用户名: 密码: 验证码:
用于高盐度再生水富营养化控制的蓖齿眼子菜克藻效应与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对天津开发区再生水景观河道夏秋季节的富营养化问题,选用该河道中的优势沉水植物——蓖齿眼子菜为植物材料,以引起该河道富营养化的两种优势藻种——蛋白核小球藻、铜绿微囊藻为研究对象,主要研究了蓖齿眼子菜对高盐度再生水景观河道的富营养化藻类的克藻效应及其机理。主要成果结论如下:实验室光照培养箱中,在蓖齿眼子菜与两种藻的共培养、培植水培养、水浸提液培养的条件下,蓖齿眼子菜对两种藻的生长均产生了明显的抑制作用。其中共培养条件下的效果较好,藻液吸光值OD650的相对抑制率在实验3天后可以达到90%;藻细胞个数降至1.0×105个/mL以下。蓖齿眼子菜所分泌的克藻化学物质是产生克藻效应的主要原因。
     通过响应曲面法Box-Behnken实验和模型分析,得出蓖齿眼子菜对小球藻的藻液吸光值OD650、藻细胞个数的相对抑制率在温度、光照强度、全盐量分别位于(43℃,2649lx,3787mg/L)、(42℃,2683lx,3706mg/L)时达到最佳点。铜绿微囊藻的相应指标位于(23℃,2700lx,4415mg/L)、(24℃,2891lx,4407mg/L)时抑制率达到最大值。模型经过方差分析具有高度显著性,相关系数较高,模型预测值与真实值之间拟合度较好。
     对气-质联机鉴定出的克藻物质进行单一克藻效应实验,琥珀酸对小球藻抑制效果最好,棕榈酸对铜绿微囊藻效果最好;组合效应实验中,棕榈酸+琥珀酸对于铜绿微囊藻的组合协同作用最大,两种组合对小球藻出现拮抗作用,其余为协同作用。
     在克藻化学物质的作用下,两种藻叶绿素a和细胞可溶性蛋白的生物合成受明显抑制,其中小球藻有低浓度促进、高浓度抑制的规律。小球藻SOD酶活性有抗逆性反应,表现为Fe-SOD前三天有明显升高,但是仍造成了不可逆伤害。铜绿微囊藻总SOD酶活性随克藻物质浓度加大而逐步降低,但是Mn-SOD酶表现出了抗逆性反应。总的来说,两种藻的正常生理功能受到了克藻物质的破坏,藻体最终凝聚沉淀,直至死亡。
     连续流小试反应器中,蓖齿眼子菜对真实再生水景观河道中藻类的抑制作用明显,所有处理组叶绿素a的含量均低于对照。水力停留时间越长,再生水景观水体富营养化的可能性越大。
The allelopathic effects of submerged macrophytes against algae and its mechanism were investigated in this study based on the Hi-tech Research and Development Program of China——Water Environmental Quality Improvement Technology and Comprehensive Demonstration in Binhai District of Tianjin. Salt-proof submerged macrophytes——Potamogeton pectinatus,which is one of the advantageous species in the TEDA reclaimed water landscape water body, was the plant material in this paper. Two kinds of eutrophicated alga——Chlorella vulgaris and Microcystis aeruginosa, were selected as the objects of the allelopathic effects.
     The results showed that Potamogeton pectinatus exerted obvirously inhibitory effect on the two alga growth under coexistence culture, solution culture and aqueous leachate culture conditions. The relatively inhibitory rate of OD650 was 90% and algal cell number was less than 1.0×105cells/mL under coexistence culture. Not the nutrients competition but allelopathic chemicals that secreted by Potamogeton pectinatus was the primary cause of algal growth inhibition.
     Response surface methodology (RSM) based on three-level three-factor Box-Behnken design of experiment was used to optimize the environmental factors of allelopathy. The critical factors selected for this investigation were temperature, light intensity and total dissolved solids. By analyzing the response surface plots, the optimum ranges of the relatively inhibitory rate of OD650 and algal cell number lied in (43℃,2649lx,3787mg/L), (42℃,2683lx,3706mg/L) respectively for Chlorella vulgaris. The optimal conditions to gain were (23℃,2700lx,4415mg/L), (24℃,2891lx,4407mg/L) respectively for Microcystis aeruginosa. The results of RSM indicated that experimental values were in good agreement with the predicted ones and the models were satisfactory and accurate.
     According to the methods of the Organization for Economic Cooperation and Development (OECD) for algal growth inhibition test, in the single-effect tests of the three allelopathic chemicals identified by gas chromatography-mass (GC-Mass) spectrometry, succinic acid had the best effect on Chlorella vulgaris and palmitic acid had the best effect on Microcystis aeruginosa. In the combined-effect tests, the group of palmitic acid + succinic acid had the best additive effect on Microcystis aeruginosa and two groups had opposite effect on Chlorella vulgaris.
     The chlorophlla-a content and protein in Chlorella vulgaris and Microcystis aeruginosa were obviously inhibited under the stress of allelopathic chemicals. Fe-SOD enzyme activity of Chlorella vulgaris increased firstly, but decreased as treatment time went on. The total-SOD enzyme activity of Microcystis aeruginosa decreased with allelopathic compound concentrations. But the Mn-SOD enzyme activity of Microcystis aeruginosa exerted resistance response. In short, the physiological founction of the two algae were damaged by allelopathic compounds and finally algae cell flocculates and subsides to death.
     In the continuous flow reator test, salt-proof Potamogeton pectinatus inhibited the growth of alga of real reclaimed scenic water with high salinity. The chlorophlla-a contents of all treatment tests were lower compared with the reactor without plants. The possibility of eutrophication in reclaimed scenic water was in direct proportion to the hydraulic residence time (HRT).
     The three main innovation points of this study as follows:①the allelopathic effects of salt-proof Potamogeton pectinatus on Chlorella vulgaris and Microcystis aeruginosa, which are the main cause of eutrophication of TEDA reclaimed scenic water with high salinity;②the effects of three environmental factors on allelopathic effects by response surface methodology at the same time;③the mechanism of the allelopathy against algae.
引文
[1]陈立,王启山,邱慎初,等.缺水地区实现水资源良性循环的技术途径[J].中国给水排水, 2003, 19(2): 32―33.
    [2]魏娜,程晓如,刘宇鹏.浅谈国内外城市污水回用的主要途径[J].节水灌溉, 2006, 2(1): 31―36.
    [3]J Crook, R Y Surampalli. Water reclamation and reuse criteria in the U.S.[J]. Water Science and Technology, 1996, 33(10-11): 451―462.
    [4]廖日红.北京市再生水综合利用策略研究[J].水利发展研究, 2004, 2(1): 32―34.
    [5]樊开青,吕伟娅.再生水回用于景观水体的初步探讨[J].环境保护科学, 2005, 31 (8): 28―30.
    [6]M Ogoshi, Y Suzuki, T Asano. Water reuse in Japan[J]. Water Science and Technology, 2001, 43 (10): 17―23.
    [7]J Leeuwen, C Pipe Martin, R M Lehmann. Water reclamation at south Caboolture, Queensland, Australia[J]. Ozone Science and Engineering, 2003, 25(2): 107―120.
    [8]K Exall, J Marsalek, K Schaefer. A review of water reuse and recycling, with reference to Canadian practice and potential: 1.Incentives and implementation [J]. Water Quality Research Journal of Canada, 2004, 39(1): 1―12.
    [9]H J Qin, K A Kekre, G H Tao, et al. New option of MBR-RO process for production of NEWater from domestic sewage[J]. Journal of Membrane Science, 2006, 272(1-2): 70―77.
    [10]A Vallentin. Agricultural use of reclaimed water—experiences in Jordan[J]. Water Practice and Technology, 2006, 1(2): 1―5.
    [11]M Juanico, E Friedler. Wastewater reuse for river recover in semiarid in Israel[J]. Water Science and Technology, 1999, 40(1): 43―50.
    [12]A N Angelakis, L B Ontous. Wastewater reclamation and reuse in Eureau countries[J]. Water Policy, 2001, 3(1): 47―59.
    [13]M Salgot, C Verges, A N Angelakis. Risk assessment in wastewater recycling and reuse[J]. Water Science and Technology: Water Supply, 2003, 9(3): 301―309.
    [14]周彤.污水再生利用是解决城市缺水的有效途径[J].中国给水排水, 2006, 22(9): 183―187.
    [15]高颍,夏恺.中水解北京之“渴”[J].环境经济, 2004, 1(12): 46―51.
    [16]田弘,王菊莲,梁延华.天津市再生水水质现状分析和对回用的建议,全国排水委员会2006年年会论文集,厦门, 2006, 472―474.
    [17]钱靖华,田宁宁.再生水回用于景观水体存在的问题及防治对策[J].给水排水, 2006, 32(5): 71―74.
    [18]王连生主编.环境科学与工程词典[M].北京:化学工业出版社, 2002. 558,35,375―376.
    [19]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社, 1997.
    [20]范成新,杨春霞主编.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社, 2007: 8―12.
    [21]张智,林艳,梁健.水体富营养化及其防治[J].重庆环境科学, 2002, 24(3): 52―55.
    [22]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社, 2002.
    [23]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社, 2003.
    [24]周栋,王瑟澜,杨云,等.景观水体“水华”防治措施[J].净水技术, 2004, 23(5): 28―31.
    [25]J H Jeong, H J Jin, C H Sohn, et al. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae[J]. Journal of Applied Phycology, 2000, 12(1): 37―43.
    [26]M R Perrow, M Meijeer, P Dawidowicz,et al. Biomanipulation in shallow lake: state of the art[J]. Hydrobiologia, 1997, 342-343(1): 355―365.
    [27]刘春光,邱金泉,王雯,等.富营养化湖泊治理中的生物操控理论[J].农业环境科学学报, 2004, 23(1): 198―201.
    [28]V.H.Smith, D.Trlman, J.C.Nekola. Eutrophication:impacts of excess nutrient inputs on fresh water marine and terrestrial ecosystems [J].Environmental Pollution, 1999, 100(2): 179―196.
    [29]刘静玲,杨志峰,盛连喜.北方地区淡水危机与湖泊生态修复[J].东北师范大学学报(自然科学版), 2002, 34(1): 58―65.
    [30]C J Richardon, S S Qian. Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function[J]. Environmental Science and Technology, 1999, 33(10): 1545―1661.
    [31]J F Reilly. Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge[J]. Ecological Engineering, 2000, 14(1): 33―47.
    [32]王超,王沛芳.城市水生态系统建设与管理[M].北京:科学出版社, 2004.
    [33]颜素珠.中国水生植物图谱[M].北京:科学出版社, 1983.
    [34]吴芝瑛,吴洁,虞左明.杭州西湖水生高等植物的修复与水生生态修复[J].环境污染与防治, 2005, 27(1): 28―30.
    [35]秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理[M].北京:科学出版社, 2004.
    [36]彭少麟,邵华.化感作用的研究意义与发展前景[J].应用生态学报, 2001, 12(5): 780―786.
    [37]E L Rice. Allelopathy[M]. Orlando:Academic Press. 1984
    [38]E T Nilsen, Inderjit. Bioassays and field studies for allelopathy in terrestrial plants: progress and problems[J]. Critical Reviews in Plant Sciences, 2003, 22(2): 221―238.
    [39]陈业高主编.植物化学成分[M].北京:化学工业出版社,2004.
    [40]孔垂华,徐涛.胜红蓟化感作用研究——主要化感物质的释放途径和活性[J].应用生态学报, 1998, 9(3): 332―336.
    [41]A U Mallik. Challenges and Opportunities in allelopathy research: a brief overview [J]. Journal of Chemical Ecology, 2000, 26(9): 2007―2009.
    [42]C H Kong, X H Xu, F Hu,et al. Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants[J]. Chinese Science Bulletin, 2002, 47(5):839―843.
    [43]C H Kong, X H Xu, B Zhang, et al. Two compounds from allelopathic rice accession and their inhibitory effects on weeds and fungal pathogens[J]. Phytochemistry, 2004, 65(9): 1123―1128.
    [44]孔垂华,胡飞.植物化感作用及其应用[M].北京:中国农业出版社, 2001.
    [45]孙文浩,余叔文.相生相克效应及其应用[J].植物生理学通讯, 1992, 28(2): 81―87.
    [46]孙文浩,俞子文,郭克勤等.凤眼莲克藻化合物的生物检测[J].植物生理学通讯, 1991, 27(6): 433―436.
    [47]俞子文,孙文浩,郭克勤等.几种高等水生植物的克藻效应[J].水生生物学报, 1992, 16 (1): 1―7.
    [48]孙文浩,余叔文,杨善元等.凤眼莲根系分泌物中的克藻化合物[J].植物生理学报, 1993, 19(1): 92―96.
    [49]杨善元,俞子文,孙文浩等.凤眼莲根系中抑藻物质分离与鉴定[J].植物生理学报, 1992, 18(4): 399―402.
    [50]曾北危.生物入侵[M].北京:化学工业出版社,2004.
    [51]何池全,叶居新.石菖蒲(Acrous tatarinowii)克藻效应的研究[J].生态学报, 1999, 19(5): 754―758.
    [52]叶居新,何池全,陈少风.石菖蒲的克藻效应[J].植物生态学报,1999,23(4):379―384.
    [53]戴树桂,赵凡,金朝晖等.香蒲植物提取物的抑藻作用及其分离鉴定[J].环境化学, 1997, 16(3): 268―271.
    [54]唐萍,吴国荣,陆长海等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境, 2001, 17(3): 42―44.
    [55]王立新,吴国荣,王建安等.黑藻(Hydrilla verticillata)对铜绿微囊藻(Microcystis aeruginosa)抑制作用[J].湖泊科学,2004,16(4):337―342.
    [56]鲜启鸣,陈海东,邹惠仙等.四种沉水植物的克藻效应[J].湖泊科学, 2005, 17(1): 75―80.
    [57]鲜启鸣,陈海东,邹惠仙等.三种沉水植物水浸提液中有机酸成分分析[J].植物资源与环境学报, 2004, 13(3): 57―58.
    [58]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水, 2004, 20(11): 18―21.
    [59]李锋民,胡洪营.芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究[J].环境科学, 2004, 25(5): 89―92.
    [60]S Nakai, M Hosomi, M Okada, et al. Control of algal growth by macrophytes and macrophyte -extracted bioactive compounds[J]. Water Science and Technology, 1996, 34(7-8): 227―235.
    [61]S Nakai, Y Inone, M Hosomi, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes [J]. Water Science and Technology, 1999, 39(8): 47―53.
    [62]S Nakai, Y Inone, M Hosomi, et al. Algal growth inhibition effects and inducement modes by plant-producing phenols[J]. Water Research, 2001, 35(7): 1855―1859.
    [63]S Nakai, Y Inone, M Hosomi, et al. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa [J]. Water Research, 2000, 34(11): 3026―3032.
    [64]Y Suzuki, T Takabayashi, T Kawaguchi, et al. Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminatia religiosa Miyabe (Phaeophyta)[J]. Journal of Experimental Marine Biology and Ecology, 1998, 225(1): 69―77.
    [65]Y Goto, Y Kojima, T Nakayama, et al. Allelopathic sesquiterpenoids from rhizome of Pdtasites japonicus ssp. giganteus Kitam[J]. Phytochemistry, 2001, 57(1): 109―113.
    [66]M Mjdde, B A Faafeng. Ceratophyllure demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude[J]. Freshwater Biology, 1997, 37(2): 355―365.
    [67]E V Doke, W J Bund. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities:allelopathy versus other mechanisms[J]. Aquatic Botany, 2002, 72(2): 261―274.
    [68]J Qiu, L D Shung. Comparative studies on the allelopathic effect of two different strins of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense [J]. Journal of Experimental Marine Biology and Ecology, 2003, 293(1): 41―55.
    [69]M Dellagreca, A Fioretino, M Isidori, et al. Antialgal ent-labdane diterpenes from Ruppia maritima [J]. Phytochemistry, 2000, 55(8): 909―913.
    [70]J Chattopadhyay. Effect of toxic substances on a two-species competitive system [J]. Ecological Modelling, 1996, 84(1-3): 287―289.
    [71]H Sole, E Garicia-Ladona, P Ruardij, et al. Modelling allwlopathy among marine algae [J]. Ecological Modelling, 2005, 183(4): 373―384.
    [72]C H Kong, F Hu, X H Xu. Allelopathic potential and chemical constituents of colatiles from Ageratum conyzoides under stress[J]. Journal of Chemical Ecology, 2002, 28(6): 1173―1182.
    [73]S L Peng, J Wen, Q F Guo. Mechanism and active variety of allelochemicals[J]. Journal of Integrative Plant Biology, 2004, 46(7): 757―766.
    [74]M H Pramanik, M Nagai, T Asao, et al. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture[J]. Journal of Chemical Ecology, 2000, 26(8): 1953―1967.
    [75]N C Lobon, J C Gallego, T S Diaz., et al. Allelopathic potential of Cistus ladanifer chemicals in response to variations of light and temperature[J]. Chemoecology, 2002, 12(1): 139―145.
    [76]S U Chon, J H Coutts, C J Neison Effects of light, growth media and seedling orientation on bioassays of alfalfa autotoxicity[J]. Agronomy Journal, 2000, 92(4): 715―720.
    [77]M Mucciarelli, S Scannerini, M Gallino, et al. Effects of 3, 4-dihydroxybenzonic acid on tobacco (Nicotiana tabacum L.) cultured in vitro—growth regulation in callus and organ cultures[J]. Plant Biosystem, 2000, 134(1): 185―192.
    [78]A Sinkkonen. Density-dependent chemical interference—an extension of the biological response model [J]. Journal of Chemical Ecology, 2001, 27(7): 1513―1523.
    [79]N Chaves, T Sosa, J C Alias, et al. Identification and effects of interaction phytotoxic compounds from exudate of cistus landanifer leaves [J]. Journal of Chemical Ecology, 2001, 27(3): 611―621.
    [80]M Saario, S Koivusalo, I Laakso, et al. Allelopathic potential of Lingonberry (Vaccinium vitis-idaea L.) litter for weed control[J]. Biological Agriculture and Horticulture, 2002, 20(1): 11―28.
    [81]M Olofsdotter, L B Jensen, B Courtois Mproving crop competitive ability using allelopathy—an example from rice[J]. Plant Breed, 2002, 121(1): 1―9.
    [82]H Kato-Noguchi. Effects of lemon balm (Melissa officnalis L.) extract on germination and seedling growth of six plants[J]. Acta Physiologiae Plantarum, 2002, 23(1): 49―53.
    [83]H Kato-Noguchi. Assessment of the allelopathic potential of extracts of Evolvulus alsinoides [J]. Weed Research, 2000, 40(4): 343―350.
    [84]S Pflugmacher. Possible allelopathic effects of cyanotoxins, with reference to microcystin in aquatic ecosystems[J]. Environmental Toxicology and Chemistry, 2002, 17(2): 407―413.
    [85]C R S Baleroni, M L L Ferrarese, N.E.Souza, et al. Lipid accumulation during canola seed germination in response to cinnamic acid derivatives[J]. Biologia Plantarum, 2000, 43(2): 313―316.
    [86]N T Doan, R W Rickards, J M Rothschid, et al. Allelopathic actions of the alkaloid 12-epi- hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix[J]. Journal of Applied Phycology, 2000, 12(3-5): 409―416.
    [87]A Muscdo, M R Panuccio, M Sidari. The effect of phenols on respiratory enzymes in seed germination—respiratioy enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils[J]. Plant Growth Regulation, 2001, 35(1): 31―35.
    [88]R S Zeng, S M Luo, Y H Shi, et al. Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants[J]. Agronomy Journal, 2001,93(1): 72―79.
    [89]G N Ervin, R G Wetzel. Allelochemical antotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae)[J]. American Journal of Botany, 2000, 87(6): 853―860.
    [90]R R Barkosky, F A Einhellig, J L Butlor. Caffeic acid-induced changes in plant -water relationships and photosynthesis in leafy spurge Euphorbia esula [J]. Journal of Chemical Ecology, 2000, 26(9): 2095―2109.
    [91]L T Weir, S W Park, M J Vivanco. Biochemical and physiological mechanisms mediated by allelochemicals [J]. Current opinion in Plant Biology, 2004, 7(5): 472―479.
    [92]F E Dayan, S B Watson, J G G Galindo, et al. Phytotoxicity of quassinoids: physiological responses and structural requirements [J]. Pesticide Biochemistry and Physiology, 1999, 65(1): 15―24.
    [93]S Chor, S K Choi, S Jung, et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Protection, 2002, 21(10): 1077―1082.
    [94]I M Chung, K H Kim, J K Ahm, et al. Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts[J]. Crop Protection, 2002, 21(10): 913―920.
    [95]S Leblanc, R P Frances, Rocio Aranda-Rodriguez. Allelopathic effects of the toxic Cyanobacterium Microcystis aeruginosa on duckweed, Lemna gibba L.[J]. Environmental Toxicology, 2005, 20(1): 67―73.
    [96]M Haseeb. Irfanullah, Brian Moss. Allelopathy of filamentous green algae[J]. Hydrobiology, 2005, 543(1): 169―179.
    [97]G Mulderij, V D Ellen, G M Roelofs. Differential sensitivity of green algae to allelopathic substances from Chara[J]. Hydrobiology, 2003, 49(2): 261―271.
    [98]S Korner, A Nicklisch. Allelopathic groeth inhibition of selected phytoplankton species by submerged marcrophytes[J]. Journal of Phycology, 2002, 38(5): 962―971.
    [99]E V Donk, J Wouter, V Bund. Impact of submerged macrophytes including charophytes on phyto and zooplankton communities: allelopathy versus other mechanisms[J]. Aquatic Botany, 2002, 72(3-4): 261―274.
    [100]D Hartog, C Hennen, J Noten, et al. Chormosome numbers of the European seagrasses[J]. Plant Systematics and Evolution, 1987, 156(1): 55―59.
    [101]M G Anderson, J B Low. Use of Sago Pondweed by waterfowl on the Delta marsh Manitoba[J]. Journal of Wildlife Management, 1976, 40(2): 233―242.
    [102]刁正俗.中国眼子菜科调查报告[J].渝州大学学报(自然科学版),1996,13(4): 1―11.
    [103]陈开宁,强胜,李文朝,等.蓖齿眼子菜繁殖多样性研究[J].植物生态学报, 2003, 27(5): 672―676.
    [104]王海珍,刘永定.水生植被对富营养化湖泊生态恢复的作用[J].自然杂志, 2002, 24(1): 33―36.
    [105]李文朝,杨清心.乌伦古湖水生植被研究[J].海洋与湖沼, 1993, 24(1): 100―108.
    [106]杨清心.东太湖水生植被的生态功能及调节机制[J].湖泊科学, 1998, 10(1): 67―72.
    [107]林清,王绍令.沉水植物稳定碳同位素组成及影响因素分析[J].生态学报, 2001, 21(5): 806―809.
    [108]G M Dijk, W Vierssen. Survival of a Potamogeton pectinatus L. population inder various light condition in a shallow eutrophic lake (Lake Veluwe) in the Netherlands [J]. Aquatic Botany, 1991, 39(1): 121―129.
    [109]J Standsfield, B Moss, K Irvine. The loss of submerged plants with eutrophication potential role of organchlorine pestcides: a palaeoecological study[J]. Freshwater Biology, 1989, 22(1): 109―132.
    [110]J I Almquist, L Kautsky. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper[J]. Aquatic Botany, 1995, 52(3): 205―216.
    [111]孙祥中编.中国植物志(第八卷)[M].北京:科学出版社.1989.79
    [112]潘学礼,李芸.滇池生态恢复研究[J].水文水资源, 2000, 21(3): 34―36.
    [113]陈开宁,李文朝,潘继征.不同处理对蓖齿眼子菜(Potamogeton pectinatus L.)种子萌发率的影响[J].湖泊科学, 2005, 17(3): 237―242.
    [114]乔建荣.常见沉水植物对草海水体总磷去除率的研究[J].北京大学学报(自然科学版), 1996, 32(6): 785―788.
    [115]P Waridel, J Wolfender, J Lacharanne, et al. Ent-Labdane diterpense from the aquatic plant Potamogeton pectinatus[J]. Phytochemistry, 2003, 64(7): 1309―1307.
    [116]陈德辉,刘永定,宋立荣.蓖齿眼子菜对删藻和微囊藻的他感作用及其参数[J].水生生物学报, 2004, 28(2): 163―168.
    [117]付春平,唐运平,陈双星,等.沉水植物对景观河道水体氮磷去除的研究[J].农业环境科学学报, 2005, 24(增刊): 114―117.
    [118]张惠源,李健,陈双星,等.城市水资源的再生循环与综合利用[J].中国给水排水, 2006, 22(9): 207―213.
    [119]王卫红,川蔓藻对滨海景观再生水河道水质富营养化的控制机制研究,博士学位论文, [D].天津:天津大学2006: 18―19,127―128,111―128.
    [120]孙富锁.天津经济技术开发区再生水回用情况[J].交通环保, 2003, 24(4): 48―50.
    [121]杨永利,徐君,富东英,等.滨海重盐渍荒漠化地区生态重建生物技术模式的研究——以天津滨海新区为例[J].农业环境科学学报, 2004, 23(2): 359―363.
    [122]吉志军,唐运平,张志扬,等.不同基底处理下碱蓬种植对滨海盐渍土的改良与修复效应初探[J].南京农业大学学报, 2006, 29(1): 138―141.
    [123]张继光,李健,陈双星,等.污水脱盐处理大规模回用的工艺技术研究[J].给水排水, 2001, 27(10): 1―6.
    [124]刘家宜.天津植物名录[M].天津:天津教育出版社, 1995.
    [125]刘家宜.中国天津古海岸与湿地自然保护区植物区系研究[J].河南科学, 1999, 17(6): 20―27.
    [126]许宁.天津湿地现状及其保护利用对策分析[J].海河水利, 2002, 6(1): 11―14.
    [127]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社, 1999.
    [128]林栖凤主编.耐盐植物研究[M].北京:科学出版社, 2004.
    [129]曹颉,丁立强,梅鹏蔚.天津湿地环境变迁及成因分析[J].湿地科学, 2004, 2(1): 74―79.
    [130]李春丽,周律,张小建,等.再生水景观功能保证系统的实验研究[J].给水排水, 2005, 31(8): 6―9.
    [131]A Melzen. Aquatic macrophytes as tools for restoring shallow eutrophic lakes in the Netherlands[J]. Hydrobiology, 1999, 95(1): 181―190.
    [132]H Hosper. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in Netherlands[J]. Water Science and Technology, 1998, 37(3): 151―164.
    [133]何安琪,何苗,施汉昌.城市污水再生回用于景观水体水质安全保障技术[J].环境工程, 2006, 24(1): 22―24.
    [134]D Abdessemed, G Nezzal, R Benaim. Coagulation adsorption ultrafiltration for wastewater treatment and reuse[J]. Desalination, 2000, 131(2): 307―314.
    [135]S C Williams, J Beresford. The effect of anaerobic zone mixing on the performance of a three-stage Bardenpho plant[J]. Water Science and Technology, 1998, 38(1): 55―62.
    [136]GB/T18921-2002.城市污水再生利用景观环境用水水质中华人民共和国国家质量监督检疫总局.[S]. 2002.
    [137]聂梅生.美国污水回用技术调研分析[J].给水排水, 2001, 27(9): 1―3.
    [138]许桢,叶稚,庄源益.微滤/接触氧化用于景观湖体水质保护[J].中国给水排水, 2004, 20(5): 88―89.
    [139]丁春丽,再生水回用于人工景观水体的富营养化研究,南开大学硕士学位论文,[D].天津:南开大学, 2004.
    [140]刘春光,金相灿,王雯,等.城市景观河流夏季污染状况及营养水平动态分析[J].环境污染与防治, 2004, 26(4): 312―316.
    [141]唐运平,张志扬,徐淼.滨海盐碱地区城市再生水景观河道水体生态修复技术研究.全国排水委员会2006年年会论文集, 2006, [C].厦门: 147―154.
    [142]马牧源,王兰,孙红文.黄花鸢尾(Iris pseudoacortts)对富营养化水体净化的实验研究[J].农业环境科学学报, 2006, 25(2): 448―452.
    [143]A Sfriso, B Pavoni. Macro-algae and phytoplankton competition in the central Venice lagoon[J]. Environmental Technology, 1994, 5(1): 1―14.
    [144]J H Jeong, H J Jin, C H Sohn, et al.Algicidal activity of the seaweed Corallina pilulifera against red tide micro-algae[J]. Journal of Applied Physiology, 2000, 12(1): 37―43.
    [145]L E Schmidt, P J Hansen. Allelopathy in the prymnesiophyte Chrysochromulina polyepis: effect of cell concentration, growth phase and pH [J]. Marine Ecology Progress Series, 2001, 216(1): 67―81.
    [146]W D Yong, X L Zhang, J S Liu, et al. Inhibitory effect and sinking behaviour of wood meals from China fir on Alexandrium tamarense in cultures[J]. Acta Hydrobiological Sinica, 2005,29(2): 215―219.
    [147]D Inderjit,R Moral. Is allelopathy from resource competition realistic? [J]. Botanical Review, 1997, 63(2): 221―230.
    [148]E V Donk,W J Bund. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms [J]. Aquatic Botany, 2002, 72(2): 261―274.
    [149]Q M Xian, H D Chen, H X Zou,et al. Allelopathic potential of aqueous extracts of submerged macrophytes with algal growth inhibition[J]. Allelopathy Journal, 2005, 15(1): 98―104.
    [150]L P Zhou, E C Charles, L Zhu,et al. Better with barley straw [J]. Water Environmental and Technology, 2006, 18(1): 70―73.
    [151]G Mulderij, E H Vannes, E V Donk. Macrophyte-phytoplankton interactions: The relative importance of allelopathy versus other factors [J]. Ecological Modelling, 2007, 204(1): 85―92.
    [152]G X Shen, G A Yan, X Yu. The toxic effects of naphthalene and its derrivants on Chlorella vulagaris[J]. Acta Hydrobiologica Sinica, 1999, 23(2): 460―468.
    [153]Q M Xian, D H Chen, L J Qu, et al. Allelopathic potential of aqueous extracts of submerged macrophytes against algal growth[J]. Alleolpathy Journal, 2005, 15(1): 95―104.
    [154]M H R Pramanik, M Nagai, T Asao, et al. Effects of temperature and photoperiod on phytotoxic root extudtes of cucumber (Cucumis sativus) in hydroponic culture[J]. Journal of Chemical Ecology, 2000, 26(8): 1953―1967.
    [155]G Cronin, D M Lodge. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes[J]. Oecologia, 2003, 137(1): 32―41.
    [156]G Martin, K Torn.Classification and description of phytobenthic communities in the waters of theWest-Estonian Archipelago Sea[J]. Hydrobiologia, 2004, 514(2): 151―162.
    [157]A Charpentier, P Grillas, F Lescuyer, et al. Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France[J]. Estuarine, Coastal and Shelf Science, 2005, 64(3): 307―315.
    [158]T Woodcock, J Longcore, D McAuley, et al. The role of pH in structuring communities of maine wetland macrophytes and chironomid larvae(diptera)[J]. Wetlands, 2005, 25 (7): 306―316.
    [159]P Rama, M Reddy, G Reddy. Production of the thermostable pullulanase by Clostridum thermosulfungenes SV in soild-state fermentation: optimization of nutrients levels using response surface methodology[J]. Bioprocess Engineering, 1999, 21(3): 497―503.
    [160]G Annadurai. Design of optimum response surface experiments for adsorption of direct dye on chitosan[J]. Bioprocess Engineering, 2000, 23(3): 451―455.
    [161]R G Ester, B N Alvaro, C B J.Alberto.Optimization of medium composition for clavulanicacid production by Streptomyces clavuligerus[J]. Biotechnology letters, 2001, 23(2): 157―161.
    [162]P Ambati, C ayyama. Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method[J]. World Journal of Microbiology and Biotechnology, 2001, 17(3): 331―335.
    [163]S.P.wasser.Medicinal mushrooms as a source of antitumor and immunomdulating polysaccharides[J].Applied Microbiology Biotechnology, 2002, 60(2): 258―274.
    [164]R V Muralidhar, R Chirumamila, R Marchant. Response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemistry Engineering Journal, 2001, 9(1): 17―23.
    [165]C Liu, Y Liu, W Liao, et al. Appliction of statistically based experimental designs for the optimization of nisin production from whey[J]. Biotechnology Letters, 2003, 25(8): 877―882.
    [166]A Vohra, T Satyanarayana. Phytases: microbial sources, production, purification and potential biotechnological applications[J]. Critical Reviews in Biotechnology, 2003, 23(1): 29―60.
    [167]Y R Abdel-Fattah. Optimization of thermostable lipase from a thermophilic Geobacillus sp. Using Box-Behnken design[J]. Biotechnology Letters, 2002, 24(11): 1217―1222.
    [168]Y R Abdel-Fattah, M H Saeed, Y M Gohar, et al. Improved production of Beudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs[J]. Process Biochemistry, 2005, 40(11): 1707―1714.
    [169]C Q He, C K Wang. Allelopathic effect of Acorus tatarimwil upon algae [J]. Journal of Environmental Science, 2001, 13(3): 481―484.
    [170]E M Gross, D Erhard, E Lvanyi. Allelopathic activity of Ceratophyllum dernersum L. and Najas marina subsp. internedia (Wolfgang) casper[J]. Hydrobiology, 2003, 506(3): 583―589.
    [171]E M Gross. Allelopathy of aquatic autotrophs[J]. Critical Reviews in Plant Science, 2003, 22 (3-4): 313―339.
    [172]G M Della, M Ferrara, A Fiorentino. Anti-algal compounds from Zautrdeschia aethiopica[J]. Phytochemistry, 1998, 49(5): 1299―1304.
    [173]GMDella,L.Margoni,A.Molinaro.20s-4-α-nethyl-24-methylenecholest-7-en-ol,allelopathic sterol from Typha latifolia[J]. Phytochemistry, 1999, 50(6): 1797―1798.
    [174]G M Della, A Ficrentio, M Isidori. Phenanthrenods from the wetland Juncus acutus [J]. Phytochemistry, 2002, 60(1): 633―638.
    [175]S Korner, A Nicklish. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes[J]. Journal of Phycology, 2002, 38(5): 962―971.
    [176]E M Gross, C feldbaum, A Graf. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes[J]. Hydrobiology, 2003, 506(3): 559―565.
    [177]卢小江.中药提取工艺与设备[M].北京:化学工业出版社. 2004.
    [178]宋小妹,唐志书.中药化学成分提取分离与制备[M].北京:人民卫生出版社. 2004.
    [179]H Wu, T Pratley, D Lemerle, et al. Biochemical basis for wheat seedling allelopathy on the suppression of annual rye-grass[J]. Journal of Agricultural and Chemistry, 2002, 50(9): 4567―4571.
    [180]C H Kong, X Xu, F Chen, et al. Using specific secondary methabolites as markers to ellaluate allelopathic potentials of rice varieties and individual plants[J]. Journal of Chemical Ecology, 2002, 28(5): 839―843.
    [181]Z Zhang, T Haig, H Wu, et al. Correlation between phytitoxicity on aunual rye-grass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat[J]. Journal of Chemical Ecology, 2003, 29(7): 2263―2280.
    [182]C Choi, C Bareiss, O Walenciak. Impact of polyphenols on growth of the aquatic herbinore Acentria ephemerella[J]. Journal of Chemical Ecology, 2002, 28(11): 2245―2256.
    [183]T Maria, W Gallardo, L Cherie, et al. Essential fatty acids and phenolic acids from extracts and leachates of southern cathail---Typha domingensis[J]. Phytochemistry, 2002, 59(2): 305―308.
    [184]J C Streibig, M Olofsdotter. Joint action of phenolic acid mixtures and its significance in allelopathy research[J]. Physiologia Plantarum, 2002, 114(3): 305―308.
    [185]K Yasushi. S Kyoji. Acute toxicity of fatty acids to the freshwater green alga Selenastrum capricotnutum[J]. Environmental Toxicology, 2003, 18(2): 422―428.
    [186]B Johanna, M Schagerl. Allelopathic activity of Characeae[J]. Biologia Bratislava, 2004, 59 (1): 9―15.
    [187]H Zhu, A U Mallik. Interaction between Kalmia and black sqruce: isolation nd identification of allelopathic compounds[J]. Journal of Chemical Ecology, 1994, 20(2): 407―421.
    [188]J L Wolfender, K N djoko, K Hostettmann. Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful metabolites[J]. Journal of Chromatography Biomedical Applications, 2003, 1000 (2): 437―455.
    [189]H A Quayyum, A O Mallik, D E Orr, et al. Allelopathic potential of aquatic plants accociated with wild rice:Ⅱisolation and identification of allelochemicals [J]. Journal of Chemical Ecology, 1999, 25(2): 221―228.
    [190]A M Rimando, M Olofsdotter, F E Dayan, et al. Searching for rice allelochemicals: an example of bioassay guide isolation[J]. Agronomy Journal, 2001, 93(1): 16―20.
    [191]T Haig. Application of hyphenated chromatography-mass spectrometry technology to plant allelopathy reaearch[J]. Journal of Chemical Ecology, 2001, 27(12): 2303―2396.
    [192]K K Schrader, N P Nanayakkara, C S Tucker, et al. Nprel derivatives of 9,10-authraquinone are selective algicides against the musty-odor cyanobacterium oscillatoria perornata[J]. Applied and Environmental Microbiology, 2003, 69(10): 5319―5327.
    [193]X X Sun, J K Choi, E K Kim. A preliminary study on the mechanism of harmful lgal bloom mitigation by use of sophorolipid treatment[J]. Journal of Experimental Marine Biology and Ecology, 2004, 304(1): 35―49.
    [194]A N Seal, J E Prathey, T Haig, et al. Identifucation and quantitation of compounds in a series of allelopathic nd non-allelopathic rice root exudates[J]. Journal of Chemical Ecology, 2004, 30(5): 1629―1644.
    [195]F M Li, H Y Hu. Isolation and characterization of a novel anti-algal allelochemical from Phragmites communis[J]. Applied and Environmental Microbiology, 2005, 71(11): 6545― 6553.
    [196]S Nakai, Y Inoue, M Hosomi. Algal growth inhibition effects and inducement modes by plant- producing phenols[J]. Water Research, 2001, 35(7): 1855―1859.
    [197]A N Seal, T Haig, J E Partley. Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth[J]. Journal of Chemical Ecology, 2004, 30(8): 1663―1678.
    [198]Z Huang, T Haig, H Wu, et al. Correlation between phytotoxicity on annual ryegrall(Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat[J]. Journal of Chemical Ecology, 2003, 29(11): 2263―2280.
    [199]何华勤,梁义之,贾晓丽,等.酚酸类物质的抑草效应分析[J].应用生态学报, 2004, 15(12): 2342―2346.
    [200]Organization for Economic Cooperation and Development. 1984. Guideline for testing chemicals. No.201. Algal growth inhibition tests, [M].Paris, France.
    [201]C Y Chen, K C Liu. Optimization and performance evaluation of the continuous algal toxicity test[J]. Environmental Toxicology Chemistry, 1997, 16 (6): 1337―1344.
    [202]M T D Cronin, T W Schultz. Validation of Vibrio fisheri acute toxicity data: mechanism of action based QSARs for non-polar nacrotis and polar nacrotic phenols[J]. Science of the Total Environment, 1997, 204(1): 75―88.
    [203]P Mayer, N Nyholm, E Verbruggen, et al. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials[J]. Environmental Toxicology Chemistry, 2000, 19 (12): 2551―2556.
    [204]J H Lin, W C Kao, K P Tsai, et al. A novel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants[J]. Water Research, 2005, 39(7): 1968―1877.
    [205]J Y Ma, L G Xu, S F Wang, et al. Toxicity of 40 herbicides to the green alga Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety, 2002, 51(1): 128―132.
    [206]L Kaiser, E Klaus. The use of neural networks in QSARs for acute aquatic toxicological endpoints[J]. Journal of Molecular Structure, 2003, 19(1): 85―95.
    [207]F X Kong, W Hu, Y Liu. Molecular structure and biochemical toxicity of four halogeno- benzenes on the unicellular green alga Selenastrum capricornutum[J]. Environmental and Experimental Botany, 1998, 40(1): 105―111.
    [208]J Y Ma, R Q Zheng, L G Xu, et al. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa to 12 pesticides[J]. Ecotoxicology and Environmental Safety, 2002, 51(1): 57―61.
    [209]S Ren, P D Frymier. Use of multidimensional scaling in the selection of wastewater toxicity test battery components[J]. Water Research, 2003, 37(7): 1655―1661.
    [210]S H Hsieh, K P Tsai, C Y Chen. The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata[J]. Water Research, 2006, 40(7): 1957―1964.
    [211]C Y Chen, S L Chen, E R Christensen. Individual and combined toxicity of nitriles and aldehydes to Raphidocelis subcapitata[J]. Environmental Toxicology Chemistry, 2005, 24(5): 1067―1073.
    [212]C Y Chen, J H Liu. Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air- tight test environment[J]. Chemosphere, 2006, 62(3): 503―509.
    [213]J N Shief, M L Choa, C Y Chen. Statistical comparisons of the no-observed-effect concentration and the effective concentration at 10% inhibition (EC10) in algal toxicity test [J]. Water Science and Technology, 2001, 43(1): 141―146.
    [214]J Inderjit, C Streibig, M Olofsdotter. Joint action of phenolic acid mixtures and its significance in allelopathy research[J]. Physiological Plantarom, 2002, 114(3): 422―428.
    [215]H Wu, T Haig, J Pratley, et al. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrss[J]. Journal of Agriculture Food, 2002, 50(11): 4567―4571.
    [216]Z Huang, T Xu, H An. Correlation between phytotoxicity on annual ryegrall(Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat[J]. Journal of Chemical Ecology, 2003, 29(11): 2263―2280.
    [217]C Kong, X Xu, F Hu, et al. Using specific secondary metabolites as markers to evaluate allelopathic potenticals of rice varieties and individual plants[J]. Chinese Science Bulletin, 2002, 47(5): 839―843.
    [218]中华人民共和国国际标准,GB12763.6-91, [S].国家技术监督局,1991.海洋调查规范海洋生物调查
    [219]M M Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilixing the principle of protein dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248―254.
    [220]C Beauchamp, I Fridorich. Superoxide dismutase: improved assays and an assay applicable to acrylamine gel[J]. Analytical Biochemistry, 1971, 44(2): 276―278.
    [221]R D Bewley. Physiological aspects of desiccation tolerance[J]. Revista Plant Physiology, 1979, 20(1): 195―238.
    [222]J Aguilera, K Bischof, U Karsten, et al. Seasonal variation in ecophysiological patterns in macroalgae from an arctic fjordⅡpigment accumulation and biochemical defence systems against high light stress[J]. Marine Biology, 2002, 140(3): 1087―1095.
    [223]C Frankart, P Eullaffroy, G Vernet. Photosynthetic response of Lemna minor eaposed to xeuobiotics, copper and their combinations[J]. Ecotoxicology and Environmental Safety, 2002, 53(3): 439―445.
    [224]H Teisseire, G Vernet. Effects of fungicide folpet on the activities of antioxidative enzymes in duckweed (Lemna minor)[J]. Pestcide Biochemistry and Physiology, 2001, 69(1): 112―117.
    [225]Y Juan, T X Xi, Z P Yu, et al. Effects of CO2 enrichment on photosynthesis, lipid peroxidation and activities of antioxidative enzymes of Platymonas subcordiformis subjected to UV-B radiation stress[J]. Acta Botanica Sinica, 2004, 46(6): 682―690.
    [226]F E Dayan, S B Watson, J C G Galindo, et al. Phytotoxicity of quassinoids: physiological responses and structural requirements[J]. Pesticide Biochemistry and Physiology, 1999, 65(1): 15―24.
    [227]R I Pinheiro, I Belo, M Mota. Oxidative stress response of Kluyveromyces marxianus to hydrogen peroxide, paraquat and pressure[J]. Applied Microbiological Biotechnology, 2002, 58(3): 842―847.
    [228]K S Choo, P Snoeijs, M Pedersen. Oxidative stress tolerance in the filamentous green algae Chladophora glomerata and Entromorpha ahlneriana[J]. Journal of Experimental Marine Biological Ecology, 2004, 298(1): 111―123.
    [229]M Choudhary, U K Jetley, M A Khan, et al. Effect of heavy metal stress on praline, malondialdehyde and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J]. Ecotoxicology and Environmental Safety, 2007, 66(1): 204―209.
    [230]D Pelah, E Cohen. Cellular response of Chlorella zofingiersis to exogenous selenium[J]. Plant Growth Regulation, 2005, 45(2): 225―232.
    [231]B Dhir, P Sharmila, P P Saradhi. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline[J]. Aquatic Toxicology, 2004, 66(1): 141―147.
    [232]N Mallick, F H Mohu. Reactive oxygen species: response of algal cells[J]. Journal of Plant Physiology, 2000, 157(1): 183―193.
    [233]J Mcelhimery, L Lawton, C Leifert. Investigations into the inhibitory effects of microcystins on plant growth and the toxicity of plant tissues following exposure[J]. Toxicon, 2001, 39(7): 1411―1420.
    [234]R Kohen, A Nyska. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[J]. Toxicology Pathology, 2002, 30(3): 620―650.
    [235]S J S Flora, G Saxena, P Gautam, et al. Response of lead-induced oxidative stress and alterations in biogenic amines[J]. Chemico-Biological Interactions, 2007, 170(3): 209―220.
    [236]F Pomati, A G Netting, D Calamari, et al. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. And Lemna minor and Azolla filiculoides lamk[J]. Aquatic Toxicology, 2004, 67(2): 387―396.
    [237]G Mulderij, B E Donk, E M Gross. Allelopathic activity of Stratiotes aloides on phytoplankton——towards identification of allelopathic substances[J]. Hydrobiologia, 2007, 584(1): 89― 100.
    [238]H Hartiksinen, T L Xue, V Piironen. Selenium as an anti-oxidant and pro-oxidant in ryegrass[J]. Plant Soil, 2000, 236(1): 193―200.
    [239]H Tapiero, D M Townsend, K D Tew. The antioxidant role of selenium and seleno-compounds [J]. Biomedical Pharmacother, 2003, 57(1): 134―144.
    [240]T L Xue, H Hartikainen, V Piironen. Anti-oxidative and growth promoting effect of selenium on senescing lettuce[J]. Plant Soil, 2001, 237(1): 55―61.
    [241]L M Casano, L D Gomez, H R Lascano, et al. Inactivation and degradation of CuZn-SOD by active oxygen species in whert chloroplasts exposed to photoxidative stress[J]. Plant Cell Physiology, 1997, 38(2): 433―440.
    [242]R D Beckett, F V Minibayeva, N N Vylezhanina,et al. High rates of extra-cellular superoxide production by lichens in the suborder peltigerieae correlate with indices of high metabolic activity[J]. Plant Cell Environment, 2003, 26(7): 1827―1837.
    [243]M Y Lee, H W Shin. Cadmium induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata[J]. Journal of Applied Physiology, 2003, 15(1): 13―19.
    [244]R G Alscher, N Erturk, L S Heath. Role of superoxide dismutases (SODs) in controlling oxidative stress in plant[J]. Journal of Experimental Botany, 2002, 53(6): 1331―1341.
    [245]X Y Li, Y D Lin, L S Song, et al. Responses of antioxidant systems in the hepatocytes of common carp Cyprinus carpio L. to the toxicity of microcystin-LR[J]. Toxicon, 2003, 42(1): 85―89.
    [246]J Z Chen, L R Song, J Dai, et al. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape Brassica napus L. and rice Oryza sativa L.[J]. Toxicon, 2004, 43(2): 393―400.
    [247]L Weisscuan, J Garty, A Hochman. Rehydaration of the lichen Ramalina lacere results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants [J]. Applied Environmental Microbiology, 2005, 71(12): 2121―2129.
    [248]S Shigeoka, T Ishikawa, M Tamoi, et al. Regulation and function of ascorbate peroxidase iso-enzymes[J]. Journal of Experimental Botany, 2002, 372(5): 1305―1319.
    [249]F R Cavalcanti, J T A Oliveira, A S Martins, et al. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves[J]. New Phytologist, 2004, 163(2): 563―571.
    [250]L Weissman, J Garty, A Hochman. Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration[J]. Applied and Environmental Microbiology, 2005, 71(11): 6508―6514.
    [251]L Yin, J Q Huang, W M Huang, et al. Responses of antioxidant system in Arabidopsis thaliana suspension cells to the toxicity of microcystin-RR[J]. Toxicon, 2005, 46(4): 859―864.
    [252]A P Lei, Z L Hu, Y S. Wong, et al. Antioxidant responses of micro-algal species to pyrene [J]. Journal of Applied Phycology, 2006, 18(1): 67―78.
    [253]S L Peng, J Wen, Q F Guo. Mechanism and active variety of allelo-chemicals [J]. Acta Botanica Sinica, 2004, 46(7): 757―766.
    [254]B Irmgard, H Anders, A Gunnar. Seasonal changes of mechanisms maintaining clear water in a shallow lake with aboundant Chara vegetation[J]. Aquatic Botany, 2002, 72(1): 315―334.
    [255]V istvanovics, L Somlyody. Factors influencing lake recovery from eutrophication——the case of basin1 of lake Balaton[J]. Water Research, 2001, 35(3): 729―735.
    [256]中华人民共和国国家质量监督检验检疫总局, GB/T 18921-2002,城市污水再生利用——景观环境用水标准, [S].北京:中国标准出版社, 2003.5.1.
    [257]M Ernst, A Sperlich, X Zheng, et al. An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing[J]. Desalination, 2007, 202(1-3): 293―301.
    [258]P K Tewari, V S Batra, M Balakrishnan.Water management initiatives in sugarcane molasses based distilleries in India[J]. Resources, Conservation and Recycling, 2007, 52(2): 351―367.
    [259]M R Darwish, M Sharara, M Sidahmed, et al.The impact of a storage facility on optimality conditions of wastewater reuse in land application: A case study in Lebanon[J]. Resources, Conservation and Recycling, 2007, 52(1): 175―189.
    [260]P Mantovi, G Baldoni, G Toderi. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop[J]. Water Research, 2005, 39(2-3): 289―296.
    [261]D H Sephton, K Haya, J L Martin, et al. Paralytic shellfish toxins in zooplankton, mussels, lobsters and caged Atlantic salmon, Salmo salar, during a bloom of Alexandrium fundyense off Grand Manan Island, in the Bay of Fundy[J]. Harmful Algae, 2007, 6(5): 745―758.
    [262]N Bury. The toxicity of cyanobacteria (blue-green algae) to freshwater fish[J]. Comparative Biochemistry and Physiology—Part A: Molecular and Integrative Physiology, 2007, 146(4): 892―895.
    [263]S Benedetti, S Rinalducci, F Benvenuti, et al. Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae[J]. Journal of Chromatography, 2006, 833(1): 12―18.
    [264]V H Chipofya, E J Matapa.Destratification of an impounding reservoir using compressed air——case of Mudi reservoir, Blantyre, Malawi[J]. Physics and Chemistry of the Earth, 2003, 28(20-27): 1161―1164.
    [265]A M Pinto, E V Sperling, R M Moreira. Chlorophyll-a determination via continuous measurement of plankton fluorescence: methodology development [J]. Water Research, 2001, 35(16):3977―3981.
    [266]A Howard, M P Easthope. Application of a model to predict cyanobacterial growth patterns in response to climatic change at Farmoor Reservoir, Oxfordshire, UK[J]. The Science of The Total Environment, 2002, 282-283(2): 459―469.
    [267]N C Everall, D R Lees. The use of barley-straw to control general and blue-green algal growth in a Derbyshire reservoir[J]. Water Research, 1996, 30(2): 296―276.
    [268]N H Welch, M G Butler, T J Carlson, et al. Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation[J]. Aquatic Botany, 2003, 75(4): 323―337.
    [269]S Hilt, E M Gross. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes[J]. Basic and Applied Ecology, 2007, 13(7): 1529―1541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700