用户名: 密码: 验证码:
欠驱动无人水下航行器三维路径跟踪反步控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欠驱动水下航行器(underactuated underwater vehicle, UUV)由于未配置横向和垂向的辅助推进器,使得系统的控制输入数目小于系统的运动自由度维数,不满足Brockett定理的必要条件,无法通过设计连续时不变的反馈控制律实现对欠驱动自由度状态的镇定;UUV在水下三维空间的六自由度运动形式,使得模型具有较高的非线性特性和自由度之间的耦合作用,同时受到周围流体作用导致模型参数的不确定性,都成为UUV运动控制技术研究的难点;本文针对欠驱无人水下航行器的变深控制和三维路径跟踪控制方法开展研究,主要进行了以下几方面研究工作:
     首先,针对UUV变深控制问题,基于反馈增益反步法设计变深控制器,通过合理选择控制器参数消除部分非线性耦合项,简化虚拟控制量的形式,得到具有PID增益调节的控制器形式;结合李雅普诺夫稳定性理论,分析UUV存在建模不精确时闭环系统的鲁棒性,并给出系统跟踪误差的收敛域范围;
     然后,为解决UUV变深控制中的模型的不确定性,提出基于神经网络的动态面控制方法,通过一阶滤波器获得虚拟控制量的导数信号,避免了直接对虚拟控制量解析求导所导致“计算膨胀”的不足,基于李雅普诺夫稳定性理论设计神经网络控制器实现对模型不确定性的补偿;
     其次,针对欠驱动UUV三维直线路径跟踪问题,根据离散路径点坐标信息计算得到参数化的空间直线路径方程,提出基于“虚拟向导”跟踪策略建立载体坐标系下的UUV三维路径跟踪误差方程;基于反步法将控制器设计分解为运动学控制回路和动力学控制回路,进而简化控制器设计步骤,基于李雅普诺夫稳定性理论设计鲁棒控制项保证闭环系统的稳定性;仿真实验实现了对分段直线路径的跟踪控制;
     再次,为简化三维曲线路径跟踪控制器,针对欠驱动UUV三维路径跟踪运动学误差方程,提出基于反馈增益的反步法设计三维曲线路径跟踪控制器,避免了基于“视线法”设计视线角导引律时所导致控制器的复杂形式;通过引入跟踪误差的积分信号,改善控制系统的稳态跟踪性能;
     最后,针对UUV三维曲线路径跟踪控制问题,区别于动态面中利用数值微分的方式计算虚拟控制量的导数,提出一种基于二阶滤波器的反步设计方法;将虚拟控制作为滤波器的参考输入,通过积分而非微分过程获得虚拟控制量的滤波值及其导数值,避免了对虚拟控制解析求导的繁琐过程,同时减小测量噪声对控制器的影响,基于李雅普诺夫稳定性理论设计滤波误差补偿回路保证滤波器对输入信号的跟踪精度;通过仿真实验验证滤波器和控制器的有效性。
Due to the lack of additional thrusters in sway and heave dirctions of underactuatedunderwater vehicle(UUV), the numbers of control inputs for the system is less than thedegrees of freedom related to three-dimensional motion, which doesn’t satisfies the Brocekettnecessary condition, and can’t achieve stabilization through designing contious time-invariantfeedback control law. The model of UUV exhibits severely nonlinearities and couplingcharacteristic between each degree of freedom when moving in three-dimensional space,meanwhile the model also has parameter uncertainties induced by the surroundingviscousfluid, which all brought the difficulties to the research on control technology for UUV.The main research content of this thesis focuses on the solutions for diving control andthree-dimensional path-following control problems, and the main works has been carried outas follows:
     Firstly, towards the diving control problem of an UUV, backstepping method based onfeedback gain is developed for the controller design, part of nonlinear terms can be eliminatedby properly selecting the controller parameters, which leads a simplification of virtual control,and the resulted controller has PID gain tuning function. Robustness analysis is carried out forthe closed-loop system in the presence of model uncertaintieswith the Lyapunov stabilitytheorem and the boundary of the convergence region of tracking errors for the system is givenout.
     Secondly, to deal with the model uncertainties in diving control problem for UUV, aneural network based dynamic surface control method is proposed, the derivative of virtualcontrol is obtained through first-order filter, which can avoid the “computation explosive”when directly computing the analystic derivative of virtual control. A neural network adaptivecontroller is designed to compensate the model uncertainties and external disturbance basedon Lyapunov stability theorem.
     Thirdly, to deal with the three-dimensional straight-line path-following control problemof underactuated unmanned underwater vehicle (UUV). The parameterized path equation iscomputed for space straight-line with the given coordinate informations of discreteway-points. Then, the three-dimensional path tracking error equation is established inbody-fixed frame based on ‘virtual guidance’ for UUV. The controller design process isdivided into kinematic and dynamic two parts with backstepping method, which leads asimplication for the design procedure. Robust control terms are designed based on Lyapunov theorem and asympotic stability can be guaranteed for the closed-loop system. The pathswitching strategy is used to drive the UUV to follow discontinuous straight-line path.
     Forthly, to simplify the three-dimensional path-following controller, given thethree-dimensional path tracking error equation, the backstepping methodsbased on feedbackgain is used for the controller design which avoids the complex form of the virtual controlwhen designing the guidance laws based on line-of-sight method. Additional integrator termsare introduced to enhance the tracking performance for the control system in steady phase.
     Finally, be differ from obtaining the derivative of virtual control through numericaldifferentiation process in dynamic surface control, towards the three-dimensionalpath-following problem, The backstepping method based on second-order filter is proposedfor the controller design. The virtual control is selected as the reference input of the filter, thefiltered signal of virtual control and its derivative is obtained through the integration processrather than differentiation process, which avoids the the complexity caused by needing tocompute the derivatives of the virtual control and also reduces the measurement noiseinfluence that act on the controller. Additional tracking error compensation loop is designedbased on the Lyapunov stability theory to gurarantee the tracking precision of the filter for thereference input. The numerical results are performed to illustrate the effectiveness of theproposed filter and control scheme.
引文
[1]葛晖,徐德民,项庆睿.自主式水下航行器控制技术新进展.鱼雷技术.2007,15(3):1-7页.
    [2]向先波.欠驱动船舶的定点镇定与航迹控制研究综述.第三十一届中国控制会议,中国,合肥,2012:4312-4317页.
    [3]王芳,万磊,李晔.欠驱动AUV的运动控制技术综述.中国造船.2010,51(2):227-241页.
    [4]郭晨,汪洋,孙富春.欠驱动水面船舶运动控制研究综述.控制与决策.2009,24(3):321-329页.
    [5] A N E K, Ioannou P A. Adaptive steering control for uncertain ship dynamics andstability analysis. Automatica.2013,49(3):685-697P.
    [6] Fredriksen E, Pettersen K Y. Global k-exponential way-point maneuvering of ships:Theory and experiments. AUtomatica.2006,42(4):677-687P.
    [7] Moreira L, Fossen T I, Soares C G. Path following control system for a tanker shipmodel. Ocean Engineering.2007,34(14):2074-2085P.
    [8] Repoulias F, Papadopoulos E. Planar trajectory planning and tracking control designfor underactuated AUVs. Ocean Engineering.2007,34(11):1650-1667P.
    [9] Fang H, Dou L, Chen J. Robust anti-sliding control of autonomous vehicles inpresence of lateral disturbances. Control Engineering Practice.2011,19(5):468-478P.
    [10] Choi J, Shiraishi T, Tanaka T. Safe breakwater-following control of an autonomousunderwater vehicle with non-zero forward velocity. Automation in Construction.2007,16(6):778-786P.
    [11] Kanayama, Yutaka, Miyazaki. A Stable Tracking Control Method for an AutonomousMobile Robot. Proceedings of IEEE International Conference on Robotics andAutomation. Cincinnati, Ohio,1990:384-389P.
    [12] Panteley E, Loria E L A. Exponential tracking control of a mobile car using a cascadedapproach. Automatica.1998,33(12):221-226P.
    [13] Ghommama J, Saad H M M. Formation path following control of unicycle-type mobilerobots. Robotics and Autonomous Systems.2010,58(5):727-736P.
    [14] Do K D, Pan J. Nonlinear formation control of unicycle-type mobile robots. Roboticsand Autonomous Systems.2007,55(3):191-204P.
    [15] Jiang Z, Nijmeijer H. Tracking Control of Mobile Robots: A Case Study inBackstepping. Automatica.1997,33(7):1393-1399P.
    [16] Mehrjerdi H, Ghommam J, Saad M. Nonlinear coordination control for a group ofmobile robots using a virtual structure. Mechatronics.2011,21(7):1147-1155P.
    [17] Jiang Z. Robust exponential regulation of nonholonomic systems with uncertainties.Automatica.2000,36(2):189-209P.
    [18] Maa B L, Tso S K. Unified controller for both trajectory tracking and point regulationof second-order nonholonomic chained systems. Robotics And Autonomous Systems.2008,56(4):317-323P.
    [19]朱义胜.非线性系统.北京:电子工业出版社,2011:378-430页.
    [20]程代展.应用非线性控制.北京:机械工业出版社,2006:138-210页.
    [21] H. L J, L P M. A neural network adaptive controller design for free-pitch-angle divingbehavior of an autonomous underwater vehicle. Robotics and Autonomous Systems.2005,52(2):132-147P.
    [22] Narasimhan M, Singh S N. Adaptive optimal control of an autonomous underwatervehicle in the dive plane using dorsal fins. Ocean Engineering.2006,33(3):404-416P.
    [23] Roberto Cristi O A P A. Adaptive Sliding Mode Control of Autonomous UnderwaterVehicles in the Dive Plane. IEEE JOURNAL OF OCEANIC ENGINEERING.1990,15(3):152-160P.
    [24]汪伟,边信黔,王大海. AUV深度的模糊神经网络滑模控制.机器人.2003,25(3):209-214页.
    [25] Silvestre C, Pascoal A. Depth control of the INFANTE AUV using gain-scheduledreduced order output feedback. Control Engineering Practice.2007,15(7):883-895P.
    [26] H. L J, L P M. Design of an adaptive nonlinear controller for depth control of anautonomous underwater vehicle. Ocean Engineering.2005,32(17):2165-2181P.
    [27] Song F, Smith S M. Design of Sliding Mode Fuzzy Controllers for an AutonomousUnderwater Vehicle without System Model. OCEANS2000MTS/IEEE Conference.2000:835-840P.
    [28] Lionel Lappire. Robust diving control of an AUV. Ocean Engineering.2009,36(1):92-104P.
    [29] Hongjian Wang, Ziyin Chen, Xinqian Bian. Robust Diving Control of AUV with L2Disturbance Attenuation Method. Proceedings of10th World Congress on IntelligentControl and Automation. Beijing, China,2012:1356-1360P.
    [30] Ji-Hong L, Pan-Mook L. Path tracking in dive plane for a class of torpedo-typeunderactuated AUVs. Proceedings of the7th Asian Control Conference. Hong Kong,China,2009:360-365P.
    [31] Zhang L, Qi X, Pang Y. Adaptive output feedback control based on DRFNN for AUV.Ocean Engineering.2009,36(9):716-722P.
    [32] Ishaque K, Abdullah S S, Ayob S M. A simplified approach to design fuzzy logiccontroller for anunderwater vehicle. Ocean Engineering.2011,38(1):271-284P.
    [33] Petrich J, Stilwell D J. Model simplification for AUV pitch-axis control design. OceanEngineering.2010,37(7):638-651P.
    [34] Naik Mugdha S, Singh Sahjendra N. State-dependent Riccati equation-based robustdive plane control of AUV with control constraints. Ocean Engineering.2007,34(11):1711-1723P.
    [35] Lee K W, Singh S N. Noncertainty-equivalent multi-variable adaptive control ofsubmersibles using filtered signals. Ocean Engineering.2012,53(1):98-110P.
    [36]胡坤,王树宗,郝英泽.基于PSO优化的潜艇深度非线性PID控制.控制工程.2009,16(6):752-755页.
    [37]郭小溪,李刚,闫伟杰.基于遗传算法整定PID的自主潜器深度控制.长春理工大学学报(自然科学版).2010,33(3):37-39页.
    [38]陈佳,邢继峰.基于模糊自适应PID的潜艇深度控制.舰船科学技术.2011,33(2):56-60页.
    [39]何斌,徐亦凡.自抗扰控制器在潜艇近水面航行深度控制中的应用.船海工程.2008,3(37):131-134页.
    [40]唐旭东,庞永杰,李晔,张赫.基于混沌过程神经元的水下机器人运动控制方法.控制与决策.2010,2(25):213-217页.
    [41]周焕银,刘开周,封锡盛.基于神经网络的自主水下机器人动态反馈控制.电机与控制学报.2011,7(15):87-93页.
    [42] Li Ji-Hong L P L S. Motion control of an AUV using a neural network adaptivecontroller. Proceedings of the2002International Symposium on UnderwaterTechnology. Tokyo, Japan.2002:217-221P.
    [43]王宏健,陈子印,贾鹤鸣.具有PID反馈增益的自主水下航行器反步法变深控制.控制理论与应用.2012,29(9):1139-1145页.
    [44]陈子印,王宏健,边信黔.基于反馈增益的AUV稳定神经网络反步变深控制.控制与决策.2013,28(3):407-412页.
    [45]朱齐丹,于瑞亭,夏桂华.风浪流干扰及参数不确定欠驱动船舶航迹跟踪的滑模鲁棒控制.控制理论与应用.2012,29(7):959-964页.
    [46]张利军,贾鹤鸣,边信黔.基于L2干扰抑制的水下机器人人三维航迹跟踪控制.控制理论与应用.2011,28(5):645-651页.
    [47]俞建成,张艾群,王晓辉.基于模糊神经网络水下机器人直接自适应控制.自动化学报.2007,33(8):840-846页.
    [48]贾鹤鸣,张利军,齐雪.基于神经网络的水下机器人三维航迹跟踪控制.控制理论与应用.2012,29(7):877-883页.
    [49]俞建成,李强,张艾群.水下机器人的神经网络自适应控制.控制理论与应用.2008,25(1):9-13页.
    [50]贾鹤鸣,程相勤,张利军.基于自适应Backstepping的欠驱动AUV三维航迹跟踪控制.控制与决策.2012,27(5):652-664页.
    [51] Ma B. Global k-exponential asymptotic stabilization of underactuated surface vessels.Systems&Control Letters.2009,58(3):194-201P.
    [52] Do K D, J Z P J. Global partial-state feedback and output-feedback tracking controllersfor underactuated ships. Systems&Control Letters.2005,54(10):1015-1036P.
    [53] Jiang Z. Global tracking control of underactuated ships by Lyapunov's direct method.Automatica.2002,38(2):301-309P.
    [54] Do K D, Pan J. Global tracking control of underactuated ships with nonzerooff-diagonal terms in their system matrices. Automatica.2005,41(1):87-95P.
    [55] Do K D. Practical control of underactuated ships. Ocean Engineering.2010,37(13):1111-1119P.
    [56] Do K D, Jiang Z P. Universal controllers for stabilization and tracking ofunderactuated ships. Systems&Control Letters.2002,47(4):299-317P.
    [57] Aguiar A P, Joao D B D. Path-following or reference-tracking A answer based onlimits of performance. Proceedings IFAC/EURON Symposium. Intell. Auton. Vehilce.Lisbon, Portgal,2004:27-32P.
    [58] Aguiara A P, Hespanha J P, Kokotovic P V. Performance limitations in referencetracking and path following for nonlinear systems. Automatica.2008,44(3):598-610P.
    [59] Elena Panteley E L A L. Exponential tracking control of a mobile car using a cascadedapproach. Automatica.1998,33(12):221-226P.
    [60] Do K D, Pan J, P J Z. Robust adaptive control of underactuated ships on a linear coursewith comfort. Ocean Engineering.2003,30(17):2201-2225P.
    [61] Lefeber E, Pettersen K Y, Nijmeijer H. Tracking Control of an Underactuated Ship.IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.2003,11(1):52-61P.
    [62]孟威,郭晨,孙富春,刘杨.欠驱动水面船舶的非线性滑模轨迹跟踪控制.哈尔滨工程大学学报.2012,33(5):585-589页.
    [63] Ghommam J, Mnif F, Benali A. Asymptotic Backstepping Stabilization of anUnderactuated Surface Vessel.2006,14(6):1150-1157P.
    [64] Ghommam J, Mnif F, Derbel N. Global stabilisation and tracking control ofunderactuated surface vessels. IET Control Theory and Applications.2010,4(1):71-88P.
    [65]高剑,徐德民,严卫生.欠驱动自主水下航行器轨迹跟踪控制.西北工业大学学报.2010,28(3):404-408页.
    [66]廖煜雷,庄佳园,李晔,庞永杰.欠驱动无人艇轨迹跟踪的滑模控制方法.应用科学学报.2011,29(4):428-434页.
    [67]毕凤阳.欠驱动自主水下航行器的非线性鲁棒控制策略研究.哈尔滨工业大学博士学位论文,2010:65-72页.
    [68]于瑞亭,朱齐丹,刘志林.欠驱动不对称船舶全局K指数镇定的解耦实现.控制与决策.2012,27(5):781-786页.
    [69]于瑞亭.欠驱动水平面船舶的全局镇定控制方法研究.哈尔滨工程大学博士学位论文,2012:58-69页.
    [70]贾鹤鸣.基于反步法的欠驱动UUV空间目标跟踪非线性控制方法研究.哈尔滨工程大学博士学位论文,2012:70-80页.
    [71] Aguiar A P, Hespanha J P. Trajectory-Tracking and Path-Following of UnderactuatedAutonomous Vehicles With Parametric Modeling Uncertainty. IEEE Transition onAutomatic Control.2007,52(8):1362-1379P.
    [72] Lapierre L, Soetanto D, Pascoal A. Nonlinear Path Following with Applications to theControl of Autonomous Underwater Vehicles. IEEE Conference on Decision andControl. Hawaii,2003:1257-1262P.
    [73] Lapierre L, Soetanto D. Nonlinear path-following control of an AUV. OceanEngineering.2007,34(11):1734-1744P.
    [74] K. D. Do Z P J J. Robust adaptive path following of underactuated ships. Automatica.2004,40(6):929-944P.
    [75] Do K D, Pan J, P J Z. Robust and adaptive path following for underactuatedautonomous underwater vehicles. Ocean Engineering.2004,31(16):1967-1997P.
    [76] Do K D, Pan J. State-and output-feedback robust path-following controllers forunderactuated ships using Serret–Frenet frame. Ocean Engineering.2004,31(5):587-613P.
    [77] Do K D, Pan J. Global robust adaptive path following of underactuated ships.Automatica.2006,42(10):1713-1722P.
    [78] K. D. Do J P. Robust path-following of underactuated ships: Theory and experimentson a model ship. Ocean Engineering.2006,33(10):1354-1372P.
    [79] Borhaug E, Pettersen K Y. Cross-track control for underactuated autonomous vehicles.Proceedings fo the44th IEEE Conference on Decision and Control. Seville, Spain,2005:602-607P.
    [80] Oh S, Jing sun. Path following of underactuated marine surface vessels using line ofsight based model predictive control. Ocean Engineering.2010,37(1):289-295P.
    [81]周岗,姚琼荟,陈永冰.不完全驱动船舶直线航迹控制稳定性研究.自动化学报.2007,33(4):378-384页.
    [82]周岗,姚琼荟,陈永冰.船舶直线航迹控制系统全局渐近稳定的充分条件.海军工程大学学报.2006,18(3):52-56页.
    [83]周岗,姚琼荟,陈永冰.基于输入输出线性化的船舶全局直线航迹控制.控制理论与应用.2007,24(1):117-121页.
    [84]廖煜雷,万磊.欠驱动船舶直线航迹的滑模控制方法.应用科技.2011,38(11):13-17页.
    [85]刘文江,隋青美,周风余.基于自抗扰控制技术的船舶直线航迹控制器设计.山东大学学报(工学版).2010,40(6):48-53页.
    [86]刘勇,卜仁祥,朱业求.基于Backstepping方法的船舶直线航迹控制.大连海事大学学报.2012,38(1):5-8页.
    [87]卜仁祥,刘正江,胡江强.基于动态非线性滑动模态的欠驱动船舶直线航迹控制.清华大学学报(自然科学版).2007,47(S2):1880-1883页.
    [88]潘永平,黄道平,孙宗海.欠驱动船舶航迹Backstepping自适应模糊控制.控制理论与应用.2011,28(7):907-914页.
    [89]边信黔,牟春晖,严浙平.多UUV沿多条给定路径运动的协调编队控制.哈尔滨工业大学学报.,45(1):106-111页.
    [90]卜仁祥,刘正江,李铁山.船舶航迹迭代非线性滑模增量反馈控制算法.交通运输工程学报.2006,4(6):75-79页.
    [91]李铁山,杨盐生,洪碧光.船舶航迹控制鲁棒自适应模糊设计.控制理论与应用.2007,24(3):445-448页.
    [92]李铁山,杨盐生,洪碧光.船舶直线航迹控制的鲁棒自适应非线性设计.大连海事大学学报.2004,30(4):1-5页.
    [93]李铁山,杨盐生,郑云峰.模型参数不确定的不完全驱动船舶航迹控制自适应反演设计(英文).大连海事大学学报.2003,29(S1):25-29页.
    [94]廖煜雷,万磊,庄佳园.欠驱动船路径跟踪的反演自适应动态滑模控制方法.中南大学学报(自然科学版).2012,43(7):2655-2661页.
    [95] Samson C. Control of chained systems application to path following and time-varyingpoint-stabilization of mobile robots. IEEE Transactions on Automatic Control.1995,40(1):64-77P.
    [96] Breivik, Fossen M T I. Guidance laws for planar motion control. Proceedings47thIEEE Conference on Decision and Control. Cancun, Mexico,2008:570-577P.
    [97] Breivik, I M F T. Guidance-based path following for autonomous underwater vehicles.OCEANS,2005. Proceedings of MTS/IEEE. Seville, Spain,2005:2807-2814P.
    [98] Breivik, Fossen M T I. Principles of Guidance-Based Path Following in2D and3D.Proceedings of44thIEEE Conference on Decision and Control. Seville, Spain,2005:627-634P.
    [99] Encarnacao P, Pascoal A.3D Path Following for Autonomous Underwater Vehicle.Proceedings of the39th IEEE Conference on Decision and Control. Australia,2000:2977-2982P.
    [100] A M, C S. Trajectory tracking for unicycle-type and two-steering wheels mobile robots.Technological Report, France: INRIA,1993:1-20P.
    [101] Lapierre L, Jouvencel B. Robust Nonlinear Path-Following Control of an AUV. IEEEJOURNAL OF OCEANIC ENGINEERING.2008,33(2):89-102P.
    [102]刘杨,郭晨,沈智鹏.欠驱动船舶路径跟踪的神经网络稳定自适应控制.控制理论与应用.2010,27(2):169-174页.
    [103]高剑,刘富樯,赵江.欠驱动自主水面船的非线性路径跟踪控制.机器人.2012,34(3):329-336页.
    [104]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究.华中科技大学博士学位论文,2010:67-116页.
    [105] Borhaug E, Pettersen K Y. Adaptive way-point tracking control for underactuatedautonomous vehicles. Proceedings of the44thIEEE Conference on Decision andControl. Seville, Spain,2005:4028-4034P.
    [106]葛晖,敬忠良,高剑.自主式水下航行器三维路径跟踪的神经网络H∞鲁棒自适应控制方法.控制理论与应用.2012,29(3):317-322页.
    [107] Yu T, Ai-Qun Z, Wei L.3D path-following of underactuated autonomous underwatervehicles. Proceedings of30thChinese Control Conference. Shandong, China,2011:3456-3461P.
    [108]贾鹤鸣,张利军,程相勤.基于非线性迭代滑模的欠驱动UUV三维航迹跟踪控制.自动化学报.2012,27(5):652-657页.
    [109]边信黔,程相勤,贾鹤鸣.基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制.控制与决策.2011,26(2):289-292页.
    [110]边信黔,牟春晖,勋张.基于路径跟踪的欠驱动UUV编队协调控制.华中科技大学学报(自然科学版).2012,40(4):37-42页.
    [111]程相勤.基于滑模理论的欠驱动UUV空间曲线路径跟踪控制.哈尔滨工程大学博士学位论文,2011:16-65页.
    [112] Silvestre C, Pascoal A. Control of the INFANTE AUV using gain scheduled staticoutput feedback. Control Engineering Practice.2004,12(12):1501-1509P.
    [113] Yip P P, Hedrick J K. Adaptive dynamic surface control: a simplified algorithm foradaptive backstepping control of nonlinear systems. International Journal of Control.1998,71(5):959-979P.
    [114] Han S I, Lee J M. Adaptive dynamic surface control with sliding mode control andRWNN for robust positioning of a linear motion stage. Mechatronics.2012,22(6):222-238P.
    [115] Huang A, Chen Y. Adaptive multiple-surface sliding control for non-autonomoussystems with mismatched uncertainties. Automatica.2004,40:1939-1945P.
    [116] Zhang G, Chen J, Lee Z. Adaptive Robust Control for Servo Mechanisms WithPartially Unknown States via Dynamic Surface Control Approach. IEEE TransactionsOn Control Systems Technology.2010,18(3):723-731P.
    [117] Shieh H, Hsu C. An Integrator-Backstepping-Based Dynamic Surface Control Methodfor a Two-Axis Piezoelectric Micropositioning Stage. IEEETransactions On ControlSystems Technology.2007,15(5):916-926P.
    [118] Swaroop D, Hedrick J K, Yip P P. Dynamic Surface Control for a Class of NonlinearSystems. IEEE Transactions On Automatic Control.2000,45(10):1893-1899P.
    [119] Chwa D. Global Tracking Control of Underactuated Ships With Input and VelocityConstraints Using Dynamic Surface Control Method. IEEE Transactions On ControlSystems Technology.2011,19(6):1357-1370P.
    [120] Wang D, Huang J. Neural Network-Based Adaptive Dynamic Surface Control for aClass of Uncertain Nonlinear Systems in Strict-Feedback Form. IEEE Transactions OnNeural Networks.2005,16(1):195-203P.
    [121] Yip P P. Robust and Adaptive Nonlinear Control Using Dynamic Surface Controllerwith Applications to Intelligent Highway Systems. University of California,1997:70-90P.
    [122] Li Y, Qiang S, Zhuang X. Robust and Adaptive Backstepping Control for NonlinearSystems Using RBF Neural Networks. IEEE TRANSACTIONS ON NEURALNETWORKS.2004,15(3):693-701P.
    [123] Van de Ven P W J, Flanagan C, Toal D. Neural network control of underwater vehicles.Articial Intelligence.2005,18(5):533-547P.
    [124] Bagheri A, Moghaddam J J. Simulation and tracking control based on neural-networkstrategy and sliding-mode control for underwater remotely operated vehicle.Neurocomputing.2009,72(7):1934-1950P.
    [125] Polycarpou M M. Stable Adaptive Neural Control Scheme for Nonlinear Systems.IEEE TRANSACTIONS ON AUTOMATIC CONTROL.1996,41(3):447-452P.
    [126] Li J, Lee P, Jun B. Point-to-point navigation of underactuated ships. Automatica.2008,44(12):3201-3205P.
    [127] Li Z, Sun J, Oh S. Design, analysis and experimental validation of a robust nonlinearpath following controller for marine surface vessels. Automatica.2009,45(7):1649-1658P.
    [128]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制理论与应用.2002,29(9):1139-1145页.
    [129] Dong W, Farrel J A, Polycarpou M M. Command Filtered Adaptive Backstepping.IEEE Transactions On Control Systems Technology.2011,20(3):566-580P.
    [130] Farrell J A, Polycarpou M, Sharma M. Command Filtered Backstepping. IEEETransactions On Automatic Control.2009,54(6):1391-1395P.
    [131] Stotsky A. The Use of Sliding Modes to Simplify the Backstepping Control.Proceedings of American Control Conference. Albuquerque, New Mexico,1997:1703-1709P.
    [132] Yip P P, Hedrick J K, Swaroop D. The use of linear filtering of simplified integratorbackstepping control of nonlinear systems. Proceedings of IEEE Workshop VariableStructure System,1996:211-215P.
    [133] Djapic V, Farrell J, Dong W. Land Vehicle Control Using a Command FilteredBackstepping Approach. Proceedings of American Control Conference. Washington,USA,2008:2460-2467P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700