路及高速列车的研究.振动、测试与诊断,1998,18(1):1-7
    2 史密斯.钢轨滚动接触疲劳的进一步研究.中国铁道科学,2002,23(3):6-10
    3 苏辉艳.减轻重载列车轮轨磨耗的研究.中国铁路,1997,(6):42,16
    4 T. C. Kennedy, C. Way, R. F. Harder. Modeling of martensite formation in railcar wheels due to Hertzian wheel slides. Processing of 6th international conference on contact mechanics and wear of rail/wheel systems, Sweden, June, 10-13, 2003, 511-516
    5 董仁泽,董茜.碳素结构钢的回火脆性与抗剥离耐磨车轮的研制.中国铁道科学,1997,18(2):82-87
    6 金学松,张继业,温泽峰,李芾.轮轨滚动接触疲劳现象分析.机械强度,2002,24(2):250-257
    7 Xuesong Jin, Zefeng Wen, Kaiyun Wang. Effect of track irregularities on initiation and evolution of rail corrugation. Journal of Sound and Vibration. 2005, 285(1-2): 121-148
    8 Xuesong Jin, Kaiyun Wang, Zefeng Wen, Weihua Zhang. Effect of discrete supports of rail on initiation and evolution of rail corrugation. Chinese Journal of Mechanical Engineering, 2005, 18(1): 37-41
    9 张斌,卢观健,付秀琴等.铁路车轮、轮箍失效分析及伤损图谱.中国铁道出版社,2002
    10 金学松,刘启跃.轮轨摩擦学.北京:中国铁道出版社,2004
    11 曹学军,李文刚.强化车轮踏面提高剥离能力.内燃机车,2002,9:8-9
    12 方春青.盘形制动对踏面剥离原因分析及预防措施.铁道车辆,2003,41(7):44
    13 崔银会,张斌.200Km/h 轻型客车车轮踏面剥离原因分析.轧钢,2003,20(3):13-15
    14 J. Sun, K. J. Sawley, D. H. Stone. Progress in the reduction of wheel spalling. Proceeding of the 12th International Wheelset Congress, Qingdao, 1998, 18-29
    15 唐国良.机车车轮踏面剥离的探讨.内燃机车,1990,11:15-19
    16 J. Kalousek, E. Magel, J. Strasset, W. N. Caldwell, G. Kanevsky, B. Blevins. Tribological interrelationship of seasonal fluctuations of freight car wheel wear, contact fatigue shelling and composition brakeshoe consumption. Wear, 1996, 191(1-2): 210-218
    17 H. Yokoyama, S. Mitao, S. Yamamoto, et al. Effect of the angle of attack on flaking behavior in pearlitic and baintic steel rails. Wear, 2000, 253: 60-66
    18 江波.太原机车车辆厂轮箍踏面剥离原因分析.马钢科研,1996,3:13-19
    19 P. Clayton. Tribological aspects of wheel-rail contact: a review of recent experimental research. Wear, 1996, 191(1-2): 170-183
    20 于振国.6K 形电力机车轮对踏面剥离的探讨及套装国产轮箍的运用试验.机车电传动,1992,1:42-44,50
    21 Itsuo Morishita, Kaoru Fujikuni, Naoki Tanabe, Tamaki Omichi. Study on the clarification of the mechanism of wheel slide. Processing of contact mechanics and wear of rail/wheel systems, 5th international conferenct, Tokyo, Japan, 2000, 203-210
    22 张斌,付秀琴.铁路车轮、轮箍踏面剥离的类型及形成机理.中国铁道科学,2001,22(2):73-78
    23 S. M. Kulkarmi. Elasto-plastic finite element analysis of repeated three-dimensional elliptical rolling contact with rail wheel properties. ASME Jouranl of Tribology, 1991, 113: 434-441
    24 王文健,刘启跃.车轮踏面剥离机理研究.机械,2004,31(6):12-15
    25 杨克,卢观健,袁龙英,李惠贞.钢轨伤损图谱.中国铁道出版社,1992
    26 张斌.铁路车轮轮箍踏面制动剥离研究.铁道机车车辆,2001,2:9-11
    27 D. H. Stone, B. R. Rajkumar, S. M. Belport, K. Hawthorne, G. L. Moyar. Theoretical and experimental study of wheel spalling in heavy haul hopper cars. Tenth International Wheelset Congress, 1992, 92: 1-8
    28 朱曼昊,周仲荣,刘家俊.摩擦学白层的研究现状.摩擦学学报,1999,19(3):281-287
    29 郑伟生,刘会英.关于车轮擦伤剥离的若干问题与对策.铁道车辆,2001,39(2):19-22
    30 T. C. Kennedy, C. Way, R. F. Harder. Modeling of martensite formation in railcar wheels due to Hertzian wheel slides. Proc. of 6th international conference on contact mechanics and wear of rail/wheel systems. Sweden, June 10-13, 2003, 511-516
    31 D.F. Cannon, H. Pradier. Rail rolling contact fatigue research by the European Rail Research Institute. Wear, 1996, 191 (1-2): 1-13
    32 Hans Muster, Herbert Schmedders, Klaus Wick, Henri Pradier. Rail rolling contact fatigue. The performance of naturally hard and head-hardened rails in track. Wear, 1996, 191(1-2): 54-64
    33 Daniel Boulanger, Louis Girardi, Andre Galtier, Gilles Baudry. Prediction and prevention of rail contact fatigue. The Proceedings of IHHA'99 STS-Conference, Mascow, Russia, June 14-17,1999, 229-237
    34 M. Olzak, J. Stupnicki, R. Wijcik. Investigation of crack propagation during contact by a finite element method. Wear, 1991, 146:229-240
    35 M. Olzak, J. Stupnicki, R. Wijcik. Numerical analysis of 3D cracks propagating in rail-wheel contact zone. Proceeding of the International Conference on Rail Quality and Maintenance for Modern Railway Operation, The Netherlands, June, 1992, 385-393
    36 S. Bogdanski, M. Olzak, J. Stupnicki. Numerical stress analysis of rail rolling contact fatigue cracks.Wear, 1996, 191 (1-2): 14-24
    37 S. Bogdanski, M.W. Brown. Modelling the three dimensional behavior of shallow rolling contact fatigue cracks in rails. Wear, 2002, 253(1-2): 17-25
    38 A. Kapoor, D.I. Fletcher, F.J. Franklin. The Role of wear in enhancing rail life. in: D Dowson et al (Editors), Tribology Research and Design for Engineering Systems, 2003 Elsevier B V, 331-340
    39 Stuart L. Grassie, Jonn A. Elkins. Tractive effort, curving and surface damage of rails. Part 1. Forced on the rails. Wear, 2005, 258(7-8): 1235-1244
    40 A. Ekberg, E. Kabo, H. Andersson. An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue Fract. Eng. Mater. Struct., 2002, 25:899-909
    41 J.W. Ringsberg. Life prediction of rolling contact fatigue crack initiation. International Journal of Fatigue, 2001, 23:575-586
    42 J.W. Ringsberg, B.L. Josefson. Finite element analyses of rolling contact fatigue crack initiation in railheads. IMechE J. Rail Rapid Transit, 2001, 215: 243-259
    43 J.W. Ringsberg, T. Lindback. Rolling contact fatigue analysis of rails including numerical simulations of the rail manufacturing process and repeated wheel-rail contact loads. International Journal of Fatigue, 2003, 25: 547—558
    44 E. Magel, M. Roney, J. Kalousek and P. Sroba. The blending of theory and practice in modern rail grinding. Fatigue & Fracture of Engineering Materials & Structures. 2003, 26(10): 921-929
    45 P.H. Townend, C.J. Epp, P.J. Clark. Bogie curving trails, rail profiling and theoretical modeling to reduce rail deterioration and wheel wear in curves. In: Proceedings of the First Heavy Haul Railways Conference, Perth, 1978
    46 R. DeVries, P. Sroba, E. Magel. Preventive Grinding Moves into the 21st Century on Canadian Pacific Railway. AREMA, Chicago, IL, 2001
    47 E. Magel, J. Kalousek. The application of contact mechanics to wheel/rail profile design, and rail grinding. In: Proceedings of the Fifth International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Tokyo, Japan, 2000, 245-252; Wear, 253(2002):308-316
    48 J Stanford, P Sroba, E Magel. Burlington Northen Santa Fe Preventive Gradual Grinding Initiative. AREMA, Chicago, IL, 1999
    49 J. Kalousek, P. Sroba, C. Hegeland. Analysis of rail grinding tests and implications for corrective and preventive grinding. In: Proceedings of the Fourth International Heavy Haul Conference, Brisbane, Australia, 1989
    50 J. Kalousek, E. Magel. The Magic Wear Rate. Railway Track and Structure. 1997
    51 K. Sawly. Grinding trial results on Canadian national and Norkolk southern railroads. TTCI Technology Digest. 1998, 98-033
    52 A. Wilson. Total rail management on CP Rail System, In: Advanced Rail Management, Rail Maintenance Seminar, Vol. 2, Session Ⅻ, Chicago, 1996
    53 D.H. Stone, K. Sawley, D. Kelly, W. Shust. Wheel/rail material and Interaction: North American heavy haul practices. In: Proceedings of IHHA'99 STS-Conference, Masco, 1999, 155-168
    54 R. Caldwell, J. Kalousek. Wheel/rail interface study at MRS. Interim LORAM Maintenance of Way Report, 2001
    55 Fernando C.M. Silva, Walter Vidon Jr. Rob Caldwell. Preventive-Gradual On-Cycle Grinding: A first for MRS in Brazil. In: Proceedings of the 8th International Heavy Haul Conference, Brazil, 2005, 435-445
    56 Makoto Ishida, et al. Development of rail/wheel high speed contact fatigue testing machine and test results. Theor. Apple. Mech. 1987, 37: 389-396
    57 Makoto Ishida, Noritsugi Abe. Experimental study on rolling contact fatigue from the aspect of residual stress. Wear, 1999, 191(1-2): 65-71
    58 Makoto Ishida, Noritsugi Abe. The Effect of preventive grinding for Sinkansen rails. Proc. 6th Int. Heavy Haul Conf., Cape town, 1999: 65-71
    59 Masaharu Ueda, Koichi Uchino, Akira Kobayashi. Effects of carbon content on wear property in pearlitic steels. Wear, 2002, 253(1-2): 107-113
    60 Masaharu Ueda, Koichi Uchino, Hideaki Kageyama, et al. Development of bainitic steel rail with excellent surface damage resistance. In: Proceedings of IHHA'99 STS-Conference, Masco, 1999, 259-266
    61 Hermann T Hone. Rectification of rail profiles on the Sishen-Saldanha Iron-Ore export line with the rail planning machine. In: Proceedings of IHHA'99 STS-Conference, Masco, 1999, 389-397
    62 H. M. Tournay, J. M. Mulder. The transition from the wear to the stress regime. Wear, 1996, 191: 107-112
    63 Stephen Marich. Major advances in rail technologies achieved in the past 10-20 years. In: Proceedings of the 8th International Heavy Haul Conference, Brazil, 2005, 747-760
    64 Stephen Marich. Some factors and myths about rail grinding- the Australian experience. In: Proceedings of the 8th International Heavy Haul Conference, Brazil, 2005, 457-466
    65 盛光敏,范镜泓,彭向和等.PD3 钢轨钢接触疲劳行为研究.钢铁,1998,33(4):35-39
    66 盛光敏,范镜泓,彭向和等.PD3 钢轨钢接触疲劳变形组织的 TEM 观察.钢铁,1999,34(11):51-54
    67 盛光敏,范镜泓,彭向和.PD3 钢轨钢接触疲劳裂纹扩展行为研究.金属学报,2000,36(2):131-134
    68 盛光敏,范镜泓,彭向和.工艺状态和应力水平对PD3钢轨钢接触疲劳寿命的影响.金属学报,2000,36(11):1157-1160
    69 雷晓燕,吕绍棣,郑明新,赵明.60 kg/m侧磨钢轨疲劳试验研究.上海铁 道大学学报,2000,21(10):11-16
    70 邹定强,田常海,邢丽贤,卢观健.全长淬火钢轨踏面伤损及横向疲劳断裂分析.中国铁道科学,2004,25(2):88-91
    71 李晶晶,田常海,汪越胜.U71Mn和U75V钢轨钢疲劳短裂纹的扩展行为.钢铁研究学报,18(4):38-40
    72 王文健.车轮滚动剥离磨损特性研究.西南交通大学硕士学位论文,2004
    73 王文健,刘启跃.车轮剥离性能试验研究.西南交通大学学报,2005,40(2):228-231
    74 王文健,刘启跃,周仲荣.车轮钢滚动剥离摩擦磨损特性研究.摩擦学学报,2005,25(5):475-479
    75 刘启跃,王文健.含碳量对车轮材料磨损影响的试验研究.润滑与密封,2005,5:11-13
    76 刘启跃,张波,周仲荣.铁路钢轨损伤机理研究.中国机械工程,2002,13(18):1596-1599
    77 张伟.钢轨滚动接触疲劳试验研究.西南交通大学硕士学位论文,2005
    78 张伟,郭俊,刘启跃.钢轨滚动接触疲劳研究.润滑与密封,2005,6:195-199.203
    79 刘启跃,王夏秋,周仲荣.钢轨表面波浪形磨损研究.摩擦学学报,1998,18(4):337-340
    80 Q. Y. Liu, B. Zhang, Z. R. Zhou. An experimental study of rail corrugation. Wear, 2003, 255(7-12): 1121-1126
    81 刘启跃,张波,周仲荣.滚动轮波形磨损实验研究.摩擦学学报,2003,23(2):132-135
    82 金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展.铁道学报,2001,23(2):92-108
    83 江晓禹,金学松.轮轨间的液态介质和表面微观粗糙度对接触表面疲劳损伤的影响.机械工程学报,2004,40(8):18-23
    84 Xuesong Jin, Zefeng Wen, Kaiyun Wang. Chenghui Li. Three-dimensional train-track model for study of rail corrugation. Journal of Sound and Vibration, 2006, 293(3-5): 830-855
    85 Xuesong Jin, Zefeng Wen, Kaiyun Wang, Xinbiao Xiao. Effect of passenger car curving on rail corrugation at a curved track. Wear, 2006, 260: 619-633
    86 Zefeng Wen, Xuesong Jin. Effect of track lateral geometry defects on corrugations of curved rails. Wear, 2005, 259(7-12): 1324-1331
    87 Xuesong Jin, Zefeng Wen, Weihua Zhang, Zhiyun Shen. Numerical Simulation of Rail Corrugation on a Curved Track. Computers & Structures, 2005, 83(25-26): 2052-2065
    88 Xuesong Jin, Zefeng Wen, Kaiyun Wang, Weihua Zhang. Effect of a Scratch on Curved Rail on Initiation and Evolution of Rail Corrugation. Tribology International, 2004, 37(5): 385-394
    89 温泽峰.钢轨波浪形磨损研究.西南交通大学博士学位论文,2006
    90 Zefeng Wen, Xuesong Jin, Yanyao Jiang. Elastic-plastic finite element analysis of nonsteady state partial slip wheel-rail rolling contact. ASME Journal of Tribology, 2005, 127(4): 713-721
    91 Zefeng Wen, Xuesong Jin. Elastic-plastic finite element analysis of repeated, two-dimensional wheel-rail rolling contact under time-dependent load. Proc. Instn Mech. Engrs, Part C, Journal of Mechanical Engineering Science, 2006, 220(5): 603-613
    92 金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题.工程力学,2004,21(Suppl):90-104
    93 金学松,张立民.轮轨蠕滑力分析计算几种蠕滑力模型的比较.铁道学报,1998,20(Suppl):56-61
    94 Garg V K, Duakkipatti R V. Dynamics of Railway Vehicle Systems. Academic Press, Orland, USA, 1984
    95 Jin Xuesong, Zhang Weihua. Analysis of creepages and their sensitivities for a single wheelset moving on a tangent track. Journal of southwest Jiaotong University, 1996, 4(2): 32-43
    96 Jin Xuesong, Wu Pingbo, Wen Zefeng. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact. Wear, 2002, 253(1-2): 247-256
    97 Jin Xuesong, Wen Zefeng. Analysis of creep forces of wheel/rail. Chinese Journal of Mechanical Engineering, 2001, 14(1): 67-73
    98 Ogilvy J A. Numerical simulation of friction between contact rough surfaces. J. Phys. D: Applied Physics, 1991, 24: 2098-2109
    99 Clayton P and Su X. Surface initiated fatigue of pearlitic and bainitic steels under water lubricated roiling/sliding contact. Wear, 1996, 200: 63-73
    100 翟婉明.车辆—轨道耦合动力学(第二版).中国铁道出版社,2002
    101 王开云,翟婉明,蔡成标.机车—轨道空间耦合动力学模型及其验证.铁道学报,2002,24(4):21-27
    102 Z. Y. Shen, J. K. Hedrick, J. A. Elkins. A comparison of alternative creep-force models for rail vehicle dynamic analysis. Proceedings of the Eighth IAVSD Symposium, Cambridge, MA, 1983, 591-605
    103 W. M. Zhai, Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214
    104 J. J. Kalker. Three-dimensional elastic bodies in rolling contact. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990
    105 Bolton PJ, Clayton P, McEwan IJ. Rolling-sliding wear damage in rail and tyre steels. Wear, 1987, 120: 145-165
    106 Igeland A, Ilias H. Rail head corrugation growth predictions based on non-linear high frequency vehicle/track interaction. Wear, 1997, 213: 90-97
    107 J Ahlstrom, B Karlsson. Analytical 1D model for analysis of the thermally affected zone formed during railway wheel skid. Wear, 1999, 232: 15-24
    108 G J Moyar, D H Stone. An analysis of the thermal contributions to railway wheel shelling. Wear, 1991, 144: 117-138
    109 A Bohmer, M Ertz, K Knothe. Shakedown limit of rail surface including material hardening and thermal stresses. Fatigue Fract Engng Mater Struct. 2003, 26: 985-998
    110 戴锅生.传热学.北京:高等教育出版社,2001
    111 裴有福,金元生,温诗铸.轮轨接触温升的有限元分析.中国铁道科学,1996,17(4):48-58
    112 Martin Ertz, Klaus Knothe. A Comparison of analytical and numerical methods for the calculation of temperature in wheel/rail contact. Wear, 2002, 253: 498-508
    113 赵鑫,温泽峰,金学松.轮轨滚动摩擦温升分析.摩擦学学报,2005,25(4):358-363
    114 Jin X S, Tsai H L. An efficient and accurate numerical algorithm for multi-dimensional modeling of casting solidification, part Ⅱ: Combination of FEM and FDM. Journal of Southwest Jiaotong University, 1994, 2(2): 152-166
    115 李维持,黄保海,毕仲波.热应力理论分析及应用.北京:中国电力出版社,2004
    116 Zefeng Wen, Xuesong Jin, Weihua Zhang. Contact-Impact Stress Analysis of Rail Joint Region using the Dynamic Finite Element Method. Wear, 2005, 258: 1301-1309
    117 童大埙.铁路轨道.北京:中国铁道出版社,1996
    118 Wu HM, Woody SS, Blank RW. Optimization of rail grinding on a North American Haul Railroad Line, in: Proceedings of the 8th International Heavy Haul Conference, Ronald J. Costa L (eds), Brazil, 2005, 419-427
    119 Ishida M, Abe N, Moto T. Experimental study on the effect of preventive grinding on RCF defects of Shikansen rails, in: Proceedings of IHHA'99 STS-Conference, Alexander L. Lisitsyn (eds), Masco, 1999, 511-516
    120 Telliskivi T, Olofsson U. Wheel-rail wear simulation. Wear 2004, 257: 1145-1153
    121 Shen Z. Y., Hedrick J. K. The influence of rail lubrication on freight car wheel/rail wear rates, in: Proceeding of the International Conference on Rail Quality and Maintenance for Modern Railway Operation, The Netherlands, 1992, 523-535
    122 Jendel T. Prediction of wheel profile wear-comparisons with field measurements. Wear, 2002, 253: 89-99
    123 Archard J. F. Contact and rubbing of flat surfaces. J. Appl. Phys., 1953, 24: 981-988
    124 Telliskivi T, Olofsson U. Simulation of wear in a rolling sliding contact by a semi-Winkler model and Archards wear law. Wear, 2004, 256: 817-831
    125 Podra P, Andersson S. Wear simulation with the Winkler surface model. Wear, 1997, 207: 79-85
    126 Telliskivi T, Olofsson U. Contact mechanics analysis of measured wheel-rail profiles using the finite element method. J. Rail Rapid Transit, 2000, 215: 65-72
    127 Olofsson U, Telliskivi T. Wear, plastic deformation and friction of two rail steels—a full-scale test and a laboratory study. Wear, 2003, 254: 80-93
    128 Enblom R, Berg M. Simulation of railway wheel profile development due to wear-influence of disc braking and contact environment. Wear, 2005, 258: 1055-1063
    129 Magel E, Kalousek J, Caldwell R. A numerical simulation of wheel wear. Wear, 2005, 258: 1245-1254
    130 Shevtsov IY, Markine VL, Esveld C. Optimal design of wheel profile for railway vehicles. Wear, 2005, 258: 1022-1030
    131 Ringsberg JW, Bjarnehed H, Johansson A, Josefson BL. Rolling contact fatigue of rails—finite element modelling of residual stresses, strains and crack initiation. IMechE, Part F, J Rail Rapid Transit, 2000, 214: 7-19
    132 Ringsberg JW. Cyclic ratcheting and failure of a pearlitic rail steel. Fatigue Fract. Engng Mater. Struct., 2000, 23: 747-758
    133 俞展猷.轮轨内部剪切应力及其影响因素的研究.中国铁道科学,1999,20(3):11-19
    134 魏先祥.轮轨静接触时的应力状态.铁道学报,1991,13(2):1-11
    135 雷晓燕.钢轨打磨原理及其应用.铁道工程学报,2000,(1):28-33
    136 Stuart Grassie, Paul Nilsson, Kjell Bjurstrom, et al. Alleviation of rolling contact fatigue on Sweden's heavy haul railway. Wear, 2002, 253: 42-53
    137 D. Rippeth, J. Kalousek. J. Simmons. A case study of the effect of lubrication and profile grinding on low rail roll-over derailments at CSX transportation. Wear, 1996, 191: 252-255
    138 赵汝康.钢轨打磨与涂油的最新发展.铁道建筑,1992,(6):1-4
    139 缪闯波.钢轨打磨对轮轨作用的影响.铁道标准设计,2002,22(7):31-32
    140 P. Dings, E. Verheijen, C. Kootwijk-Damman. A traffic-dependent acoustical grinding criterion. Journal of sound and vibration. 2000, 231 (3): 941-949
    141 Stuart L. Grassie. Rolling contact fatigue on the British railway system: treatment. Wear, 2005, 258: 1310-1318
    142 刘启跃.减缓曲线钢轨测磨的方法探讨.铁道建筑,1997,(5):28-30
    143 牛学勤.波磨钢轨合理打磨周期决策研究.铁路标准设计,1997,17(2):13-16
    144 宋旭.钢轨波形磨耗打磨工艺.铁道建筑,1995,(6):14-16
    145 Stuart L Grassie. Rail corrugation: advances in measurement, understanding and treatment. Wear, 2005, 258: 1224-1234
    146 Bozyslaw Bogdaniuk, Andrzej Massel, Rafal Radomski. Increasing rail life by forecasting fatigue failure. NDT&E International, 2003, 36: 131-134
    147 Alain Guidat.预防性钢轨打磨的基本益处.上海铁道科技,1997,(3):47-49
    148 贺振中.国外钢轨打磨技术的应用及思考.中国铁路,2000,(9):38-40
    149 Wolfgang Schoch. Joint research by railway and contractor on headcheck prevention. IHHA'99 STS-Conference. Session 4. 383-388
    150 罗文灿.提速干线轨道的养护维修管理.铁道建筑,1997,(8):2-5
    151 刘启跃,王夏秋.轮轨接触应力数值计算分析.铁道学报,1998,20(2):45--49
    152 刘启跃,王夏秋.轮轨接触几何参数匹配对应力值影响的探讨.西南交通大学学报,1992,27(4):13-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700