用户名: 密码: 验证码:
基于滑模控制的汽油发电机数字式电子调速器开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调速器作为发动机转速控制的核心部件,能根据发动机负荷变化情况自动地调节发动机循环供油量,保持发动机的转速稳定,从而保证发动机具有良好的工作性能。目前,小型汽油发电机上的调速器普遍采用的是机械式调速器,由于机械调速器存在传动挠性、惯性、摩擦阻尼大等固有缺陷,因此它在调速时必然存在瞬时调速率差和稳定时间长等缺点,已不能适应在发电机中对汽油机转速稳定性日益提高的要求。为了解决机械调速器在调节发电机时存在的固有缺陷,提高汽油发电机的自动化水平、可靠性和发电品质,开发一种价格低廉、可靠性高、具有通用性和扩展性的数字式电子调速器具有非常重要的意义。
     本文首先分析了汽油发电机转速系统数学模型,重点对控制策略进行了仿真研究。并在此基础上进行了数字式电子调速器的软硬件设计,最后进行了配机试验。
     在对汽油发电机转速系统模型的分析中,首先通过对其稳态工况的分析得到了系统基本结构。为了得到精确的模型参数,搭建了模型辨识系统,应用阶跃响应法对汽油机稳态模型进行了分段辨识,由最小二乘法估算出了实际参数。由此得到分段稳态模型,结合汽油机在瞬态工况下的非线性特性,分析得出汽油发电机调速系统是一个非线性、时变的系统。
     由于滑模变结构控制具有快速响应、对参数变化及扰动不灵敏、物理实现简单的优点,本文基于滑模控制理论对调速系统控制器进行了设计。针对滑模控制中固有的抖振问题,提出采用准滑动模态方法削弱了抖振。在本系统中主要扰动因素为负载突变扰动,本文设计了负载扰动前馈控制器改善系统动态性能。最后在MATLAB/Simulink环境中对设计的控制器进行了仿真分析。
     文中给出了汽油发电机数字式电子调速器的软硬件设计过程及方法。在硬件设计中,除了基本的转速测量、执行器驱动、通讯、显示等电路的设计外,为了实现对负载扰动的测量,自主设计了负载电流测量电路。在软件设计中,采用模块设计方法分别设计了启动、怠速、转速测量、控制及停机处理等模块,不仅提高了调速性能,还优化了启动、怠速等运行工况。
     将设计的数字式电子调速器替换机械调速器在SDQF2-II型汽油发电机上进行的配机试验结果表明,数字式电子调速装置能很好地改善汽油机瞬态调速率和稳定调速率,缩短调节时间。整个调速器结构简单、成本低廉、可靠性高,具有一定的推广应用价值。
As control center of engine, governor can accord to the load of engine changes and adjust the fuel cycle of the engine automatically to keep the speed of the engine on stable, so ensure the engine to work at the good operation performance. Now most of the governor used in gasoline generator is mechanical governor, the problems are its poor accuracy and long settling time consumption to achieve stable state. In order to solve the flaw of the mechanical governor to the gasoline generator when adjusting the speed of the engine, and in order to enhance the automatization level, the stability and the generation quality of the gasoline generator, it is necessary to develop a kind of inexpensive, high reliability, versatile and possesses extensional ability digital electronic governor.
     This paper analyzes the mathematical model of gasoline generator speed system first. Secondly, focus on the control strategy study and simulation. In the third part, hardware circuit and software program of the digital electronic governor are designed. Finally, a test with machine is carried out.
     When analysing the method of gasoline generateor speed system, a basic model structure is aquired by researching its steady state condition. In order to acquire the accurate parameters, a test system for model identification is built, and the step response method is used to identify the gasoline speed system. The model parameters are estimated by principle of least squares. Combined with the nonlinear factors of the unsteady condition of the gasoline, a conclusion is draw that gasoline engine speed control system is a nonlinear, time-varying parameter value system.
     Since sliding mode control (SMC) is insensitive to system parameter variations and disturbances, it is used to design the speed governor system of gasoline. Additionally, quasi-sliding mode method is used to reduce chattering of the sliding mode controller, and a load disturbance feedforward controller is designed to prove the dynamic characteristics. The simulation model is built in MATLAB/Simulink and then a simulated study is carred out.
     In this paper, the hardware and software of digital electronic governor is well designed. In the hardware design part, besides the the speed measurement circuit, actuator drive circuit、communication circuit and display circuit, load current measurement circuit is desigend specially to measure the load disturbance. Software design part include the design of boot module, idle module, measuring module and sliding speed control module, stop processing module etc. Thanks to this module, not only improve the speed performance, but also optimizes the start, no-load operating conditions of the gasoline generator.
     When replacing the mechanical speed governor with the digital electronic governor in SDQF2-II type gasoline engine, the test results show that the digital electronic speed governor could improve the stable transfer rate and transient stability transfer rate of the gasoline speed regulation system, shorten settling time. For the better performance, high reliability, low cost and simple structure, it has a definite use value in the future.
引文
[1]王恒.我国小型汽油机在十一五期间的发展思路[J].摩托车技术, 2005, (8):8-12.
    [2]杨映忠,何素芳.提升重庆通用小型汽油机竞争力的对策研究[J].小型内燃机与摩托车, 2007, 36(4):84-86.
    [3]林漫群,高翔,贾滨等.我国通用小型汽油机技术标准现状及发展趋势[J].摩托车技术, 2005, (8):51-53.
    [4]王红凌,黄克非,戎象馨.通用小型汽油机60年回眸[J].小型内燃机与摩托车, 2008,37(10):82-87.
    [5]何新军.汽油发电机调速系统模糊自适应PID控制[D].重庆:重庆大学自动化学院, 2008.
    [6]杨长圣.小功率汽油发电机组数字电子调速器的研究[D].武汉:武汉理工大学自动化系, 2006.
    [7]邵家骧.发动机转速自动控制[M].北京:人民交通出版社, 1990.
    [8]刘凯.柴油机电子调速器嵌入式控制系统研究与开发[D].武汉:华中科技大学动力机械及工程2005, 05.
    [9]李彦强,朱从乔,黄次浩.柴油机数字式电子调速技术综述[J].海军工程大学学报, 2000(4),31-35.
    [10]胡明江,杨铁皂,徐斌等.柴油机电子调速器的研究现状及发展趋势[J].河南科技大学学报(自然科学版) , 2003, 24(4): 44-47.
    [11]许友林,熊玲,姚智刚.电子调速器性能测试技术及发展趋势[J].仪器仪表学报, 2001, 24(4): 156-158.
    [12] Wilson R. Electronic governor compensates for lord conditions [J]. DIESH, PROGRESS North America, 1985, (10): 18-19.
    [13] Martinsons Robert. A New microprocessor-based automotive diesel pump controller [J]. IEEE Transactions on Industrial Electronics, 1983, IE-30(2): 103-107.
    [14] Woodward Governor Company. SPEED CONTROLS-8271[Z]. 1951.
    [15] Woodward Governor Company. 723 digital speed control for reciprocating engines-DSLCTM, Capatible Operation and Calibration Manual[Z]. 1996.
    [16] MTU ELECTRONIC ENGINE GOVERNOR 8082 SUBMAINE VERSION, Description NO.E530391/OOE[Z]. 1988.
    [17]朱子义.德国海茵茨曼两种新系列E100/E200数字式数字电子调速器[J].柴油机, 1994 13(4):29—33.
    [18] NORCONTROL AUTOMATION, Digital Governor System DGS-8800e For MAN B&W MCENGINIES, INSTRUCTION MANUAL[Z]. March, 1995.
    [19]余武建. EECS电控调速在320型柴油机上的应用[J].第二届大功率柴油机学术年会论文集, 1996:243-245.
    [20]陆平.电站柴油机数字调速技术研究[D].哈尔滨:哈尔滨工程大学, 1992.
    [21]陆平.柴油机数字式调速器速调速精度的研究[J].内燃机工程, 1991, 12 (2):40-46.
    [22]王吉华.柴油机燃油喷射系统的电子控制[J].内燃机, 1997, 6(4):9-13.
    [23]段晖辉.柴油机数字式数字电子调速器[J].华中理工大学学报, 1997 25(6):53-54.
    [24]钱耀义.车用柴油机微机控制器的应用[J].内燃机工程, 1996 17(1):79-83.
    [25]方铁刚.车用柴油机电子调速系统的研究与开发[D].北京:清华大学机械系, 1997.
    [26]李彦强,朱从乔,黄次浩.柴油机数字式电子调速技术综述[J].海军工程大学学报, 2000(4),31-35.
    [27]邱爱华,刘佳彬,李过房等. DECS-I柴油机集成电子控制系统的设计[J].柴油机, 2006, 28(3): 8-12.
    [28]张立伟.汽车发动机电子控制技术[M].郑州:郑州大学出版社, 2005:14-40.
    [29] MAN Xue-lu, ROBERT N K L. Modeling, design and implementation of discrete sliding mode for an engine IDLE speed control system[C]. Proceedings of the American Control Conference. Anchorage, AK:[s.n.], 2002:1984-1989.
    [30] HROVAT D, BODENHEIMER B. Robust automotive IDLE speed control design besed onμ-synthesis[C]. Proceedings of the American Control Conference. San Francisco, CA: [s.n.], 1993: 1778-1783.
    [31] Hrovat D and Sun J.Models and control methodologies for IC engine idle speed control design[J].Control Engineering Practice, 1997(5):1093-1100.
    [32] Nicolao G.De et al. Identification and idle speed control of internal combustion engines[J].Control Engineering Practice, 1999(7):1061-1069.
    [33]邵金菊,魏民祥等.小型汽油机恒转速QFT鲁棒控制[J].电子科技大学学报, 2008, 37(6): 951-954.
    [34]邵金菊,魏民祥等.基于LMI活塞式发动机恒转速动态输出反馈控制[J].航空动力学报, 2007, 22(7): 1195-1199.
    [35]陈国英. KGEl000Ti汽油发电机电子调速器的研制[D].福建:福建农林大学农业机械化工程系, 2005.
    [36]杨长圣.小功率汽油发电机组数字电子调速器的研究[D].武汉:武汉理工大学自动化系, 2006.
    [37]陆耀祖,田维铎.内燃机构造与原理[M].北京:中国建筑工业出版社, 2004.
    [38]王春民,刘兴明,嵇艳鞠.连续与离散控制系统[M].北京:科学出版社, 2008.
    [39]邵家骧.发动机转速自动控制[M].北京:人民交通出版社, 1990.
    [40]孟庆双.汽油机非稳定工况燃烧模型的研究[D].长春:吉林大学交通学院, 2004.
    [41]杨承志,孙棣华,张长胜.系统辨识与自适应系统[M].重庆:重庆大学出版社, 2003.
    [42]何离庆等.过程控制系统与装置[M].重庆:重庆大学出版社, 2003.
    [43]诸静等.模糊控制原理与应用[M].北京:机械工业出版社, 2005.
    [44]李祖枢,涂亚庆.仿人智能控制[M].北京:国防工业出版社, 2003.
    [45] Utkin V I. Variable structure systems with sliding modes[J]. IEEE Transactions Automatic Control, 1977, 22(2): 212-222.
    [46]王丰尧.滑模变结构控制[M].北京:机械工业出版社, 1995.
    [47] Xia Y Q, Yingming Jia. Robust sliding-mode control for uncertain time-delay systems: a LMI approach[J]. Automatic Control, IEEE Transactions on, 2003, 48(6): 1086-1091.
    [48] Shtessel Y B, Zinober A S I, Shkolnikov I A. Sliding mode control for nonlinear systems with output delay via method of stable center[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125: 158-165.
    [49]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1996.
    [50]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2005.
    [51] Kawamura A, Itoh H, Sakamoto K. Chattering reduction of disturbance observer based sliding mode control[J]. IEEE Transactions on industry applications, 1994, 30(2): 456-461.
    [52]杨志家,赵光宙,严兆大.发动机怠速模型及前馈补偿控制[J].小型内燃机, 1997, 26(5): 19-23.
    [53]关学忠,胡松.单片机与TA8435的步进电机细分控制[J].单片机与嵌入式系统,2006, (5): 76-80.
    [54]兰州电源车辆研究所. JB/T 10304-2001工频汽油发电机组技术条件[S].北京:中国机械工业联合会, 2001.
    [55]天津内燃机研究所. JB/T 5135.1-2001通用小型汽油机台架性能试验方法[S].北京:中国机械工业联合会, 2001.
    [56]天津内燃机研究所. JB/T 5135.3-2001通用小型汽油机技术条件[S].北京:中国机械工业联合会, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700