用户名: 密码: 验证码:
航天器姿轨一体化动力学建模、控制与导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器轨道和姿态的动力学建模、控制与导航是完成航天任务的重要保障,因此世界各国的研究学者都投入了大量精力进行相关问题的研究,并取得了丰硕的研究成果。传统的方式是将航天器的在轨运动分解为轨道运动和姿态运动并对其分别进行研究。然而随着航天器新型任务的出现,这种分而治之的研究方式体现了一定的局限性。针对上述问题,本学位论文深入研究了航天器轨道与姿态一体化动力学建模方法、一体化控制方法与一体化相对导航方法,主要包括以下几个方面的工作:
     针对航天器轨道与姿态的一体化动力学建模问题,选择对偶四元数这一数学工具,以一体化的方式描述航天器在轨运行的轨道运动与姿态运动,并重新导出由其描述的航天器一般运动的运动学模型;在对偶数代数框架内,利用力学基本原理,建立单航天器一般运动的动力学模型;在单航天器相关研究基础上,对两个航天器间的相对轨道与相对姿态进行动力学建模与分析;考虑到由于非质心点引起的姿轨耦合影响,建立航天器非质心点相对运动的动力学模型。针对航天器轨道与姿态运动的跟踪控制问题,在考虑外界干扰和模型不确定性的情况下,设计线性滑模变结构控制器和类PD鲁棒控制器,并分别采用Lyapunov方法和Barbalat引理证明闭环系统的渐近稳定性。最后,结合航天器悬停的任务背景,对上述控制算法进行数学仿真验证。
     针对航天器相对轨道与相对姿态的一体化控制问题,以对偶四元数的对数作为控制变量,设计终端滑模控制器,该控制器可以实现对期望状态的有限时间跟踪,并具有对外界干扰以及航天器模型不确定部分的鲁棒性;考虑到由于空间环境的复杂性而不能获知干扰及模型不确定性的信息,提出不需要广义干扰上界的自适应终端滑模控制器;进一步的,为了提高控制器的快速性,基于航天器相对运动的类拉格朗日模型设计快速滑模控制器,并对线性滑模面、终端滑模面和快速滑模面的收敛速度进行比较分析。最后,结合航天器交会对接的应用背景,对上述控制算法进行数学仿真验证。
     针对航天器的相对位置与相对姿态的一体化确定问题,提出基于多种几何特征的单目视觉导航方法。在对偶代数的框架内,统一描述特征点、特征线和特征圆,特别的,特征圆的对偶数描述是基于一种动态定义实现的。利用单目视觉原理,分别建立基于特征点、特征线和特征圆的测量模型。基于上述测量模型,分别采用龙贝格-马尔塔算法、扩展卡尔曼滤波算法和无迹卡尔曼滤波算法实现对航天器间的相对位置和相对姿态的估计。最后,通过数学仿真验证上述算法的可行性,并比较分析各种算法的精度,以及特征点数目和分散程度对估计精度的影响。
     针对航天器相对导航的鲁棒滤波问题,提出基于改进强跟踪滤波和鲁棒无迹卡尔曼滤波的航天器相对导航方法。考虑系统模型的不确定性以及目标运动状态的机动性,提出航天器相对位姿估计的改进强跟踪滤波算法,该算法具有较强的关于模型不确定性的鲁棒性和关于突变状态的跟踪能力,并且适用于测量矩阵不是满秩矩阵的情况。考虑到特征信息失效的测量故障情况,为了抑制测量故障引起的滤波失效,分别设计单比例因子鲁棒无迹卡尔曼滤波算法和多比例因子鲁棒无迹卡尔曼滤波算法,其中多比例因子算法可以针对每个测量量做出不同的反应。最后,以故障或失效的航天器为目标航天器,通过数学仿真验证上述算法的有效性。
The modelling, control and navigation of spacecraft's orbit and attitude is importantissues in aerospace missions. Therefore, a huge number of studies and results have beenobtained during recent decades. However, there is a crucial problem which most missionsshould face: modelling the orbit and attitude dynamics seperately in most flying missionsis an inaccurate approximate method which should be checked all the time. As a result,this dissertation concentrates on integrated dynamics modelling mothed, integratedcontrol strategy, and integrated relative navigation approach. The major contents of thisdissertation consist of the following parts.
     For the integrated modeling of spacecraft orbit and attitude motion, the mathematictool dual quaternion is firstly used to describe the orbit motion and attitude motionsimultaneously, and the integrated kinematics model is derived accordingly. Thedynamics of a single spacecraft is then proposed in the framework of dual number, whichcan describe the relationship between spacecraft and external forces and torques. Basedon the research of single spacecraft, modelling and analysis of relative orbit and attitudeare studied. In particular, the coupling effect due to the point deviating from the center ofmass is taken into account, and the dynamics model of relative motion between thepoints deviating from the center of mass is established. For the tracking control problemof spacecraft, a linear sliding mode controller and a PD-like robust controller areproposed. Lyapunov method and Barbalat lemma are used respectively to prove thestability of the system in the presence of disturbances and model uncertainties. Finally,simulations are done to demonstrate the effectiveness of the proposed controllers.
     For the control problem of spacecraft relative orbit and attitude, a terminal slidingmode control strategy is designed based on the logarithm of dual quaternion. Thecontroller can realize finite-time tracking of desired attitude states while being robustagainst model uncertainties and disturbances. When the information of disturbances andmodel uncertainties are unavailable, an adaptive finite-time control approach is proposed.Furthermore, the Lagrange form of spacecraft's dynamics model is derived, and a fastfinite-time control law is developed. The convergence rate of linear sliding mode,terminal sliding mode and fast sliding mode is compared and analyzed. Finally, byconsidering spacecraft rendezvous and docking mission, numerical simulations are doneto illustrate the effectiveness of the proposed control methods.
     For the estimation problem of relative position and attitude, single vision basednavigation approaches are proposed based on multiple geometric features. At first,feature point, line and circle are described in the frame of dual number. In particular, the description of feature circle is based on a kind of dynamic definition. By using the singlevision theory, the measurement models based on feature point, line and circle aredeveloped, respectively. Then, employing the measurement models, Levenberg-Marquardt algorithm, Extended Kalman Filter algorithm and Unscented Kalman Filteralgorithm are ultilized to estimate the relative position and attitude. Finally, by numericalsimulations of the aforementioned algorithms, the accuracies of all the algorithms arecompared, and the influence of number of feature points and their distribution onestimation accuracy is analized.
     For model uncertainties and maneuverabilities of target spacecraft, an improvedstrong tracking filter is proposed to estimate relative position and attitude. This methodpossesses strong robustness against model uncertainties and competent tracking ability ofsuddenly-changed system states. In particular, this method is also effective if themeasurement matrix is not full-rank. Considering the measurement failures of featureinformation, a single coefficient robust Unscented Kalman Filter and a multiplecoefficient robust Unscented Kalman Filter algorithms are developed to avoid or alleviatethe failure of filters, where the multiple coefficient method can vary its coefficientsaccording to various measurement states. Finally, simulations of these approaches arepresented to validate their effectiveness.
引文
[1] A. Damiano, M. Bisten. Modeling Attitude Thrusters Activity from Attitude-orbitCoupling Effects[C]. The5th International Symposium on Spacecraft Operations,Tokyo, Japan,1998.
    [2] S. Gaulocher. Modeling the Coupled Translational and Rotational RelativeDynamics for Formation Flying Control[C]. AIAA Guidance, Navigation, andControl Conference and Exhibit, San Francisco, USA,2005.
    [3] M. E. Lisano. A Practical Six-Degree-of-Freedom Solar Sail Dynamics Model forOptimizing Solar Sail Trajectories with Torque Constraints[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit, Providence, Rhode Island,2004.
    [4] S. Sgubini, P. Teofilatto. Attitude-Orbit Dynamical Coupling in TetheredSystems[C].6th International Conference on Dynamics and Control of Systemsand Structures in Space, Riomaggiore, Italy,2004.
    [5] S. Gaulocher, C. Pittet, J. P. Chrétien. Six-DOF Formation Flying Modeling andControl with an Application to Space Interferometry[C].6th International ESAConference on Guidance, Navigation and Control Systems and GNC ProductExhibition, Loutraki, Greece,2005.
    [6]彭冬亮,荆武兴,徐世杰.停靠阶段轨道姿态耦合动力学与控制研究[J].飞行力学.2002,20(1):33~37.
    [7] J. D. Junkins, J. D. Turner. On the Analogy between Orbital Dynamics and RigidBody Dynamics[J]. Journal of the Astronautical Sciences.1979, XXVII(4):345~358.
    [8] P. Sengupta, S. R. Vadali. Satellite Orbit Transfer and Formation Reconfigurationvia an Attitude Control Analogy[J]. Journal of Guidance, Control, and Dynamics.2005,28(6):1200~1209.
    [9] A. Sinclair, J. Hurtado, J.L. Junkins. Application of the Cayley Form to GeneralSpacecraft Motion[J]. Journal of Guidance, Control, and Dynamics.2006,29(2):368~373.
    [10] S. R. Ploen, F. Y. Hadaegh, D. P. Scharf. Rigid Body Equations of Motion forModeling and Control of Spacecraft Formations–Part1: Absolute Equations ofMotion[C]. Proceeding of the2004American Control Conference, Boston, USA,2004.
    [11] Y. N. Chelnokov. The Use of Quaternions in the Optimal Control Problems ofMotion of the Center of Mass of a Spacecraft in a Newtonian Gravitational Field: I.Cosmic Research.2001,39(5):470~484.
    [12] J. Waldvogel. Quaternions and the Perturbed Kepler Problem[J]. CelestialMechanics and Dynamical Astronomy.2006,95(1-4):201~212.
    [13]邹晖,陈万春,殷兴良.几何代数及其在飞行力学中的应用[J].飞行力学.2004,22(4):60~64.
    [14]方茹,曹喜滨.几何代数及其在摄动Kepler问题中的应用[J].哈尔滨工业大学学报.2008,40(2):282~286.
    [15] D. A. Lawrence, S. W. Piggott. Integrated Trajectory and Attitude Control for aFour-Vane Solar Sail[C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit, San Francisco, USA,2005.
    [16] S. E. Lennox. Coupled Orbital and Attitude Control Simulations for SpacecraftFormation Flying[C]. The2004AIAA Region I-MA Student Conference,Blacksburg, USA,2004.
    [17] D. T. Stansbery, J. R. Cloutier. Position and Attitude Control of a Spacecraft Usingthe State-Dependent Riccati Equation Technique[C]. Proceedings of the AmericanControl Conference, Chicago, USA,2000.
    [18] H. Z. Pan, H. Wong, V. Kapila. Output Feedback Control for Spacecraft withCoupled Translation and Attitude Dynamics[C].43rd IEEE Conference onDecision and Control, Atlantis, Paradise Island,2004.
    [19] B. J. Naasz, M. M. Berry, H. Y. Kim, et al. Integrated Orbit and Attitude Controlfor a Nanosatellite with Power Constraints[C]. AAS/AIAA Space Flight MechanicsConference, Ponce, Puerto Rico,2003.
    [20] M. Xin, S. N. Balakrishnan, D. T. Stansbery. Spacecraft Position and AttitudeControl with θ-D Technique[C].42nd AIAA Aerospace Sciences Meeting andExhibit, Reno, Nevada USA,2004.
    [21] H. Wong, H. Z. Pan, V. Kapila. Output Feedback Control for Spacecraft FormationFlying with Coupled Translation and Attitude Dynamics[C]. Proceedings of theAmerican Control Conference, Portland, USA,2005.
    [22] L Li, H. Sun. A method of Astronomical Autonomous Orbit and AttitudeDeterminations for Satellites[J]. Chinese Astronomy and Astrophysics.2003,27(4):481~489.
    [23] J. L. Junkins, D. Hughes, K.wazni, V. Pariyapong. Vision-Based Navigation forRendezvous, Doking, and Proximity Operations.22nd Annual AAS Guidance andControl Conference, Advances in Astronautical Sciences,1999.
    [24] Y. Xing, X. Cao, S. Zhang, H. Guo, F. Wang. Relative Position and AttitudeEstimation for Satellite Formation with Coupled Translational and RotationalDynamics[J]. ACTA Astronautica.2010,67:455~467.
    [25]崔本杰.基于对偶四元数的航天器相对导航方法研究[D].哈尔滨工业大学硕士学位论文.2009:73~106.
    [26] R.E. Mortensen. Strapdown Guidance Error Analysis[J]. IEEE Transactions onAerospace and Electronic Systems.1974,10(4):451~457.
    [27] F. L. Markley. Attitude Error Representation for Kalman Filtering[J]. Journal ofGuidance, Control, and Dynamics.2003,26(2):311~318.
    [28] I. S. Fischer. Dual-Number Methods in Kinematics, Statics and Dynamics[M].CRC Press,1999.
    [29] A. T. Yang. Application of Quaternion Algebra and Dual Numbers to the Analysisof Spatial Mechanisms[D]. Columbia University,1964.
    [30] J. Rooney. A Comparison of Representation of General Spatial ScrewDisplacement[J]. Environment and Planning B.1978,5:45~88.
    [31] K. Daniilidis. Hand-eye Calibration Using Dual Quaternions[J]. InternationalJournal of Robotics Research.1999.18:286-298.
    [32] V. N. Branets, I. P. Shmyglevsky. Introduction to the Theory of Strapdown InertialNavigation System[M]. Moscow, Nauka (in Russian),1992.
    [33]武元新.对偶四元数导航算法与非线性高斯滤波研究[D].国防科学技术大学博士学位论文.2005.
    [34]夏琳琳,赵琳,刘繁明,胡晓形.基于对偶四元数的航姿系统姿态更新算法研究[J].系统仿真学报.2008,(2):276~280.
    [35] V. Brodsky, M. Shoham. The Dual Inertia Operator and Its Application to RobotDynamics[J]. Journal of Mechanical Design.1994,116:1189~1195.
    [36] V. Brodsky, M. Shoham. Dual Numbers Representation of Rigid BodyDynamics[J]. Mechanism and Machine Theory.1999,34(5):693~718.
    [37] D. Han, Q. Wei, Z. Li, W. Sun. Control of Oriented Mechanical Systems: a MethodBased on Dual Quaternion[C]. Proceedings of the17th World Congress theInternational Federation of automatic Control, Seoul, Korea,2008:3836~3841.
    [38] D. P. Han, Q. Wei, and Z.-X. Li. Kinematic Control of Free Rigid Bodies UsingDual Quaternions[J]. International Journal of Automation and Computing.2008,5(3):319~324.
    [39] H.-L. Pham, V. Perdereau, B.V. Adorno and P. Fraisse. Position and OrientationControl of Robot Manipulators Using Dual Quaternion Feedback[C]. IEEEInternational Conference on Ontelligent Robots and Systems.2010:658~663.
    [40] L. Somenzi, L. Iess. Linear Stability Analysis of Electrodynamic Thethers[J].Journal of Guidance, Control, and Dynamics.2005,28(5):843~849.
    [41] K. Subbarao. Nonlinear Control of Motion Sychronization for Satellite ProximityOperations[J]. Journal of Guidance, Control, and Dynamics.2008,31(5):1284~1294.
    [42] H. Pan, V. Kapila. Adaptive Nonlinear Control for Spacecraft Formation Flyingwith Coupled Translational and Attitude Dynamics[C]. Proceedings of40th IEEEConference on Decision and Control, Inst. of Electrical and Electronics Engineers,New York,2001:2057~2062.
    [43] R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl. Spacecraft Coordination Control in6DOF: Integrator Backstepping vs Passivity-based Control[J]. Automatica.2008,44(11):2896~2901.
    [44] J. M. R. Martinez, J. Duffy. The Principle of Transference: History, Statement andProof[J]. Mechanisms and Machine Theory.1993,26(1):165~177.
    [45]袁建平,和兴锁.航天器轨道机动动力学[M].北京:中国宇航出版社,2010:293~463.
    [46]佘志坤,薛白,丛源良,刘铁钢,郑志明.最优双冲量交会问题的数学建模与数值求解[J].宇航学报,2010,31(1):155~161.
    [47] Y. Z. Luo, Y. J. Lei, G. J. Tang. Optimal Multi-Objective Nonlinear ImpulsiveRendezvous[J]. Journal of Guidance, Control, and Dynamics,2007,30(4):994~1002.
    [48] Y. Ichimra, A. Ichikawa. Optimal Impulsive Relative Orbit Transfer along aCircular Orbit[J]. Journal of Guidance Control and Dynamics,2008,31(4):1014~1027.
    [49] H. B. Hablani, M. L. Tapper, D. J. Dana-Bashian. Guidance and RelativeNavigation for Autonomous Rendezvous in a Circular Orbit[J]. Journal ofGuidance Control and Dynamics,2002,25(3):553~562.
    [50] J. L. Williams, E. G. Lightsey. Optimal Impulsive Maneuvering Within a ConfinedHover Region[C]. AIAA Guidance Navigation and Control Conference and Exhibit,Hawaii,2008.
    [51] R. Jifuku, A. Ichikawa, M. Bando. Optimal Pulse Strategies for Relative OrbitTransfer along a Circular Orbit[J]. Journal of Guidance Control and Dynamics,2011,34(5):1329~1341.
    [52] X. C. Yue, Y. Yang, Z. Y. Geng. Indirect Optimization for Finite-Thrust Time-Optimal Orbital Maneuver[J]. Journal of Guidance Control and Dynamics,2010,33(2):628~634.
    [53] C. A. Kluever. Feedback Control for Spacecraft Rendezvous and Docking[J].Journal of Guidance Control and Dynamics,1999,22(4):609~611.
    [54] B. Naasz, C. D. Karlgaard, C. D. Hall. Application of Several Control Techniquesfor the Ionospheric Observation Nanosatellite Formation[C]. Proceedings of theAAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX,2002.
    [55] S. Gaulocher, J.-P. Chrétien, C. Pitte, M. Delpech, D. Alazard. Closed-loopControl of Formation Flying Satellites: Time and Parameter VaryingFramework[C]. Proceedings of the Second International Symposium on FormationFlying Missions&Technologies, Washington DC,2004.
    [56] H. J. Gao, X. B. Yang, P. Shi. Multi-objective Robust H∞Control of SpacecraftRendezvous[J]. IEEE Transactions on Control System Technology,2009,17(4):794~802.
    [57] M. de Queiroz, Q. Yan, G. Yang, V. Kapila. Global Output Feedback TrackingControl of Spacecraft Formation Flying with Parametric Uncertainty[C].Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ,1999.
    [58] P. K. C. Wang, F. Y. Hadaegh. Coordination and Control of MultipleMicrospacecraft Moving in Formation[J]. Journal of Astronautical Sciences.1996,44(3):315~355.
    [59] V. S. Bilodeau, J. de Lafontaine. Explicit Predictive Control Law for SatelliteFormation Flying in Eccentric Orbits[C]. AAS/AIAA18th Space Flight MechanicsMeeting, Galveston, TX,2008.
    [60] H.-H. Yeh, E. Nelson, A. Sparks. Nonlinear Tracking Control for SatelliteFormations[C]. Proceedings of the IEEE Conference on Decision and Control,Sydney, Australia,2000.
    [61] J. U. Park, S. Lee, K. H. Choi. Orbital Maneuver Using Two-Step Sliding ModeControl[J]. Journal of Astronomy and Space Sciences,1998,15(1):235~244.
    [62] H. Liu, J. F. Li. Terminal Sliding Mode Control for Spacecraft Formation Flying[J].IEEE Transactions on Aerospace and Electronic Systems,2009,45(3):835~846.
    [63] M. S. Queiroz, V. Kapila, Q. Yan. Adaptive Nonlinear Control of MultipleSpacecraft Formation Flying[J]. Journal of Guidance Control and Dynamics,2000,23(3):385~390.
    [64]梅杰,马广富.近距离航天器相对轨道的鲁棒自适应控制[J].宇航学报,2010,31(10):2276~2282.
    [65] P. Singla, K. Subbarao, J. L. Junkins. Adaptive Output Feedback Control forSpacecraft Rendezvous and Docking Under Measurement Uncertainty[J]. Journalof Guidance Control and Dynamics,2006,29(4):892~902.
    [66] J. E. Slotine, W. P. Li. Applied Nonlinear Control[M]. Beijing: China MachinePress,2004:127~321.
    [67] S. M. Joshi, A. G. Kelkar, J. T. Y. Wen. Robust Attitude Stabilization of SpacecraftUsing Nonlinear Quaternion Feedback[J]. IEEE Transactions on AutomaticControl,1995,40(10):1800~1803.
    [68] T. A.W. Dwyer, H. Sira-Ramirez. Variable-Structure Control of Spacecraft AttitudeManeuvers[J]. Journal of Guidance Control and Dynamics,1988,11(3):262~270.
    [69] S. R. Vadali. Variable Structure Control of Spacecraft Large Angle Maneuvers[J].Journal of Guidance Control and Dynamics,1986,9(2):235~239.
    [70] B. L. Cong, X. D. Liu, Z. Chen, X. R. Ren. Time-varying Sliding Mode Control forSpacecraft Attitude Maneuver with Angular Velocity Constraint[C].2011ChineseControl and Decision Conference, Mianyang,2011:670~674.
    [71]宋斌,李传江,马广富.航天器姿态机动的鲁棒自适应控制器设计[J].宇航学报,2008,29(1):121~125.
    [72] L. L. Show, J. Juang C, Y. W. Jan, and C. T. Lin. Quaternion Feedback AttitudeControl Design: a Nonlinear H∞Approach[J]. Asian Journal of Control,2003,5(3):406~411.
    [73] J. T. Y. Wen, K. Kreutz-Ddlgado. The Attitude Control Problem[J]. IEEETransactions on Automatic Control.1991,36(10):1148~1162.
    [74] E. D. Jin, Z. W. Sun. A New Simple PD-Like Robust Attitude Tracking Controllerfor Rigid Spacecraft[C]. IMACS Multiconference on “Computional Engineering inSystems Applications”, Beijing, China,2006.
    [75] M. R. Akella. Rigid Body Attitude Tracking without Angular Velocity Feedback[J].Systems&Control Letters.2001,42:321~326.
    [76] A. Tayebi. Unit Quaternion-Based Output Feedback for the Attitude TrackingProblem[J]. IEEE Transactions on Automatic Control,2008,53(6):1516~1520.
    [77] S. C. Lo, S. P. Chen. Smooth Sliding-mode Control for Spacecraft AttitudeTracking Maneuvers[J]. Journal of Guidance Control and Dynamics,1995,18(6):1345~1349.
    [78]张治国,李俊峰,宝音贺西.卫星编队飞行指向跟踪姿态控制[J].清华大学学报(自然科学版).2006,46(11):1914~1917.
    [79] E. Nelson, A. Sparks, W. Kang. Coordinated Nonlinear Tracking Control forSatellite Formations[C]. AIAA Guidance Navigation and Control Conference andExhibit, Monterey,2001.
    [80]张玉锟.卫星编队飞行的动力学与控制研究[D].国防科技大学工学博士论文.2002:124~139.
    [81]苏罗鹏,李俊峰,高云峰.卫星编队飞行相对姿态控制[J].清华大学学报(自然科学版).2003,43(5):683~689.
    [82]李化义,张迎春,强文义,李葆华.编队InSAR相对姿态控制[J].宇航学报,2007,28(2):338~343.
    [83] S. J. Welsh, K. Subbarao. Adaptive Synchronization and Control of Free FlyingRobots for Capture of Dynamic Free-Floating Spacecrafts[C]. AIAA/AASAstrodynamics Specialist Conference,2004:1193~1214.
    [84] Y. J. Xu, A. Tatsch, N. G. Fitz-Coy. Chattering Free Sliding Model Control for a6DOF Formation Flying Mission[C]. AIAA Guidance, Navigation, and ControlConference, San Francisco, CA,2005.
    [85] A. K. Bondhus, K. Y. Pettersen, J. T. Gravdahl. Leader/Follower Synchronizationof Satellite Attitude without Angular Velocity Measurements[C]. Proceedings ofthe IEEE Conference on Decision and Control, Seville, Spain,2005:7270~7277.
    [86] H. Wong, H. Z. Pan, V. Kapila. Output Feedback Control for Spacecraft FormationFlying with Coupled Translation and Attitude Dynamics[C]. Proceedings of theAmerican Control Conference, Portland, USA,2005:2419~2426.
    [87] E. Jin, Z. Sun. Robust Controllers Design with Finite Time Convergence for RigidSpacecraft Attitude Tracking Control[J]. Aerospace Science and Technology.2008,12:324~330.
    [88] S. Wu, G. Radice, Y. Gao, and Z. Sun.Quaternion-Based Finite Time Control forSpacecraft Attitude Tracking[J]. ACTA Astronautica.2011,69:48~58.
    [89] H. Liu, J. Li. Terminal Sliding Mode Control for Spacecraft Formation Flying[J].IEEE Transactions on Aerospace and Electronic Systems.2009,45(3):835~846.
    [90]张世杰.基于单目视觉的航天器相对导航理论与算法研究[D].哈尔滨工业大学博士学位论文.2005.
    [91] T. Kubota, T. Hasimoto, J. Kawaguchi, K. Shirakawa, and H. Morita. Vision BasedNavigation by Landmark for Robotic Explorer[C]. IEEE International Conferenceon Robotics and Biomimetics, Bangkok, Thailand,2009.
    [92] D. Lee, H. Pernicka. Vision-Based Relative State Estimation Using the UnscentedKalman Filer[C]. AAS/AIAA19th Space Flight Mechanics Meeting, Savannah,GA,2009.
    [93] P. Vela, A. Betser, J. Malcolm, A. Tannenbaum. Vision-based Range Regulation ofa Leader-Follower Formation[J]. IEEE Transactions on Control SystemsTechnology.2009,17(2):442~448.
    [94]李克昭,袁建平,岳晓奎.空间航天器特征提取与相对定姿研究进展[J].自然科学进展.2006,16(3):257~261.
    [95]张志勇,张靖,朱大勇.一种基于视觉成像的快速收敛的位姿测量算法及实验研究.航空学报.2007,28(4):943~947.
    [96] D. M. Song. Conics-Based Stereo, Motion Estimation, and Pose Determination.International Journal of Computer Vision.1993,10(1):7~25.
    [97] Y. H. Wu, Z. Y. Hu. PnP Problem Revisited[J]. Journal of Mathematical Imagingand Vision.2006,24(1):131~141.
    [98] X. S. Gao, X. R. Hou, J. Tang, H. F. Cheng. Complete Solution Classification forthe Perspective-Three-Point Problem[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence.2003,25(8):930~943.
    [99] Z. Y. Hu, C. F. Wu. A Note on the Number of Solutions of the Noncoplanar P4PProblem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002,24(4):550~555.
    [100] D. Nister. An Efficient Solution to the Five-Point Relative Pose Problem[J]. IEEETransactions on Pattern Analysis and Machine Intelligence.2004,26(6):756~77.
    [101] J. R. Holt, A. N. Netravali. Uniqueness of Solutions to Structure and Motion fromCombinations of Point and Line Correspondences[J]. Journal of VisualCommunication and Image Representation.1996,7(2):126~136.
    [102] J. L. Tang, W. S. Chen, J. Wang. A Novel Linear Algorithm for P5P Problem[J].Applied Mathematics and Computation.2008,205(2):628~634.
    [103] A. Ansar, K. Daniilidis. Linear Pose Estimation from Points or Lines[J]. IEEETransactions on Pattern Analysis and Machine Intelligence.2003,25(5):578~589.
    [104] D. F. Paul. Efficient Linear Solution of Exterior Orientation[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence.2001,23(2):140~148.
    [105] V. Lepetit, F. Moreno-Noguer, P. Fua. EPnP: an Accurate O(n) Solution to the PnPProblem[J]. International Journal of Computer Vision.2009,81(2):155~166.
    [106] P. Y. Lee, J. B. Moore. Gauss-Newton-on-Manifold for Pose Estimation[J]. Journalof Industrial and Management Optimization.2005,1(4):565~587.
    [107] C. P. Lu, G. D. Hager, E. Mjolsness. Fast and Globally Convergent Pose Estimationfrom Video Images[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence.2000,22(6):610~622.
    [108] G. Schweighofer, A. Pinz. Robust Pose Estimation from a Planar Target[J]. IEEETransactions on Pattern Analysis and Machine Intelligence.2006,28(12):2024~2030.
    [109] G. Schweighofer, A. Pinz. Globally Optimal O(n) Solution to the PnP Problem forGeneral Camera Models[C], BMVC, Leeds,2008.
    [110] M. Dhome, M. Richetin, J. T. Lapreste, G. Rives. Determination of the Attitude of3-D Objects from a Single Perspective View[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence.1989,11(12):1265~1278.
    [111] H. H. Chen. Pose Determination from Line-to-Plane Correspondences: ExistenceCondition and Closed-Form Solutions[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence.1991,13(6):530~541.
    [112] D. G. Lowe. Three-dimensional Object Recognition from Single Two-dimensionalImages[J]. Artificial Intelligence.1987,31(3):355~395.
    [113] Y. Liu, T.S. Huang, O.D. Faugeras. Determination of Camera Location from2-D to3-D Line and Point Correspondences[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence.1990,12(1):28~37.
    [114] J. S. Goddard. Pose and Motion Estimationf from Vision Using Dual Quaternion-Based Extended Kalman Filtering[D]. The University of Tennessee, Knoxville,1997.
    [115] S. James. Pose and Motion Estimation from Vision Using Dual Quaternion BasedExtended Kalman Filtering[D]. The University of Tennessee, Knoxville.1997:54~74.
    [116] Y. T. Chiang, P. Y. Huang, H. W. Chen, F. R. Chang, Estimation of3-DTransformation from2-D Observing Image Using Dual Quaternion[C].Proceedings of the17th World Congress, the International Federation of AutomaticControl, Seoul, Korea,2008.
    [117] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems[J].Transations of the ASME, Journal of Basic Engineering.1960,82:34~45.
    [118] M. Athans, R. P. Wisher, and A. Bertolini. Suboptimal State Estimation forContinuous Time Nonlinear Systems from Discrete Noisy Measurements[J]. IEEETransactions on Automatic Control.1968,13:504~514.
    [119] H. Tanizaki, R. S. Mariano. Nonlinear Filters Based on Tayloe Series Expansion[J].Commu. Statist. Theory and Methods.1996,25(6):1261~1282.
    [120] S. G. Kim, J. L. Crassidis, Y. Cheng, A. M. Fosburry and J. L. Junkins. KalmanFiltering for Relative Spacecraft Attitude and Position Estimation[J]. Journal ofGuidance, Control and Dynamics,2007,30(1):133~143.
    [121] D. M. Pool, Q. P. Chu, M. M. Van Paassen, M. Mulder. Optinal Reconstruction ofFlight simulator motion cues Using Extended Kalman Filtering[C]. AIAA Modeland Simulation Technologies Conference and Exhibit, Honolulu, United States,2008.
    [122] L. P. Mark. Kalman Filtering and Smoothing to Estimate Real-Value States andInteger Constants[J]. Journal of Guidance, Control and Dynamics,2010,33(5):1404~1417.
    [123] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte. A New Method for NonlinearTransformation of Means and Covariances in Filters and Estimators[J]. IEEETransactions on Automatic Control.2000,45(3):477~482.
    [124] K. Xiong, H. Y. Zhang, and C. W. Chan. Performance Evaluation of UKF-BasedNonlinear Filtering[J]. Automatica.2006,42:261~270.
    [125] J. L. Crassidis. Sigma-Point Kalman Filtering for Integrated GPS and InertialNavigation[J]. IEEE Transactions on Aerospace and Electronic Systems,2005.
    [126] K. M. Roh, S. Y. Park, K. H. Choi. Orbit Determination Using the GeomagneticField Measurement via the Unscented Kalman Filter[J]. Journal of Spacecraft andRockets.2007,44(1):246~253.
    [127] A. Giannitrapani, N. Ceccarelli, F. Scortecci, A. Garulli. Comparison of EKF andUKF for Spacecraft Localization via Angle Measurements[J]. IEEE Transactionson Aerospace and Electronic Systems.2011,47(1):75~84.
    [128] K. Xiong, C. L. Wei, L. D. Liu. Robust Unscented Kalman Filtering for NonlinearUnscented Systems[J]. ASIN Journal of Control.2010,12(3):426~433.
    [129] G. Zames. Feedback and Optimal Sensitivity: Model Reference Transformations,Multiplicative Semi-norms, and Approximate Inverses[J]. IEEE Transactions onAutomatic Control.1981,26(2):301~320.
    [130] S. M. Rami, D. A. Brent and C. George. Stochastic Interpretation of H∞andRobust Estimation[C]. Proceedings of the33rd Conference on Decision andControl. Cambridge, MA,1994,4:3943~3948.
    [131]赵伟,袁信,林雪原.采用H∞滤波器的GPS/INS劝阻和导航系统研究[J].航空学报.2002,23(3):265~267.
    [132] R. K. Mehra. Approaches to Adaptive Filtering[J]. IEEE Transactions onAutomatic Control.1972,17(5):693~698.
    [133] S. Gao, Y. Zhong and W. Li. Robust Adaptive Filtering Method for SINS/SARIntegrated Navigation System[J]. Aerospace Science and Technology.2010,15(6):425~430.
    [134]黄晓瑞,崔平远,崔祜涛. GPS/INS组合导航系统自适应滤波算法与仿真研究[J].飞行力学.2001,19(2):69~72.
    [135] C. Hide, T. Moore and M. Smith. Adaptive Kalman Filtering Algorithms forIntegrating GPS and Low Cost INS[J]. Position Location and NavigationSymposium.2004:227~233.
    [136] C. Hajiyev. Adaptive Filtration Algorithm with the Filter Gain Correction Appliedto Integrated INS/Rader Altimeter[J]. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering.2007,221(5):847~855.
    [137] S. C. Douglas. Introduction to Adaptive Filters[M]. Boca Raton: CRC Press LLC,1999:1~20.
    [138]周东华,席裕庚,张钟俊.非线性系统的带次优渐消因子的扩展卡尔曼滤波[J].控制与决策.1990,5:1~6.
    [139]周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报.1991,17(6):680~695.
    [140] Q. Xia, M. Raoand, and Y. Ying. Adaptive Fading Kalman Filter with anApplication[J]. Automatica.1994,30(12):1333~1338.
    [141] K. H. Kim, J. G. Lee, and C. G. Park. Adaptive Two-Stage Kalman Filter in thePresence of Unknown Random Bias[J]. International Journal of Adaptive Controland Signal Processing.2006,20(7):305~319.
    [142]王新国,许化龙,李爱华.一种应用于星光观测导弹姿态确定的强跟踪滤波算法[J].宇航学报.2008,29(3):876~877.
    [143] W. K. Clifford. Preliminary Sketch of Bi-Quaternions[M]. Proc. LondonMathematics Society.1873,4:381~395.
    [144] E. Study. Von den Bewegungen und Umlegungen[J]. Mathematische Annalen.1891,39(4):441~556.
    [145] A. P. Kotelnikov. Screw Calculus and Some Applications to Geometry andMechanics[D]. Anmals of Imperial University of Kazan,1895.
    [146] M. J. Kim, M. S.Kim, S. Y. Shin. A Compact Differential Formula for the FirstDerivative of a Unit Quaternion Curve[J]. Journal of Visualization and ComputerAnimation.1996,7(1):43~57.
    [147]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005:225~228.
    [148] X. Q. Huang, W. Lin, B. Yang. Global Finite-time Stabilization of a Class ofUncertain Nonlinear Systems[J]. Automatica.2005,41(5):881~888.
    [149] Y. G. Hong, J. Huang, Y. S. Xu. On an Output Feedback Finite-time StabilizationProblem[J]. IEEE Transactions on Automatic Control.2001,46(2):305~309.
    [150] L. T. Gruyitch, A. Kokosy. Robot Control for Robust Stability with FiniteReachability Time in the Whole[J]. Journal of Robotic Systems.1999,16(5):263~283.
    [151]丁世宏,李世华.有限时间控制问题综述[J].控制与决策.2011,26(2):161~169.
    [152] S. P. Bhat, D. S. Bernstein. Geometric Homogeneity with Applications to Finite-time Stablity[J].Mathematics of Control, Signals and Systems.2005,17(2):101~127.
    [153]杨柳,陈艳萍.求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J].计算数学.2008,30(4):388~396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700