用户名: 密码: 验证码:
华南居住区绿地碳汇作用研究及其在全生命周期碳收支评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纵观当今世界,全球变暖已日益引起广泛的重视,因而促进了低碳经济的迅猛发展,低碳研究开始成为目前的研究热点。在建筑领域,与建筑节能、绿色建筑和生态建筑相关的科研工作取得了显著的成效,但是低碳建筑、低碳居住区和低碳城市的研究则刚刚起步。低碳研究包括碳源和碳汇两个方面的内容,建筑可归属于碳源,居住区和城市则同时包含这两个方面的内容。作者选择了居住区这个中观尺度进行研究,就是希望能够承上启下上,即用低碳居住区的研究成果指导低碳建筑的研究,同时为低碳城市的研究奠定基础。居住区的碳源主要包括建筑碳源和社会碳源,碳汇则主要来自居住区绿地。建筑碳源和社会碳源目前有大量的基础数据可供参考,而居住区绿地碳汇基础数据却相对缺乏,因而本文将进行以绿地碳汇为重点的居住区低碳研究。
     研究人员很早就开始了关于植物光合、植物呼吸和土壤呼吸的微观机理研究,已经取得了非常丰硕的研究成果,而从应用角度出发的绿地碳汇计算研究则近些年才兴起。其中,生物量法和植物光合速率法是比较典型的绿地碳汇计算方法:生物量法进行计算时主要考虑首尾时间点,忽略中间状态的研究;光合速率法进行计算时尽管考虑了中间状态,但由于取点受限导致不能准确地描述中间各点的状态,因此它们都不能实现对绿地碳汇实时和连续的精细描述。本文的研究目的就是要实现居住区绿地碳排放和碳吸收的逐时描述,因此提出了建立基于典型气象年的全年逐时绿地碳汇数学模型的目标,它由逐时植物呼吸碳排放方程、逐时土壤呼吸碳排放方程和逐时植物光合碳吸收方程组成。为此,必须建立逐时植物光合速率方程、逐时植物呼吸速率方程、逐时植物叶面积方程和逐时土壤呼吸方程。
     水、光和热是影响植物生长的重要环境因子,这些环境因子的变化会引起绿地碳汇作用的变化。本文选取了光强、温度和湿度三个主要环境因子作为变量,通过试验研究它们与绿地碳汇之间的关系,然后对试验结果进行回归分析以建立绿地碳汇的数学模型。由于自然状态下全年逐时数据的获取工作量非常巨大,以现有资源投入的水平很难完成这项工作,因而本文提出了基于典型气象年数据的模拟测试的新方法。
     本文提出的模拟测试的新方法,就是在人工模拟环境因素的条件下测试植物的光合速率和呼吸速率,建立逐时的环境因素与植物光合速率和呼吸速率之间的量化关系。这种试验方法很好地解决了在自然状态下测试时环境因素不可控的弊端。本文进行模拟测试时,通过均匀设计的方法进行环境因素组合,从而极大地减少了测试工作量。为验证模拟测试的有效性,作者还提出了植物光合和植物呼吸的对比测试方法,即设定相同的环境因素,对比实际测试与模拟测试条件下植物的光合速率和呼吸速率,然后分析这些数据以确定模拟测试是否能够代替实际测试。植物叶面积和土壤呼吸测试虽然受测试条件限制采用常规方法,但仍是为绿地碳汇逐时模型服务的,这两个测试的目的是要建立基于典型气象年的逐时植物叶面积方程和逐时土壤呼吸方程。
     对试验数据的分析结果表明作者实现了预期的目标。经过对荔枝公园6种植物光合对比测试数据、居住区8种植物光合对比测试数据和梅林公园78种植物光合对比测试数据的分析,发现模拟测试条件下的植物光合速率与实际测试条件下的植物光合速率具有很好的拟合性,因此证明了植物光合模拟测试的可行性。在此基础上进行了梅林公园78种植物的植物光合模拟测试,得到了拟合度极高的78种植物的冬季逐时光合速率方程。经过对荔枝公园6种植物呼吸对比测试数据和居住区8种植物呼吸对比测试数据的分析,发现模拟测试条件下的植物呼吸速率与实际测试条件下的植物呼吸速率具有很好的拟合性,从而证明了植物呼吸模拟测试的可行性。在此基础上,进行了梅林公园78种植物的呼吸模拟测试,得到了拟合度极高的78种植物的冬季逐时呼吸速率方程。通过对叶面积测试和土壤呼吸测试数据的分析,本文还建立了78种植物的年度叶面积方程和78种植物下覆土壤的逐时呼吸速率方程。
     本文提出了基于建筑系统、社会系统和绿地系统的居住区全生命周期碳收支计算框架,然后以绿地碳汇研究成果(即绿地碳汇逐时数学模型)为基础,提出了居住区全生命周期碳收支的具体计算方法。该计算方法体现了“全员”、“全程”、“动态”和“精确”四大原则,即内容涵盖了所有的碳行为主体,时间覆盖了整个居住区的全生命周期,考虑了各碳行为主体在全生命同期中的动态变化,通过逐时的计算力求精细。在实例计算中本文给出了碳收支计算的具体操作方法,深圳市某小区的碳收支计算结果表明:碳源与碳汇的数量比例为29:1,在居住区全生命周期中碳源和碳汇严重失衡;在碳源构成中,社会碳源与建筑碳源的比例为4.6:1,社会碳源成为影响碳收支平衡的重要因素。
     最后本文对“零碳”、“低碳”居住区的建设进行了探讨。结果表明通过减少人口和增加绿地,可以实现“零碳”的目标,但是此时用地非常不经济,人均用地指标是规范规定的13倍或17倍,绿地率高达97%或75%。与目前提倡的“节地”显然是相悖的,可见在人口高度聚集的城市建设“零碳”并不现实。本文还进行了“低碳”居住区的计算,提出了“低碳”居住区的数量标准。但是,由于目前支撑低碳评价的相关基础性标准缺失,因此加强这些标准的建设是完善“低碳”居住区评价体系的重点和难点,也是该领域下一步需要研究的内容。
In today's world, people pay great attention to global warming gradually, which promotes rapid development of low carbon economy, and low carbon research has become focus at present. In architectural field, research on building energy efficiency, green building and ecological building has made great progress but that on low carbon building, residential area and city has developed just in recent years. Low carbon comprises two factors which are carbon sink and carbon source, and building could fall into the factor of carbon source but residential area and city included two of them. Residential area with middle scale was selected as research object by the author so that research finds in the dissertation could give some guides to low carbon building and lay a foundation for low carbon city. Carbon sources in residential area include building and society carbon source,and green space is the main carbon sink on the other side. In residential area, there are much basic data for carbon sources calculation but little for green space sink calculation. Therefore, low carbon research on residential area in the dissertation was mainly based on green space sink.
     Research on microscopic mechanism for plant photosynthesis, plant respiration and soil respiration begun many years ago so a great deal of relevant finds have been obtained but that on calculation methods of green space sink started just decades of years ago. Among those methods, the quantitative biomass examinations and plant photosynthesis examinations could be representatives. In the quantitative biomass examinations,calculation is made only considering start point and end point with intermediate state ignored,and on the contrary,intermediate state is taken into account for plant photosynthesis examinations which could not precisely depict all the intermediate points either because it is difficult to get data of all intermediate points. Then it could be concluded that neither of them could precisely depict green space carbon sink instantaneously and continuously. Thus, the purpose of the dissertation is to describe carbon emission and absorption of green space hourly in residential area,so that hourly mathematic model of green space all year round in typical meteorological year becomes the specific goal. This model consists of hourly carbon emission equations for plant respiration and soil respiration and hourly carbon absorption equations for plant photosynthesis. Moreover, equations of hourly plant photosynthesis rate, hourly plant respiration rate, hourly soil respiration rate and hourly leaf area are the basis for them.
     Water, Sunshine and temperature are the key environmental factors for plant growth and those factors would also affect green space carbon sink. Consequently, three key environmental factors of light intensity, temperature and humidity are chosen to be variables for those equations. Examinations were taken to build those equations so as to establish green space mathematical model based on regression analysis on those experimental data. Because it will spend too many resources for people to acquire datum of the whole year hourly in natural state, the writer advanced a new method to solve this problem based on the datum of typical meteorological year.
     The new method is simulation experiment, which is applied for equation establishment of hourly plant photosynthesis and hourly plant respiration. This method means to acquire test data in artificially simulated environment in order to build quantitative relations between environmental factors and plant photosynthesis and respiration rate. If taking experiments in natural situation, those environmental factors should not be adjusted freely. In the plan of simulation experiment, uniformity design was introduced for variable design so lots of experiment works were reduced. Contrast experiments of plant photosynthesis and plant respiration were taken to prove the validity of the simulation experiment. It means to compare plant photosynthesis and respiration rate in natural environment with that in artificial simulated environment and the result would show whether it is rational to replace actual experiment with simulation experiment. Ordinary experimental measures were taken for plant leaf area and actual experiment for soil respiration due to limitation of actual equipments. These two experiments are used to build plant leaf area and soil respiration equation hourly in order to establish green space mathematical model based on the datum of typical meteorological year.
     Analysis on the experimental data shows that all the expected aims have been achieved. According to analysis on data of contrast experiment for plant photosynthesis, it verified the feasible of simulation experiment for plant photosynthesis that data of plant photosynthesis in simulation experiment could match that in actual experiment very well. Those data involve six different kinds of plants in Litchi Park, eight different kinds of plants in a residential area and seventy-eight different kinds of plants in Meilin Park. Having verified the validity of simulation experiment, simulation experiment for seventy-eight different kinds plants was taken and finally obtained equations of hourly photosynthesis rate for those plants with high fitness. According to analysis on data of contrast experiment for plant respiration, it also verified the feasible of simulation experiment for plant respiration that data of plant respiration in simulation experiment could match that in actual experiment very well. Those data involve six different kinds of plants in Litchi Park and eight different kinds of plants in a residential area. Having finished the verification, simulation experiment for seventy-eight different kinds plants was taken and finally obtained equations of hourly respiration rate for those plants with high fitness. Based on analysis on data of leaf area and soil respiration experiments, leaf area equations for seven-eight different kinds of plants and respiration equations for seven-eight different kinds of soils were built also.
     Having presenting calculation framework for whole life circle carbon budget in residential area based on building system, social system and green space system, this dissertation detailed the calculation method with research finds on green space carbon sink above. This calculation method illustrates four basic principles which are all objects, whole procedure, dynamics and accuracy. It means that all objects of carbon behavior regarded, the whole life circle of residential area covered, dynamic change of objects included and hourly calculation introduced. The example demonstrates details of the calculation procedure whose results show ratio of carbon source to carbon sink is 29:1 and that of society source to building source is 4.6:1. So it can be concluded that serious imbalance exists between carbon sink and carbon source in residential area and society source is a key factor for carbon budget balance.
     Zero and low carbon residential area construction were discussed at last. It shows that by reducing population and increasing area of green space, zero carbon can be realized but in this situation it does not make full use of land because land per capita is 13/17 times of stipulated specifications and green space ratio even reaches 97/75 percent. It is obvious that this practice have contradicted the goal of land saving in city. Thus, the conclusion could be made that zero carbon is not practicable in city with so large population. Also, calculation of low carbon residential area was made to establish a low carbon standard for this residential area. With the absence of relevant codes to support low carbon appraisal, it becomes the difficulty and emphasis to build those codes.
     This dissertation was subsidized by national 11th Five-Year Plan major scientific and technological project of No. 2006BAJ02A13-5.
引文
[1]潘家华,庄贵阳,陈迎.减缓气候变化的经济分析[M].北京:气象出版社,2003.序言.
    [2]张小全,武曙红.中国CDM造林再造林项目指南[M].北京:中国林业出版社,2006.
    [3]龙世叇.火力发电厂温室气体排放控制[J].云南电力技术,2005,33,(10):31-32.
    [4] IPCC.Climate Changes 2007: the scientific basis,the Fourth Assessment Report ,(AR4) of the United Nations Intergovernmental Panel on Climate Change[M].Cambridge Press,2007.
    [5] http://www.gov.cn/fwxx/kp/2007-05/11/content_611305.htm[EB/OL].
    [6]王大全.“京都议定书”“低碳经济”与二氧化碳绿色化[A].第十届中国科协年会论文集(三)[C],2008,270-277.
    [7]肖慧娟.广东省陆域碳收支估算及其变化机制探讨[D].中国科学院研究生院,2006.
    [8] Houghton J.T.,Ding Y.,Griggs D.J.et al.Climate change 2001:The scientific basis[M].Cambridge:Cambridg University Press,2001:892.
    [9]陈自新,苏雪痕,刘少宗.北京城市园林绿化生态效益的研究,(2) [J].中国园林,1998 ,14,(2):51-54.
    [10] Ralph Waldorf Emerson,Nature-Conduct of Life[M].New York: Read,2006.
    [11] Janet Biehl and Peter Staudenmaier,Ecofascism[M].Edinburgh:AK Press,1995.
    [12] Franz-Joseph Bruggemeier et al.How Green Were the Nazis? [M].Ohio:Ohio University Press,2005.
    [13] Anthony Giddens.The Politics of Climate Change[M].Cambridge:Polity Press Ltd,2009.
    [14]曹荣湘.气候变化的政治[M].社会科学文献出版社,2009.
    [15]曾珍香,顾培亮,张闽.可持续发展的概念及内涵的研究[J].管理世界,1998,(2):209-214.
    [16]张一鹏.低碳经济与低碳生活[A].第十届中国科协年会论文集(二)[C],2008:180-183.
    [17]龙惟定,白玮,范蕊.低碳经济与建筑节能发展[J].建设科技,2008,24:15-20.
    [18]奇云.光合作用研究中国有突破[J].现代物理知识,2005,17(1):29-30.
    [19] Rowntree,R.A.and D.J.Nowak.Quantifying the role of urban forests in removing atmospheric carbon dioxide[J].Arboriculture,1991,17(10):269-275.
    [20] Hyun-Kil Jo.Impacts of urban green space on offsetting carbon emissions for middle Korea [J].Environmental Management,2002,64,(2):115-126.
    [21]彭江颖.珠江三角洲植被对区域碳氧平衡的作用[J].中山大学学报(自然科学版),2003,(9):105-108.
    [22]刘志武等.广州岭南花园住宅区生态绿地规划的研究[M].广州:华南理工大学出版社,2002.
    [23]杨士弘.城市绿化树木碳氧平衡效应研究[J].城市环境与城市生态,1996,(1):37-39.
    [24]杜丽君.红壤几种典型利用方式CO2的排放规律及其影响因素[D].武汉:华中农业大学,2006.
    [25]蒋高明.植物生理生态学的学科起源与发展史[J].植物生态学报,2004,28(2):278-284.
    [26] Nowak D.J.Urban forest structure:The state of Chicago’s urban forest [J].Northeastern Forest Experiment Station,General Technical Report NE-18.DC:US - USDA,1994:95-114.
    [27]韩兴华.4种针叶树光合蒸腾特性的研究[D].呼和浩特:内蒙古农业大学.2007.
    [28]申晓瑜.北京常见园林植物叶面积指数模型研究[D].北京林业大学.2007.
    [29] Fang C.,Moncrieff J.B.The dependence of soil CO2 efflux on temperature[J].Soil Biol Biochem,2001,33:155-165.
    [30] Rayment M.B.,Jarvis P.G.Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest[J].Soil Biology and Biochemistry,2000,32:35-45.
    [31] Lomander A.,T.Kaatterer & O.Andren.Modelling the effects of temperature and moisture on CO2 evolution from top and subsoil using multi-compartment apporoach.Soil Biology and Biochemistry,1998b,30:2023-2030.
    [32] Edwards N.T.Forest and range soils:Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor[J].Soil Science,1975,(3):361-365.
    [33] Kucera C,Kirkham D.Soil respiration studies in tall grass prairie in Missouri[J].Monitor Assessm,2000,60:315-327.
    [34]王得祥,刘建军,王翼龙,杨正礼.四种城区绿化树种生理特性比较研究[J].西北林学院学报,2002,(3):5-7.
    [35]罗英.8种园林树木生理特征及其生态效应的研究[D].乌鲁木齐:新疆农业大学.2004.
    [36]陈辉.鹅掌楸和女贞同化CO2和释O2能力的比较[J].城市环境与城市生态2002(3):17,18.
    [37]刘伟丽.苏铁光合特性的研究[D].广西大学,2007,6.
    [38]王雁,马武昌.扶芳藤、紫藤等7种藤本植物光能利用特性及耐荫性比较研究[J].林业科学研究,2004,(3):305-309.
    [39]曾艳琼,卢欣石,杨世民.花椒树下苜蓿、百脉根和白三叶的光合生理生态特性研究[J].草业科学,2008,(4):119-122.
    [40]丁小球,胡玉佳,王榕楷.三种草坪草净光合速率和蒸腾速率的日变化特点研究[J].草业科学,2001,(2):62-66.
    [41]宋玉芝,蔡炜,秦伯强.太湖常见浮叶植物和沉水植物的光合荧光特性比较[J].应用生态学报,2009,(3):569-573.
    [42]李林锋.4种湿地植物光合作用特性的比较研究[J].西北植物学报,2008,(10):2094-2102.
    [43]李林锋.湿地植物香蒲光合特性及其影响因素分析[J].广东海洋大学学报,2009,(2):77-82.
    [44]刘遵春,包东娥.‘金光杏梅’叶片净光合速率与生理生态因子的关系[J].西北植物学报,2008,(3):564-567.
    [45]宋庆安,童方平,易霭琴,邹丽伟,李贵.刺槐光合生理生态特性日变化研究[J].中国农学通报,2008,(9):156-160.
    [46]廖德宝,白坤栋,曹坤芳,蒋得斌.广西猫儿山中山森林共生的常绿和落叶阔叶树光合特性的季节变化[J].热带亚热带植物学报,2008,(3):205-211.
    [47]高景慧,张颖,郭维,高春起.分枝期3个紫花苜蓿品种光合蒸腾日变化与相关因子的关系分析[J].西北农林科技大学学报,2007,(10):29-34.
    [48]陈建华,毛丹,朱凡,张卫东,何虎.9个笋用竹种的光合特性[J].中南林业科技大学学报,2008,(6):9-13.
    [49]宋庆安,李昌珠,童方平,易霭琴.光皮树优良无性系光合生理特性对光强的响应[J].湖南林业科技,2008,(6):3-6.
    [50]李罡,傅玉兰.金森女贞光合生理特性的研究[J].林业科技开发,2009,(1):61-64.
    [51]薛建平,王兴,张爱民,孙志坦,常莉.地黄光合特性研究[J].中国中药杂志,2009,(6):778-780.
    [52]谌晓芳.鸡桑叶片光合速率与气孔导度及微气象因子的相关性研究[J].中国农学通报,2008,(11):197-201.
    [53]陈跃华,刘友全,南天竹光合日变化规律与环境因子的相关性,经济林研究,2008,26(2):53-55.
    [54]蹇洪英,邹寿青.地毯草的光合特性研究[J].广西植物,2003,(2):181-184.
    [55]高增璐,高玉葆,郑志荣,张晓春.皇甫川流域梁地生境中间锦鸡儿不同龄级植株光合生理特性的比较研究[J].植物研究,2009,29(2):182-186.
    [56]李建斌,李建明,邹志荣,黄志.厚皮甜瓜苗期叶片光合、光呼吸及暗呼吸速率的变化[J].西北农林科技大学学报,(自然科学版),2008,(7):57-63.
    [57]许忠坤,徐清乾,荣建平.杉木不同部位、叶龄针叶净光合效率特征[J].湖南林业科技,2008,35(5):1-4.
    [58]王广军,张彦妮,何叶.不同情况复叶槭,(Acer negundo L)叶片净光合速率的日变化[J].东北林业大学学报,2008,36(8):14、15、28.
    [59]李树发,张颢,唐开学,王其刚,王忠佑.滇中地区设施栽培下切花月季的光合特性[J].云南植物研究,2008,30(1):99-104.
    [60]刘晓军,唐晓波,李春华.不同绿茶品种秋季叶绿素与光合效率比较及相关性研究[J].西南农业学报,2008,21(4):975-978.
    [61]林金科,赖明志,詹梓金.茶树叶片净光合速率对生态因子的响应[J].生态学报,2000,(3):404-408.
    [62]李国栋,张汝民,高岩.几种园林树种光合特性的研究[J].内蒙古农业大学学报,(自然科学版),2008,(2):185-189.
    [63]张永霞,李国旗,闫伟兄,谢亚军,朱莉,万海霞,张浩.红麻和白麻光合特性研究[J].干旱地区农业研究,2008,(2):102-105.
    [64]刁俊明,陈桂珠.光强对无瓣海桑幼苗的生长和光合特性的影响[J].林业科学研究,2008,(4):486-492.
    [65]华劲松,戴红燕,夏明忠.不同光照强度对芸豆光合特性及产量性状的影响[J].西北农业学报,2009,(2):136-140.
    [66]时丽冉,刘国民.不同光照条件下白车轴草光合日变化分析[J].北方园艺,2008,(3):138-140.
    [67]芦晓磊,宁伟,汤贺,潘巧雁,卢泰祎.光照强度对马齿苋生长及光合特性的影响[J].华北农学报,2008,(2):41-44.
    [68]刘金祥,陈睿俊.香根草、黑麦草和高丹草光合生理生态日变化的比较研究[J].热带农业科学,2008,(8):32-37.
    [69]陈柯,王小德.常春油麻藤、中华常春藤和扶芳藤的光合特性比较分析[J].安徽农业大学学报,2008,(2):196-199.
    [70]穆大刚,付翔,许华林.5种红树植物光合产量模型研究[J].安徽农业科学,2008,35:1073-1078.
    [71]肖润林,王久荣,单武雄,黎星辉,宋同清,汤宇.不同遮荫水平对茶树光合环境及茶叶品质的影响[J].中国生态农业学报,2007,(6):6-11.
    [72]刘闯,胡庭兴,李强,李仁洪,谢财永,吴小山.巨桉林草间作模式中牧草光合生理生态适应性研究[J].草业学报,2008,17(1):58-65.
    [73]王红兵,王励勉,秦俊,胡永红.上海地区九种木兰科植物光合特性的研究[J].北方园艺,2008,(8):103-105.
    [74]柴胜丰,韦霄,曾丹娟,蒋运生,唐辉,李锋.光照强度对广西地不容生长和光合特性的影响[A].第五届中国青年生态学工作者学术研讨会论文集[C],2008:130-137.
    [75]胡昌浩.玉米栽培生理研究[M].北京:中国农业出版社,1995.
    [76]张吉旺,董树亭,王空军,刘鹏,胡昌浩.大田增温对夏玉米光合特性的影响[J].应用生态学报,2008,(1):81-86.
    [77]苏冬梅,廖飞勇.夏季自然高温对桉树光合速率和暗呼吸速率的影响[J].生态科学,2001,20(6):21-24.
    [78]王丽萍,王鑫,邹春蕾.低温弱光胁迫下辣椒叶片光合特性的研究[J].辽宁农业科学,2008,(1):14-17.
    [79]周建,杨立峰,郝峰鸽,尤扬.低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响[J].西北植物学报,2009,(1):136-142.
    [80] Salvucci M.E.,Portis A.R.,Ogren W.L.Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves[J].Plant Physio,1986,80:655-659.
    [81]吕桂云,高志奎,王梅,孟利.番杏光合特性的研究[J].北方园艺,2008,(4):4-6.
    [82]张光飞,翟书华,苏文华,李雨末.光照和温度对鸟巢蕨光合速率的影响研究[J].昆明学院学报,2008,(4):62-63.
    [83] Monteith J.L.A reinterpretation of stomatal response to humidity[J].Plant,Cell and Environment,1995,18:357-364.
    [84]徐艳玲,不同湿度条件对温室黄瓜二氧化碳施肥状态下光合效率的影响[J].中国科技信息,2009,(2):72-73.
    [85]齐艳玲,樊明寿,潘青华.紫叶李在高温高湿条件下色素含量及光合速率的研究[J].内蒙古农业大学学报,(自然科学版),2008,29(2):27-30.
    [86]陈磊,潘青华,金洪.温湿度对紫叶黄栌光合特性变化的影响[J].林业科学,2008,(6):124-128.
    [87]钱莲文,郭建宏,杨智杰.干旱胁迫对常绿杨光合特性及生长量的影响[J].福建林学院学报,2009,(1):57-61.
    [88]马文涛,樊卫国。干旱胁迫对柚树光合特性的影响[J].耕作与栽培,2007,(6):4,5.
    [89]孔宪辉,韩焕勇,宁新柱,余渝.不同水分处理对棉花叶片叶绿素含量、光合速率及产量的影响研究[J].现代农业科技,2008,(5):131-132.
    [90] Pritchard S.G.,Ju Z.L.,Santen E.V.,et al.The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes.Australian Journal of Plant Physiology,2000,27:1061-1068.
    [91] Cure J . D ., Acock B . Crop responses to carbon dioxide doubling : A literature survey[J].Agricultural Forest Meteorology,1986,38:127-145.
    [92] Poorter H.Interspecific variation in the growth response of plants to elevated ambient CO2 concentration[J].Vegetation,1993,104/105:77-79.
    [93] Cure J . D ., Acock B . Crop response to carbon dioxide doubling : a literature survey[R].Agriculture and Forest Meteorology,1986,38:127-145.
    [94] Delucia E.H.,Sasek T.W.,Strain B.R.Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide [J].Photosynthesis Research,1985,7(2):175-184.
    [95] Yelle S.,Beeson J.R.C.,Trudel M.J.et al.Acclimation of two tomato species to high atmospheric CO2[J].Plant Physiology,1989,90:1473-1477.
    [96] Peet M.,Acclimation to high CO2 in monoecious cucumbers: vegetative and reproductive growth[J].Plant Physiology,1985,80:59-62.
    [97] Norby R.J.,Wullschleger C.A.,Gunderson D.W.,et al.Tree responses to rising CO2 in field experiments:Implications for the future forest[J].Plant Cell and Environment,1999,22:683-714.
    [98] Gunderson C.A.,Norbyr J.,Wullschleger S.D.Foliar gas exchange response of two deciduous hardwoods during 3 years of growth in elevated CO2:No less of photosynthetic enhancement [J].Plant Cell and Environment,1993,(10):799.
    [99] Wilson K.,Carlson T.,Bunce J.Feedback significantly influences the simulated effect of CO2 on seasonal evapotranspiration from two agricultural species [J].Plant Cell and Environment,1992,15:543.
    [100] Sharkey T.D.Photosynthesis in intact leaves of C3 plants: physics,physiology and rate limitations[J].Botanical Review,1985,51(1):53-105.
    [101]李国栋,张汝民,高岩.几种园林树种光合特性的研究[J].内蒙古农业大学学报,(自然科学版),2008,(2):185-189.
    [102]刘娟娟,李吉跃.CO2浓度倍增对元宝枫和刺槐光合特性的影响[J].南京林业大学学报,(自然科学版),2008,(6):143-146.
    [103]刘金祥,麦嘉玲,刘家琼.CO2浓度增强对沿阶草光合生理特性的影响[J].中国草地,2004,(3):13-17.
    [104]周玉梅,韩士杰,胡艳玲,张海森,郑俊强.高浓度CO2对红松(Pinus koraiensis)针叶光合生理参数的影响[J].生态学报,2008,(1):423-429.
    [105] Temperton V.M.,Millard P.,Jarvis P.G.Does elevated a mospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinos and Pinus sylvestris? [J].Global Change Biology,2003,9(2):286-29.
    [106] Tingey D,Mchane R,Molszyk D,et al.Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir[J]. Global Change Biology,2003,9(7):1038-1050.
    [107] Lewis J.D.,Olszyk Tinger T.Seasonal patterns of photosynthetic light response in Douglas-fir seedling subjected to elevated atmospheric CO2 and temperature[J].Tree Physiology,1999,19:243-252.
    [108] Tissue D.T.,Griffin K.L.,Thomas R.B.et al. Effects of low and elevated CO2 on C3 and C4 annualsⅡPhotosynthesis and leaf biochemistry [J].Oecologia,1995,101:21-28.
    [109] Norby R.J.,ONeill E.G.Leaf area compensation and nutrient interactions in CO2-enriched seedling of yellow-poplar [J].New Phytology,1991,117:515-528.
    [110] Lawlor D.W.,Mitchell R.A.C.The effects of increasing CO2 on crop photosynthesis and productivity:a review of field studies [J].Plant,Cell and Environment,1991,14:807-818.
    [111] Gunderson C.A.,Norby R.J.,Wullschleger S.D.Foliargas exchange responses of two deciduous hardwoods during three years of growth in elevated CO2: No loss of photosyntheticenhancement [J].Plant,Cell and Environment,1993,16:797-807.
    [112] Yelle S.,Beeson J.R.C.,Trudel M.J.,et al.Acclimation of two tomato species to high atmospheric CO2 [J].Plant Physiology,1989,90:1465-1472.
    [113] Gunderson C.A.,Wullschleger S.D.Photosynthetic acclimation in tree rising atmospheric CO2:a broader perspective[J].Photosynthesis Research,1994,39:369-388.
    [114] Yelle S.,Beeson J.R.C.,Trudel M J,et al.Acclimation of two tomato species to high atmospheric CO2[J].Plant Physiology,1989,90:1473-1477.
    [115]赵天宏,郭丹,王美玉,徐胜,何兴元.连续两个生长季大气CO2浓度升高对银杏希尔反应活力和叶绿体ATP酶活性的影响[J].生态学报,2009,(3):1391-1397.
    [116]林栋,吕世海,冯朝阳,马晖玲,刘立成,赵小强.华北山地阳坡中生灌草植被对CO2浓度和温度变化的光合响应[J].草业科学,2008,(4):135-140.
    [117]和世平,王荔,陈疏影,杨艳琼,占艳.半夏无糖组培苗营养生长和光合生理对增施CO2的响应[J].云南农业大学学报,2009,(2):204-209.
    [118]刘金祥,陈伟云,肖生鸿.黑籽雀稗的光合特性研究[A].纪念殷宏章先生百年诞辰暨全国光合作用学术研讨会论文摘要汇编[C].2008:102.
    [119]黄宁珍,赵志国,付传明,唐凤鸾,黄志民.不同波长光照对罗汉果光合及生长的影响[J].广西植物,2008,28(2):251-255.
    [120]蒲高斌,刘世琦,刘磊,任丽华.不同光质对番茄幼苗生长和生理特性的影响[J].园艺学报,2005,32(3):420-425.
    [121]储钟稀,童哲,冯丽洁,张群,温晓刚,宋森田,朱孝凤.不同光质对黄瓜叶片光合特性的影响[J].植物学报,1999,41(8):867-870.
    [122]倪文.蓝色短波光培育水稻壮秧[J].云南农业科技,1980,(2):19-23.
    [123]付传明,黄宁珍,赵志国,唐凤鸾,黄志民.光质与补光对水稻幼苗生长及光合速率的影响[J].广西植物,2007,27(2):255-259.
    [124]冷平生,苏淑钗,王天华,蒋湘宁,王沙生.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响[J].植物资源与环境学报,2002,11(1):1-4.
    [125]唐凤鸾,黄宁珍,黄志民等.自然光照下增照不同波长光对马蹄莲光合速率及生长的影响[J].植物生理学通讯,2007,43(5);879-881.
    [126]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):369-375.
    [127] IPCC.Climate Changes 2001: the scientific basis.Contribution of working group I to the third assessment report of the intergovernmental panel on climate change [M].Cambridge,UK/New York,USA: Cambridge University Press,2002:239-287.
    [128] Percy K.E.,Legge A.H.,Krupa S.W.Tropospheric ozone: A continuing threat to global forests? Air Pollution and Global Change and Forests in the new Millennium[J].Developmentin Environmental Science,2003,3:85-118.
    [129] Karnosky D.F.,Zak D.R.,Pregitzer K.S.,et al.Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project[J].Functional Ecology,2003,17:289-304.
    [130] Darral N.M.The effect of air pollutants on physiological processes in plants[J].Plant Cell Environment,1989,12(1):1-30.
    [131]冯玉龙,曹坤芳,冯志立,马玲.四种热带雨林树种幼苗比叶重、光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,(6):901-909.
    [132]郝庆菊.三江平原沼泽土地利用变化对温室气体排放影响的研究[D].北京:中国科学院研究生院,2005.
    [133]李少昆,赵明,王树安,曹连莆,郭小强.不同玉米基因型叶片呼吸速率的差异及与光合特性关系的研究[J].中国农业大学学报,1998,(3):59-65.
    [134]刘建国,张京浦.雨生红球藻光合和呼吸速率研究[J].海洋与湖沼,2000,(5): 490-495
    [135]董树亭,胡昌浩,高荣岐,王群瑛.夏玉米高产群体呼吸速率与光合特性关系的研究[J].玉米科学,1994,(3):61-65
    [136]张旺锋,李正河,李蒙春,蔡红梅,张煜星.北疆高产棉花,(2250kg/hm2)群体光合、呼吸特性及其与产量关系的研究[J].石河子大学学报,(自然科学版),1998,增刊:71-76.
    [137]刘建国,李绍长,李俊华,董志新,黄金信,顿建中.新疆春大豆群体光合、呼吸特性的研究[J].石河子大学学报,(自然科学版),2001,5(9):176-178.
    [138]杜占池,杨宗贵.温度对冷蒿枝条光合和暗呼吸作用的影响[J].植物学通报,1993,(S1):14-15.
    [139]马德华,庞金安,霍振荣,李淑菊.春大棚黄瓜夜间呼吸特性研究[J].河北农业大学学报,1997,20(10):21-24.
    [140]王昆,王先杰,阎永庆,陈菱.柞木林不同层次光合、呼吸日变化规律研究[J].国土与自然资源研究,2000,(3):76-78.
    [141]王才斌,郑亚萍,成波,孙彦浩.高产花生冠层光截获和光合、呼吸特性研究[J].作物学报,2004,(3):274-278.
    [142]陈志银.红麻光合、呼吸强度与气象因子关系的研究[J].中国农业气象,1990,(11):29-32.
    [143]王淼,刘亚琴,郝占庆,王跃思.长白山阔叶红松林生态系统的呼吸速率[J].应用生态学报,2006,17(10):1789-1795.
    [144]盛修武,戚秋慧,姜恕.羊草和大针茅群落的暗呼吸强度与环境条件关系的初步探讨[J].植物研究,1991,11(3):105-111.
    [145]高辉远,邹琦,程炳嵩.大豆叶片光合速率和呼吸速率对温度的响应[J].中国油料作物学报,1992,(3):60-61.
    [146]杜占池,杨宗贵.羊草呼吸作用与温度、光照和土壤水分的关系[J].植物生态学报,1993,17(4):339-344.
    [147] KAUL R.Effect of water stress on respiration of wheat [J].Botany.1966,44:623-632.
    [148] Greenway H and Leahy M,Effects of Rapidly and Slowly Permeating Osmotica on Metabolism[J].Plant Physiol,1970,46:259-262.
    [149]程林梅,唐连顺,张原根,阎继耀,张和.钙处理对土壤干旱下棉花叶片水分状况、光合作用及呼吸速率的影响[J].山西农业科学,1995,(3):23-26.
    [150]李勤报,梁厚果.小麦幼苗呼吸速率对水分胁迫的反应[J].兰州大学学报,(自然科学版),1989,(4):82-87.
    [151]汪杏芬,白克智,匡廷云.大气浓度倍增对植物(杜仲、紫花苜蓿、玉米等10种)暗呼吸的影响[J].植物学报,1997,39(9):849-854.
    [152]蒋高明,林光辉,BrunoD.V.Marino.几种热带雨林与荒漠植物暗呼吸作用对高CO2浓度的响应[J].生态学报,1999,(4):519-522.
    [153]侯新村,李宪利,高东升,郭子武.CO2施肥对桃树暗呼吸和光呼吸的影响[J].果树学报,2005,22(5):466-469.
    [154]于国华,张国树,战淑敏,罗文熹.CO2浓度对黄瓜叶片光合速率、RubisCO活性及呼吸速率的影响[J].华北农学报,1997,12(4):101-106.
    [155]周玉梅,韩士杰,张海森,辛丽花,郑俊强.红松和长白松针叶暗呼吸对连续4个生长季高浓度CO2处理的响应[J].中国科学,(D辑:地球科学),2006,36(12):1148-1153.
    [156] Gulledge J.Schimel J.P.Controls on soil carbon dioxide and methane fluxes in a variety of Taiga Forest stands in Interior Alaska[J].Ecosystems,2000,(3):269~282.
    [157]王颖.东北典型森林生态系统温室气体释放规律研究[D].哈尔滨:东北林业大学,2009.
    [158]齐丽彬,樊军,邵明安,王万忠.黄土高原水蚀风蚀交错带不同土地利用类型土壤呼吸季节变化及其环境驱动[J].生态学报,2008,(11):5428-5436.
    [159]王小国,不同退化程度森林土壤呼吸与碳平衡[D].福建农林大学,2004.
    [160]周海霞,张彦东,孙海龙,吴世义.东北温带次生林与落叶松人工林的土壤呼吸[J].应用生态学报,2007,18(12):2668-2674.
    [161]张宪权.东北地区落叶松人工林土壤呼吸的时空异质性研究[D]华东师范大学,2004.
    [162]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报,1998,22(2):119-126.
    [163]王立刚.黄淮海平原地区农业生态系统土壤碳氮循环规律的初步研究[D博].北京:中国农业大学,2002.
    [164]周海霞,张彦东,孙海龙,吴世义.东北温带次生林与落叶松人工林的土壤呼吸[J].应用生态学报,2007,18(12):2668-2674.
    [165]杨建军,吕光辉,张燕,塔西甫拉提?特依拜.艾比湖流域不同植物群落土壤呼吸研究[J].环境科学研究,2009,(3):362-370.
    [166] Davidson E. A.BELK E,BOONE R.D.Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J].Global Change Biology,1998,(4):217-227.
    [167]杨建军,吕光辉,张燕,塔西甫拉提.特依拜.艾比湖流域不同植物群落土壤呼吸研究[J].环境科学研究,2009,(3):362-370.
    [168] Maier C.A.,Kress L..Soil CO2 evolution and root respiration in 11 year-old loblolly pine,(Pinus taeda) plantations as affected by moisture and nutrient availability[J].Forest Research,2000,30:347-359.
    [169] Kirschbaum M.U.F.Will change in soil organic matter act as a positive or negative feedback on Global warming? [J].Biogeochemistry 2000,48:21-51.
    [170]陈全胜,李凌浩,韩兴国,阎志丹.水分对土壤呼吸的影响及机理[J].生态学报,2003,(5): 972-978.
    [171]马金玉,刘晶淼,李世奎,梁宏,姜朝阳,王炳忠.基于试验观测的光合有效辐射特征分析[J].自然资源学报,2007,22:5.
    [172]吴厚水.对太阳总辐射和某些植被的反射及透射辐射的分光测量[J].生态学报,1987,7(1):21-27.
    [173]金华友.城市绿地系统的功能与总体规划浅析[J].林业调查规划,2003,(4):89-93.
    [174]王永安,恭映壁.计算城市绿化的碳氧平衡法[J].绿色经济,2002,(3):62,63.
    [175]彭重华.长株潭(CZT)城市绿地系统景观生态研究[D].长沙:中南林学院,2005.
    [176]黑龙江省木材采运研究所.LY/T 1006-2006锯材生产综合能耗[S].北京:国家林业局,2006,5.
    [177]中国汽车工业协会.GB19578-2004乘用车燃料消耗量限值[S].北京:中国国家标准化管理委员会,2004,9.
    [178]中国汽车工业协会.汽车节能产品评价汇总表[EB/OL] . http ://www.caam.org.cn/xiehuidongtai/2009/617/096171216214AJB60J41JF7H30IBAHB.html,2009-12-01.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700