用户名: 密码: 验证码:
非点源污染模型研究及其在香溪河流域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国正面临着严重的水质危机,大量湖泊、水库处于富营养状态,直接威胁到饮用水安全。三峡水库运行后所造成支流水体富营养化问题已经显现,一些支流开始发生水华现象。在点源污染逐步得到控制的情况下,非点源的氮、磷的汇入便成为富营养化的重要因素。
     构建流域分布式非点源污染模型是对流域泥沙、污染物进行量化,并研究它们的变化规律的有效方法。本文首先参照分布式水文模型的通用框架,建立了能够描述土地覆被、土壤水力特性的坡面单元产流计算子模型和河网汇流计算子模型,然后将土壤侵蚀/输移模型和污染物输移模型嵌入到两个子模型中,形成分布式非点源污染模型,在总体框架的构建方面取得了新的发展。
     对分布式非点源污染模型的支撑技术进行了系统研究:以数据结构中的多叉树理论为基础提出了自动建立子流域拓扑关系的新算法;采用“+1”分级与Strahler分级的河网生成算法,实现了同级河段的多线程并行汇流计算及扩散波与动力波汇流计算的自动搭接。
     利用Visual C++开发环境结合GIS、数据库和多线程并行计算等多种技术,开发了综合计算平台。该计算平台具备了通用模型系统的基本功能及扩展功能,即前处理、模型计算、后处理功能,重视功能模块间的组织和配合,具有较强的适应性和可扩展性。平台的数据自动提取、制备功能得以增强,支持基于数据库和基于文件的数据流模式,能够支持Access、Oracle多种流行数据库格式。坡面计算采用多线程并行计算机制,能充分发挥多核计算机的工作效能。
     选取香溪河流域作为研究对象,收集整理了流域内的水文、气象、土地、植被等数据,同时计入工业、农业及生活排水量和排污量,对流域内的水文动态过程进行了模拟,并与流域内的兴山水文站的资料进行了对比验证。在水文模拟的基础上,对土壤侵蚀和氮磷污染负荷的变化过程、规律进行了模拟研究。结果表明,流域内的土壤侵蚀量与短时降雨强度正相关;月平均总氮浓度与降雨量存在明显的正相关,而月平均总磷浓度则主要受人类生产生活的影响;三峡蓄水后,随着污染物在香溪河库湾内的蓄积,库湾内的水质将有可能进一步恶化。
China is now faced with a nation wide water quality crisis, as eutrophication keeps invading and suffocating an increasing number of lakes and reservoirs. The Three Gorges reservoir, for example, has seen eutrophication occurrences in tributaries of the upper Yangtze due to point and non-point source pollution. With point source pollution being gradually put under control, the non-point source (NPS) pollution (nitrogen and phosphorus) stands as the major issue that needs to be addressed to help prevent or combat possible large scale eutrophication in the reservoir.
     A distributed NPS pollution model is developed to quantify sediment erosion, pollutants transportation, as well as to study changing law of pollutant loads. Based on the main frame of the distributed hydrology model, this model incorporates a sub-model for calculating runoff in the slope under various land cover, with a second sub-model for flow routing in river networks. Soil erosion/sediment transportation and pollutants transportation sub-models are also added to the above mentioned 2 sub-models, composing the integral distributed NPS pollution model. New advance in construction of the overall frame has been achieved.
     Systematic research is made on the supportive techniques for developing NPS pollution model. Starting from the multiple tree theory, a new algorithm for automatic topology among the sub-basins is put forward; parallel routing based on the automatic hierarchical organization of river networks, namely the Plus One ranking, is achieved. Additionally, the automatic joint usage of diffusive/dynamic wave method for rooting is implemented.
     An integrated application DWHEMT is developed with Visual C++, supported by GIS, database, multi-thread parallel calculation techniques. The application has basic and expanded functions of common model systems, including pre-processing of raw data, model calculation and post-processing of results. With much attention being paid to the organization and cooperation among the modules of function, the adaptability and expansibility of the application are enhanced further. The application has enhanced automatic data extraction and preparation capabilities. It supports both database and file based data exchange modes, and is also compatible with many popular database formats such as Access, Oracle etc. The multi-thread parallel calculation mechanism is adopted by slope unit calculation, which can exert the capacity of a multi-core PC to its full content.
     The Xiangxi River watershed is chosen as the case area. After the collection and preprocessing of DEM, image materials of remote sensing of land use and land cover, categorized distribution map of soil, hydrology data, meteorological data etc, a simulation of dynamic hydrological process is carried out and an example in Xingshan Hydrologic Station is served. On the basis of hydrology simulation, the variation processes and changing laws of sediment and total nitrogen and phosphorus within the Xiangxi River Watershed is studied. The results show that the soil erosion in Xiangxi River watershed has the positive correlated to the rainfall intensity in short-term; there are obvious positive correlation between monthly average total nitrogen concentration and rainfall, while the monthly average total phosphorous concentration is more deeply affected by human; the enhanced deposition and dilution effect, caused by the impoundment of Three-gorge Reservoir, are temporary. As the accumulation of pollution goes on in the gulf, the water quality there would probably continue deteriorating.
引文
[1] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European Hydrological System-Systeme Hydrologique European, "SHE", 2: Structure of a physically-based, distributed modeling system. Journal of Hydrology, 1986, 87: 61-77.
    [2] Agassi M, Bloem D, Ben-Hur M.Effect of drop energy and soil and water chemistry on infiltration erosion.Water Re-search Rea., 1994, 30(4):1187-1193.
    [3] Arnold J G, Allen P M, Bernhardt G.A comprehensive surface-ground-water flow model. J. Hydrol, 1993, 142: 47-69.
    [4] Arnold J G, Williams J R, Srinivasan R, et al.Model theory of SWAT.USDA, Agricultural Research Service Grassland, Soil and Water Research Laboratory, 1997.
    [5] Bathurst J C, Wicks J M.Framework for erosion and sediment yield modeling.In Recent Advances in the Modeling of Hydrologic Systems, Bowles DS, O’Connell PE (eds).Kluwer Academic: Boston, 1991:269–288.
    [6] Beasley D B, Huggins L F, Monke F J. Modeling sediment yield from agricultural watersheds. Journal of Soil and Water Conservation, 1982, 37(2): 113-117.
    [7] Beasley D B, Huggins L F.ANSWERS User's Manual(2nd). EPA-905/9-82-001, 1981.
    [8] Beldring S.Multi-criteria validation of a precipitation-runoff model[J].Journal of Hydrology.2002, 257(1-4):189-211.
    [9] Bennett R J. The problem of missing data on spatial surfaces. Ann. Assoc. Am. Geogr. Ocean, 1984, 27(3):521-541.
    [10] Bhaduri B, Harbor J, Engel B, et al. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a gis-nps model[J]. Environmental Management, 2000,26(6):643–658
    [11] Birkinshaw.Nitrogen transformation component for SHETRAN catchment nitrate transport modelling.Journal of Hydrology.2000, 230:1-17.
    [12] Blumberg A F. A Primer for ECOMSED 1.3 [EB/OL]. http://www. hydroqual. com/ehst~ecomsed.html, 2002:1-180.
    [13] Bradford J M, Huang C H.Splash and detachment by waterdrops.In: Menachem Agassi, ed.Soil Erosion, Conservation, and Rehabilitation.New York, USA: Marcel Dakker Inc, 1996:61-76.
    [14] Brandt C J.The size distribution of throughfall drops under vegetation canopies.1989, 16: 507–524.
    [15] Bicknell, B R, Imhoff, J C, Kittle, J, Donigian, A S, et al, Hydrological Simulation Program–FORTRAN, User’s Manual for Release 11, U.S.Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.1996.
    [16] Cappelaere B.Accurate diffusive wave routing[J].J.Hydraul.Eng., 1997, 123(3): 174-181.
    [17] Carpenter T M, Georgakakos K P, Sperfslage J A.On the parametric and nexrad-radar sensitivities of a distributed hydrologic model suitable for operational use.Journal of Hydrology, 2001, 253:169–193.
    [18] Cogle A L, Rao K P C, Yule D F, et al.Soil management for Alfisols in the semi-arid tropics:erosion, enrichment ratios and runoff.Soil Use and Management, 2002, 18:10–17.
    [19] Connolly R D, Silburn D M, Ciesjolka C A A, et al.Modeling hydrology of agricultural catchments using parameters derived from rainfall simulator data.Soil and Tillage Research, 1991, 20:33-44.
    [20] Connolly R D, Silburn D M. Distributed parameter hydrology model (ANSWERS) applied lo a range of catchment scales using rainfall simulator data II: Application to spatially uniform catchments. Journal of Hydrology, 1995, 172:105-125.
    [21] Cooper, D M, Ragab, R, Lewis, D R, et al.Modelling nitrate leaching to surface waters[R].Report for MAFF/NERC, UK, Oxfordshire, Wallingford, Institute of Hydrology.1994.
    [22] Maidment D R. Handbook of Hydrology.张建云等译.北京:科学出版社, 2002: 387-422.
    [23] De Roo A P J.Hazelhoff L, Heuvelink G B M.Estimating the effects of spatial variability of infiltration on the output of a distributed runoff and soil erosion model using Monte Carlo methods[J].Hydrological Processes, 1992, 6: 127-143.
    [24] Denis Allard.Geostatistical classification and class Kriging.Journal of Geographic Information and Decision Analysis, 1998, 2(2):77-90.
    [25] Dhakal A S, Sidle R C.Pore water pressure assessment in a forest watershed: simulations and distributed field measurements related to forest practices.Water Resources Research. 2004, 40(2): W02 405. DOI: 10.1029/2003 WR002017.
    [26] DiLuzio, M.D., Arnold, J.G.Formulation of a hybrid calibration approach for a physically based distributed model with NEXRAD data input [J].Journal of Hydrology.2004, 298:136-154.
    [27] Dillaha T A, Beasley D B. Distributed parameter modeling of sediment movement and particle size distributions. Transactions of the ASAE 1983, 26(6):1766-1772.
    [28] Djordjevi? Slobodan, Prodanovi? Dusan, Walters Godfrey A.Simulation of Transcritical Flow in Pipe/Channel Networks [J]. Journal of Hydraulic Engineering. 2004, 130(12): 1167-1178.
    [29] Ewen, J, Parkin, G, O'Connell, P E, SHETRAN: distributed river basin flow and transport modeling system.ASCE, Journal of Hydrologic Engineering.2000, 5(3):250– 258.
    [30] Fennema R J, Chaudhry M H.Explicit numerical schemes for unsteady free-surface flows with shocks.Water Resour. Res., 1990, 22(13):1923-1930.
    [31] Ferro.Evaluating overland flow sediment transport capacity. Hydrol.Prosess. 1998, 12:1895-1910.
    [32] Frere M H, Onstad C A, Hollan H N.A agricultural chemical transport model (ACTMO)[J]. Agricultural Research Service, 1975, 3: 56.
    [33] Gaas S I. Decision-aiding models: validation, assessment and related issues in policy analysis [J].Operations Research. 1983, 31: 603-631.
    [34] Ghulam M.Hashim., Abdullah W.Y.Wan. Prediction of soil and nutrient losses in a highland catchment.Water, Air, and Soil Pollution: Focus, 2005(5): 103–113.
    [35] Glaister.Flux difference splitting for open-channel flows [J]. Int. J. for Numer. Methods in Fluids, 1993, 16:629-654.
    [36] Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 2000, 228:113-129.
    [37] Govers G, Poesen J W A.Assessment of interrill and rill contribution to total soil loss from an upland field plot.Geomorphology, 1988, 1: 343-345.
    [38] Govers G. Evaluation of transporting capacity formula for overland flow, in Parsons, J.and Abrahams, A.D., Overland Flow.1992:243-274.
    [39] Govindaraju, R S.On the diffusion wave model for overland flow Water Resour.Res., 1998, 24(5):734-754.
    [40] Guo Qingchao, Jin Yee-Chung.Estimating coefficients in one-dimensional depth- averaged sediment transport model.Canadian Journal of Civil Engineering, CSCE, 2001, 28:536-540.
    [41] Guy, B T, Dickinson W T, and Rudra R P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow. Trans. ASAE, 1987(30):1378-1386.
    [42] Hairsine, P B, Moran C J, Rose C W. Recent development regarding the influence of soil surf characteristics on overland flow erosion, Aust. J. Soil Res.,1991(30): 249-264.
    [43] Havis R N, Smith R E, Adrian D D. Partitioning Solute Transport Between Infiltration and Overland Flow Under Rainfull. Water Resource Research.1992,28 (10):2569-2580.
    [44] Heng H H, Nikolaidis N P.Modeling of nonpoint source pollution of nitrogen at the watershed scale [J].Journal of the American Water Resources Association.1998, 34(2):359-374.
    [45] Horn.Implementing river water quality modelling issues in mesoscale watershed models for water policy demands - an overview on current concepts, deficits, and future tasks.Physics and Chemistry of the Earth.2004, 29: 725–737.
    [46] Huggins L F, Monke E J. The mathematical simulation of the hydrology of small watersheds. Technical Report Water Resources Research Center, Purdue University, 1966, 1:13.
    [47] Hutchinson M F.The application of thin-plate smoothing splines to continent-wide data assimilation.In: Jasper J D(ed.), Data Assimilation Systems.BMRC Res.Report No.27, Bureau of Meteorology, Melbourne, 1991:104-113.
    [48] Ishida T, Kawashima K.Use of Cokriging to estimate surface air temperature from elevation.Thero.Appl.Climatol 1993, 47:147-157.Lennon J J, Turner J R.Predicting the spatial distribution of climate: temperature in Great Britain.J.Anim.Ecol.1995, 64: 370-392.
    [49] Jayawardena A W. Daily river discharge prediction using GCM generated atmospheric data. IAHS Publ. 2001(270):159-165.
    [50] Krueger. Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: a critical note on modelling of phosphorus transfers. Hydrological Processes, 2007(21):557-562.
    [51] Lee S L, Non-point source pollution [J]. Fisheries, 1979, (2): 50-52.
    [52] León L F, Soulis E D, Kouwen N, et al.Nonpoint Source Pollution: A Distributed Water Quality Modeling Approach. Water Resource, 2001, 35(4): 997-1007.
    [53] Leonard R A, Knisel W G, Still D A.GLEAMS: ground-water loading effects of agricultural management systems, Trans ofthe ASAE, 1987, 30(5): 1403-1418.
    [54] Line D E. Non-point source Pollution.Water Environ. Res. 1998.70(4): 895-911.
    [55] Low H S.Effect of sediment density on bed-load transport.Proc.ASCE, 1989, 115:124-138.
    [56] Lunn R J, Adams R, Dunn S M.Development and application of a nitrogen modelling system for large catchments.J.Hydrol.1996, 174:285-304.
    [57] Martz L W, Garbrecht J.Numerical definition of drainage network and subcatchment areas from digital elevation models [J].Computers& geosciences, 1992, 18(6):747-761.
    [58] Meselhe E A, Holly F M.Numerical simulation of transcritical flow in open channels.Journal of hydraulic engineering.1997, 123(9): 774-783.
    [59] Meyer L D.How rain intensity affects interrill erosion. Trans. Am. Soc. Agric. Eng. 1981(24):1472–1475.
    [60] Moore I D, Grayson R B.Terrain based predication of runoff with vector elevation data.Water Resources Research, 1991, 27(6):1177–1191.
    [61] Morgan R P C, Quinton J N, Rickson R J.EUROSEM Documentation Manual.Silsoe College: Silsoe.1992.
    [62] Morgan R P C, Quinton J N, Smith R E, et al, Earth Surface Processes and Landforms, 1998(23):527-544
    [63] Earth Surf. Process. Landforms 23, 527–544
    [64] Nalder I A, Wein R W.Spatial interpolation of climatic normals:test of a new method in the Canadian boreal forest.Agricultural and Forest Meteorology, 1998, 92:211-225.
    [65] Orlandini S, Rosso R.Parameterization of stream channel geometry in the distributed modeling of catchment dynamics.Water Resources research, 1998, 34(8):1971–1985.
    [66] Pan Y, Li X, Gong P, et al. An integrative classification of vegetation in China based on NOAA/AVHRR and vegetation-climate indices of the Holdridge Life Zone.Int.J.Remote Sensing, 2003, 24: 1009-1027.
    [67] Park S W, Mitchell J K, Scarborough J N. Soil erosion simulation on small watersheds: a modified ANSWERS model.Transactions of the ASAE,1982(25): 1581-1588.
    [68] Quansah C.The effect of soil type, slope, rain intensity and their interactions on splash detachment and transport. J.Soil Sci.1981, 32:215–224.
    [69] Quinn P, Beven K, Chevalier P, et al, The prediction of hillslope flow paths for distributed Hydrological modeling using digital terrain models, Hydrological Processe, 1991, 5:59-79.
    [70] Refsgaard J C, Thorsen M, Jensen J B, et al. Large scale modelling of groundwater contamination from nitrate leaching. J. Hydrol. 1999, 221:117-140.
    [71] Reiche E W. Modelling water and nitrogen dynamics on a catchment scale. Ecol. Model. 1994, 76:371–384.
    [72] Renard K G, Foster G R, Yoder D C, et al. RUSLE revisited: Status, questions, answers, and the future[J]. Journal of Soil and Water Conservation, 1994, 49(3): 213-220.
    [73] Roberta Parry. Agricultural Phosphorus and water quality, A.U.S. environmental protection agency perspective. Journal of Environmental Quality, 1998, 27: 258-261.
    [74] Robeson S M.Influence of spatial sampling and interpolation on estimates of air temperature change.Climate Res 1994, 4:119-126.
    [75] Savic L J, Holly F M Jr. Dambreak flood waves computed by modified Godunov method[J]. J. Hydr. Res., 1993, 31(2):187-204.
    [76] Sellers P J, Randall D A .A revised land surface parameterization (SiB2) for atmospheric GCMs(Part I): model formulation.Journal of Climate. 1996, 9: 676-705.
    [77] Sharpley A N. The enrichment of soil phosphorus in runoff sediments. J. Environ. Qual., 1983, 9:521-526.
    [78] Shi X.Z., Yu D.S. et al., E.D. Warner and G.W. Petersen, 2002, A Framework for the 1:1,000,000 Soil Database of China. In proceedings of the 17th World Congress of Soil Science, in Bangkok.1757(1-5)
    [79] Singh, V P, Woolhiser, D A, 2002. Mathematical modeling of watershed hydrology. ASCE, Journal of Hydrologic Engineering, 2003, 7(4): 270-292.
    [80] Smith R E, Goodrich D, Quinton J N.Dynamic distributed simulation of watershed erosion: the KINEROS2 and EUROSEM models , Journal of Soil and Water Conservation, 1995(50):517–520.
    [81] Stoorvogel J J, Smaling E M A.Assessment of soil nutrient depletion in Sub-Saharan Africa 1983–2000, Report 28, Winand Staring Centre: Wageningen.1990.
    [82] Storm D E, Dillaha T A III, S Mostaghimi, et al. Modeling phosphorus transport in surface runoff. Trans of the ASAE, 1988(31):117-127.
    [83] Styczen M, Storm B.Modelling of nitrogen movements on a catchment scale.A tool for analysis and decision making.(1)Model description.Fert.Res., 1993, 36:1–6.
    [84] Taskinen A, Bruen M.Incremental distributed modelling investigation in a small agricultural catchment:1.Overland flow with comparison with the unit hydrograph model.Hydrological Processes, 2007(21):80-91.
    [85] Thomas D J, Beasley D B. A physically based forest hydrology model,II evaluation under natural conditions. Trans of the ASAE, 1986, 29(4): 973-981.
    [86] Todini E, Ferraresi M.Influence of parameter estimation uncertainty in Kriging.Journal of Hydrology, 1996, 175:555-566.
    [87] Torri D, Sfalanga M, Del Sette M. Splash detachment: runoff depth and soil cohesion, Catena, 1987, 14:149-155.
    [88] Tsihrintzis V A, Hector R.Fuentes, Rao K.Gadipudi. GIS-Aided Modeling of Nonpoint Source Pollution Impacts on Surface and Ground Waters.Water Resources Management, 1997, 11:207-218.
    [89] Van Genuchten M T.A closed-form equation for prediction the hydraulic conductivity of unsaturated soil.Soil Sci Soc Am J, 1980, 44: 892-898.
    [90] Vertessy R A, Hatton T J, O’Shaughnessy P J, et al. Predicting water yield from a mountain ash forest using a terrain analysis based catchment model[J]. Journal of Hydrology, 1993(150):665–700.
    [91] Visser S M, Sterk G. Nutrient dynamics-wind and water erosion at the village scale in the sahel[EB/OL]. Land Degradation & Development.Published online in Wiley InterScience. [2007-12-10]. http://www.interscience. wiley.com.
    [92] Whitehead P G, Wilson E J, Butterfield D. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchment (INCA), Part I. Model structure and process equations. Sci. Total Environ. 1998(210/211):547–558.
    [93] Williams J R, Renard K C, Dyke P T.A new method for assessing the effects of erosion on productivity-The EPIC model[J].Soil and Water Conservation, 1983, 38: 381-383.
    [94] Willmott C J, Robeson S M, Feddema J J.Estimating continental and terrestrial precipitation averages from rain-gauge networks.Int.J.Climatol., 1994, 14: 403-414.
    [95] Wischmeier W H, D D Smith.Predicting rainfall erosion losses- a guide to conservation planning.USDA Agriculture Handbook, USA: Washington D.C., 1978(537):58 .
    [96] Woolhiser D A, Ligget J A.Unsteady, one dimensional flow over a plane- The rising hydrograph, Water Resour.Res., 1967, 3(3):753-771.
    [97] Yang Dawen, Herath Srikantha, Musiake Katumi.Comparision of different distributed hydrological models for characterization of catchment spatial ariability.Hydrological Progresses, 2000 , 14: 403-416.
    [98] Zhang Xingchang, Shao Mingan.Effects of vegetation coverage and management practice on soil nitrogen loss by erosion in a hilly region of the Loess Plateau in China.[J].Acta Botanica Sinica, 2003, 45(10):1195-1203.
    [99] ZougmoréR B. Integrated water and nutrient management for sorghum production in semi-arid Burkina Faso[D]. Environmental Sciences, erosion and Soil & Water Conservation Group, Wageningen-UR, Wageningen, 2003:205.
    [100]蔡崇法,丁树文,史志华,等.GIS支持下三峡库区典型小流域土壤养分流失量预测[J].水土保持学报, 2001, 15(1):9-12.
    [101]蔡丽君,王国栋,张社奇.黄土高原降雨雨滴动能的分布律[J].水土保持通报, 2003, 23(4):28-29.
    [102]曹明,蔡庆华,刘瑞秋,等.三峡水库及香溪河库湾理化特征的比较研究[J].水生生物学报,2006,30(1):20-25.
    [103]陈力,刘青泉,李家春.坡面降雨入渗产流规律的数值模拟研究[J].泥沙研究, 2001(4):61-67.
    [104]陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学, 1992, 12(1):48-52;
    [105]陈小江,香溪河流域随机水质预测模型的研究及应用[硕士学位论文].武汉:武汉水利电力大学,2000.
    [106]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析.农业工程学报,2000, 16(5):44-47.
    [107]陈杨.一维跨临界流数值模拟研究进展[J].水利科技与经济,2006,12(8):496-498.
    [108]陈永良,刘大有,虞强源.从DEM中自动提取自然水系[J].中国图象图形学报,2002, 7(A):91-96.
    [109]褚君达,徐惠慈.河流底泥冲刷沉降对水质影响的研究[J].水利学报,1994 (11):42-47.
    [110]樊明兰.基于DEM的分布式水文模型在中尺度径流模拟中的应用研究[硕士学位论文].成都:四川大学,2004.
    [111]封志明,杨艳昭,丁晓强,等.气象要素空间插值方法优化[J].地理研究,2004, 23(3):357-364.
    [112]高龙华.遥感和GIS支持下流域非点源污染模型研究[博士学位论文].南京:河海大学,2006.
    [113]高扬.紫色土典型小流域非点源磷输出及其模型运用[硕士学位论文].重庆:西南大学,2007.
    [114]郭庆超.天然河道水流挟沙能力研究[J].泥沙研究,2006(5):45-51.
    [115]郭艺歌,康玲,王学立.小流域时段降雨量空间插值方法研究[J].中国农村水利水电,2006(2):41-43.
    [116]郝振纯,李丽.基于DEM的数字水系的生成[J].水文,2002,22(4):8-10.
    [117]何建邦,钟耳顺.论地理信息系统及其在地理学中的地理[J].地理学报,1993, 48(1):84-89.
    [118]贺缠生,傅伯杰,陈利项,等.非点源污染的管理及控制[J].环境科学,1998, 19(5):15-18.
    [119]贺瑞敏,张建云,陆桂华.我国非点源污染研究进展与发展趋势[J].水文,2005, 25(4):10-13.
    [120]洪华生,黄金良,张珞平,等. AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学,2005,26(4): 63-69.
    [121]侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1990:69—78.
    [122]胡远安,程声通,贾海峰.非点源模型中的水文模拟——以SWAT模型在芦溪小流域的应用为例[J].环境科学研究,2003,16(5):29-36.
    [123]黄丽,丁树文,董舟,等.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(1):8-13.
    [124]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1):6-10.
    [125]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997, 17(5):5-10.
    [126]惠二青,刘贯群,邱汉学,等.适用于中大尺度流域的非点源污染模型[J].农业环境科学学报,2005,24(3):552-556.
    [127]惠阳,张晓华,陈珠金.香溪河流域资源环境状况及开发策略探讨[J].长江流域资源与环境,2000,9(1):27-33.
    [128]孔凡哲,芮孝芳.数字高程模型在流域水文模型应用中的若干问题[J].水文,2002 22(5):1-4.
    [129]雷孝章,王金锡,赵文谦.森林对降雨径流的调蓄转化规律研究[J].四川林业科技, 2000,21(2):7-12.
    [130]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:290-291.
    [131]李春红,任立良,达卫特,等.数字流域水系构建方法浅析[J].水文,2002, 22(6):1-4.
    [132]李怀恩,沈晋,刘玉生.流域非点源污染模型的建立与应用实例[J].环境科学学报, 1997,17(2):141-147.
    [133]李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护.1996(2):14-18
    [134]李俊波,华珞,冯琰.坡地土壤养分流失研究概况[J].土壤通报,2005,36(5): 753-759.
    [135]李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265.
    [136]李义天,尚全民.一维不恒定流泥沙数学模型研究[J].泥沙研究,1998(1):81-87.
    [137]李志林,朱庆.数字高程模型[M].湖北:武汉测绘科技大学出版社,2000:6-7
    [138]林芳荣,刘晨.面源污染研究的新进展川[J].珠江水利水电信息,1993,(5):1-8.
    [139]林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002, 57(1):47-55.
    [140]刘登伟,封志明,杨艳昭.海河流域降水空间插值方法的选取[J].地球信息科学,2006, 8(4):75-79.
    [141]刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J],地理学报,1988,43(4): 329-339.
    [142]刘家宏.黄河数字流域模型[博士学位论文].北京:清华大学水利水电工程系,2005.
    [143]刘金清,陆建华.国内外水文模型概论[J].水文,1996,16(4): 4-8.
    [144]刘金涛,张佳宝.山区降水空间分布的插值分析[J].灌溉排水学报, 2006, 25 (2):34-38.
    [145]刘青泉,李家春,陈力,等.坡面流及土壤侵蚀动力学(Ⅰ)[J].力学进展,2004a, 34(3):360-372.
    [146]刘青泉,李家春,陈力,等.坡面流及土壤侵蚀动力学(Ⅱ)[J].力学进展,2004b, 34(4):493-506.
    [147]刘阳,孙良凤,刘晓端,等.坡面土壤侵蚀养分流失的计算机数值模拟[J].农业系统科学与综合研究,2003,19(3):183-185.
    [148]刘阳,王凯,徐淳宁,等.小流域土壤养分运移的数学模型及模拟[J].吉林大学学报:信息科学版,2004,22(3):279-282.
    [149]牛志明,解明曙.非点源污染模型在土壤侵蚀模拟中的应用及发展动态[J].中国水土保持,2001(3):20-22.
    [150]潘耀忠,龚道溢,邓磊,等.基于DEM的中国陆地多年平均温度插值方法[J].地理学报,2004,59(3):366-374.
    [151]庞靖鹏.非点源污染分布式模拟——以密云水库水源地保护为例[博士学位论文].北京:北京师范大学水科学研究院,2007.
    [152]彭近新,陈惠君.水质富营养化与防治[M].北京:中国环境科学出版社,1988.
    [153]朴芬淑,郭仁东.流域汇流计算的三种方法[J].沈阳大学学报,1999(2):15-18.
    [154]齐德昱.数据结构与算法[M].北京:清华大学出版社,2003.
    [155]钱宁,张仁,周志德.河床演变学[M].北京:科学出版社,1987:26-27.
    [156]秦福来,王晓燕,张美华.基于GIS的流域水文模型2SWAT(Soil and Water Assessment Tool)模型的动态研究[J].首都师范大学学报:自然科学版,2006,27(1):81-85.
    [157]任立良,刘新仁.数字高程模型信息提取与数字水文模型研究进展[J].水科学进展, 2000,11(4):463-469.
    [158]任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展, 1999,10(2):129-134.
    [159]芮孝芳,黄国如.分布式水文模型的现状和未来[J].水利水电科技进展,2004, 24(2):55-58.
    [160]芮孝芳.Muskingum法及其分段连续演算的若干理论探讨[J].水科学进展,2002,13(6): 682-688.
    [161]芮孝芳.产汇流理论[M].水利电力出版,1995:59.
    [162]邵明安,张兴昌.坡面土壤养分与降雨、径流的相互作用机理及模型[J].世界科技研究与发展,2001(2):7-13.
    [163]石朋,芮孝芳.降雨空间插值方法的比较与改进[J].河海大学学报:自然科学版,2005, 33(4):361-365.
    [164]石朋,网格型松散结构分布式水文模型及地貌顺势单位线研究[博士学位论文].江苏:河海大学水资源环境学院,2006.
    [165]史学正、于东升、潘贤章、孙维侠、王洪杰和龚子同,2004,我国1:100万土壤数据库及其应用。面向农业与环境的土壤科学,科学出版社,142-145.
    [166]舒栋才.基于DEM的山地森林流域分布式水文模型研究[博士学位论文].四川:四川大学水电学院,2005.
    [167]唐莉华.分布式小流域产汇流及产输沙模型的研究[硕士学位论文].北京:清华大学,2002.
    [168]王光谦,李铁键,贺莉,等.黄土丘陵沟壑区沟道的水沙运动模拟[J].泥沙研究,2008,3:页码待刊
    [169]王纲胜,夏军,牛存稳.分布式水文模拟汇流方法及应用[J].地理研究,2004, 23(2):175-182.
    [170]王宏,杨为瑞,高景华.流域综合水质模型的研究[J].1995,14(11): 17-19.
    [171]王加虎.分布式水文模型理论与方法研究[博士学位论文].南京:河海大学水资源环境学院,2006.
    [172]王力.林地土壤水分运动研究述评[J].林业科学,2005,41(2):147-153.
    [173]王全九,张江辉,丁新利,等.黄土区土壤溶质径流迁移过程影响因素浅析[J].西北水资源与水工程,1999,10(1):9-13.
    [174]王兴奎,邵学军,李丹勋.河流动力学基础[M].北京:中国水利水电出版社,2002。
    [175]王儒述.三峡工程的环境影响及其对策[J].长江流域资源与环境.2002, 11(4): 317-322.
    [176]王少平,俞立中,许世远,等.苏州河非点源污染负荷研究[J].环境科学研究,2002, 15(6):20-24.
    [177]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资料学报, 2003,18(2):168-173.
    [178]王中根,夏军,刘昌明,等.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报,2007,22(4):649-655.
    [179]魏文秋,于建营.地理信息系统在水文学和水资源管理中的应用[J].水科学进展,1997 (9):296-300.
    [180]魏勇,陈明强,李允.关于方位-距离加权法的多种改进[J].石油学报,1998,19(4): 89-93.
    [181]温家宝.国务院政府工作报告2005[R].北京:2005.
    [182]邢可霞,郭怀成,孙延枫,等.基于HSPF模型的滇池流域非点源污染模拟[J].中国环境科学,2004,24(2): 229-232.
    [183]徐小清.三峡库区非线性延迟的环境效应及其防治对策.长江流域资源与环境,2002, 11(2):74-78.
    [184]许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学水利水电工程系,2007.
    [185]晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报, 2000,20(3):332-337.
    [186]杨国录.河流数学模型[M].北京:海洋出版社,1993:112-113.
    [187]杨胜天,刘昌明,王鹏新.黄河流域土壤水分遥感估算[J].地理科学进展,2003,22 (5): 454-462.
    [188]叶绿.三峡库区香溪河水华现象发生规律与对策研究[硕士学位论文].南京:河海大学环境科学与工程学院,2006.
    [189]余炜敏.三峡库区农业非点源污染及其模型模拟研究[博士学位论文].重庆:西南农业大学,2005.
    [190]禹雪中,杨志峰,钟德钰,等.河流泥沙与污染物相互作用数学模型[J].水利学报,2006, 37(1):10-15
    [191]禹雪中,钟德钰,李锦秀,等.水环境中泥沙作用研究进展及分析[J].泥沙研究, 2004(6):75-81.
    [192]郁淑华等.长江上游致洪暴雨标准初探[J].空军气象学院学报, 1995, 16(2): 147-150.
    [193]曾剑,楼越平,程杭平.温瑞塘河河网水质模型研究[J].浙江水利科技,2006 (1):41-51.
    [194]张超,郑钧,张尚弘,等. ArcGis9.0中基于DEM的水文信息提取方法[J].水利水电技术,2005,36(11):1-4.
    [195]张珂.基于DEM栅格和地形的分布式水文模型构建及其应用[硕士学位论文].南京:河海大学水资源环境学院,2005.
    [196]张瑞瑾.河流泥沙动力学.北京:水利电力出版社,1989.
    [197]张兴昌,邵明安.侵蚀泥沙、有机质和全N富集规律研究[J].应用生态学报,2001(4): 541-544.
    [198]张志明,范钟秀.气象学与气候学[M].北京:中国水利水电出版社,1996.
    [199]章北平.东湖面源污染的数学模型[J].武汉城市建设学院学报,1996,13(1): 1-8.
    [200]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理.地理学报,1998, 53(5):422-428.
    [201]中华人民共和国水利部.2004年中国水资源公报[R].北京:2005.
    [202]周贵云,刘瑜,邬伦.基于数字高程模型的水系提取算法[J].地理学与国土研究,2000, 16(4):77-81.
    [203]朱萱,鲁纪行,边金钟等.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学,1994,6(5):6-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700