用户名: 密码: 验证码:
不同疏水性能冠状动脉支架的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠状动脉支架内血栓形成是目前影响冠状动脉支架置入术预后的重要因素之一。支架表面亲水性和疏水性的平衡与支架优异的血液相容性密切相关。故本文通过利用硅烷修饰316L不锈钢及支架获得不同疏水强度的支架表面,探讨疏水强度改变对支架性能的影响,为将来冠状动脉支架表面改性研究提供依据,国内外未见该研究报道。
     本研究将辛基三乙氧基硅烷、KH560、甲基三乙氧基硅烷、丙基三乙基硅烷接枝到裸不锈钢表面,通过接触角测试,接触角分别为95o、110o、115o、120o,获得不同强度疏水性能。红外光谱证实硅烷相应基团振动,SEM证实表面微米及纳米结构形成,表明硅烷接枝成功。通过动态凝血实验、溶血性能实验、抗凝血时间测定、血小板吸附试验、蛋白吸附实验评价不同材料的血液相容性。研究发现随着时间的增长,血液在材料表面凝固性越来越强,甲基硅烷修饰的不锈钢表面(接触角110o)血液相容性最佳。所有材料的溶血率均在5%以下。随着疏水性增加不同材料PT、APTT时间均有所延长、血小板吸附增多,表面吸附白蛋白的能力增强。通过材料表面培养内皮细胞评价其不同疏水强度不锈钢表面内皮化程度,研究发现疏水表面随着接触角增加细胞黏附增加,内皮化程度高。同时应用MTT法测量细胞活性及流式细胞仪测量细胞周期评价材料的细胞相容性,研究发现硅烷修饰的不锈钢具有良好的细胞相容性。将硅烷修饰的不同疏水性能的冠脉支架置入到兔腹主动脉内,体内实验通过对P-选择素及TXB2的检测评价其对血小板活化的影响。研究发现不同疏水性能支架对体内血小板激活与裸支架相比没有显著性差异。通过腹主动脉造影、血管内超声、组织病理切片等方法评价支架置入1个月后其体内对血栓形成及内膜增生影响。小样本研究发现不同疏水性能的316L不锈钢置入动物体内后较裸支架不增加血栓发生率,1个月时支架表面疏水性能的改变没有显著改变支架内血栓发生率,支架具有良好的组织相容性,在支架周围组织没有明显的炎症反应,表面疏水性能增强,支架表面内膜增生程度增强。
Stent thrombosis affects the prognosis of percutaneous coronary intervention. The hydrophobicity and hydrophilicity of the surface are closely related to stent thrombosis. The blood compatibility needs good balance of the hydrophobicity and hydrophilicity. At present, the relationship between the restenosis and different hydrophobicity of stent surface has not been reported. The material of coronary stents is mainly 316L stainless steel, and the silane which has different hydrophobic groups can be grafted onto the surface of metal. Therefore, we can get different hydrophobic surface of coronary stent by modifying silane onto the surface of stainless steel stents, and then the relationship can be investigated.
     The octyltriethoxysilane, 3-(2, 3-epoxypropoxy) propyltrimethoxysilane, methyltriethoxylsilane and propyltriethoxysilane were modified onto the surface of bare 316L stainless steel. The hydrophobic intensity was evaluated by testing contact angle. The contact angles of octyltriethoxysilan, 3-(2, 3-epoxypropoxy) propyltrimethoxysilane, methyltriethoxylsilane, propyltriethoxysilane were separately 95o, 105o, 110o and 115o. Infrared spectra showed that the corresponding silane group vibrated and SEM confirmed that micron and nano-structure formed on the surface, which indicated silane had been grafted successfully. The reason of the different contact angle in each group was the different hydrophobic bulky group of silane and the formation of micron and nano-structure.
     The dynamic blood clotting, hemolysis, platelet adhesion, anti-clotting time and protein adsorption were carried out to evaluate the haemocompatibility of each group. As time went on, the time of the blood coagulation at the surface of materials didn’t have close relationship with the hydrophobicity of stainless steel modified with saline. But the research indicated that the time of the blood coagulation increased as the hydrophobicity enhaced 50 minutes later. The blood compatibility of methyl silane-modified stainless steel surfaces was the best. The prothrombin time and actived partial thromboplastin time extended as the hydrophilicity of different stainless steel enhanced .Hemolytic rate of all materials was less than 5%, which indicated the stainless steel modified with saline matched the standard of medical material. With the hydrophobicity increasing, the platelet adhesive rate on the surface increased. The amount of adsorbed protein increased with the increased hydrophobicity. Compared with the bare stainless steel, the amount of adsorbed protein that of stainless steel modified with saline were less.
     With hydrophobicity increased, vascular endothelial cell adhesive ability increased. The morphology of vascular endothelial cells was spindle-shaped or round, and they did not grow as single layer. Some cells extend pseudopodia on the material and the cells appear interconnected phenomena. MTT showed that the number of cell of each group increased and they had no difference. The application of flow cytometer make the evaluation of cell proliferation quicker and more exactly by detecting the content of DNA and distribution of each stage of cell cycle. The number of S stage of the group modified with saline was a little less than the control group, but they have no significant difference. The results of MTT and flow cytometry showed silane-modified stainless steel had good cytocompatibility.
     The stents with different hydrophobic surfaces were implanted into the rabbit’s abdominal aorta. Through vivo experiments, the amount of P-selectin and TXB2 were tested to evaluate the platelet activation. The research indicated that the amount of P-selectin and TXB2 increased obviously after stenting than those before stenting. The platelet activation in each group with different hydrophobic properties had no significant difference. Compared with bare stent, there were no significant differences too. The mechanism of activation of platelet may be the mechanical tear of intima and the damage of the vascular wall. The hydrophobicity of the stent surface played little roles.
     With the methods such as the abdominal aorta angiography, intravascular ultrasound, histological evaluation of biopsy, the author evaluated the effect of the stents thrombosis and intimal hyperplasia in each group which was implanted different hydrophobic stent. Angiography showed one case of octyltriethoxysilane group and one case of propyltriethoxysilane group had approximately 20-30% stenosis, and the others had no significant stenosis. Immediately after stent intravascular ultrasound suggested good adherence, but two stents had poor adherence four weeks later. The intimal hyperplasia could be seen between the stent and vascular wall obviously. The other stents had good adhere four weeks later, and the intimal hyperplasia also could be seen. The intimal hyperplasia of groups modified with saline was stronger than that of the bare stent group. Tissue injury scores of each group had no significant difference. Histopathologic examination showed that one case of bare stent group and one case of KH560 group had new thrombosis, while one case of methyl triethoxysilane group had old thrombosis. Compared with the bare stent group, the incidence of stent thrombosis of hydrophobic stent did not increased. One month later the increased hydrophobic properties of the stent did not increased or reduced the incidence of thrombosis. Around the stent, there was no obvious inflammatory response. HE staining showed that the inflammatory response of the placement around the stent modified with saline, compared with bare metal stent group and sirolimus-eluting stent group , did not enhance. Some small amount of lymphocytes and no foreign body giant cells could be seen in each group, which indicated the material did not cause severe inflammation. The inflammatory response of methyltriethoxysilane group was slightly stronger that that of other groups, which indicates the stents modified with silane had good biocompatibility. The intimal hyperplasia has enhanced with the increasing of stent hydrophobicity.
引文
1.徐溢,王楠,棣铭熙.钢铁表面防腐硅烷膜表面处理新技术【J】.重庆大学学报:自然科学版,2001,24(2):135—136.
    2. Subramanian V, Vanooji WJ. Silane based metal pretreatments as alternatives to chromating [J]. Surface Engineering, 1999, 15 (2): 125.
    3. Child T, Vanooji WJ. Application of silane technology to prevent corrosion of metals and improve paint adhesion [J]. Trans IMF, 1999, 77 (2): 64-70.
    4. Harun M K, Lyon SB, Marsh J. A surface analytical study of functionalized mild steel for adhesion promotion of organic coatings. Prog Org Coat, 2003, 46: 21.
    5. Hansal W E, Hansal S. Investigation of polysiloxane coatings as corrosion inhibitors of zinc surfaces. S urf Coat Technol, 2006, 200: 3056.
    6. Khramov A N, Balbyshev V N, Voevodin N N. Nanostructured solgel derived conversion coatings based on epoxy2and aminosilanes. Prog Org Coat, 2003, 47: 207.
    7. Zucchi F, Grassi V, Frignani A. Inhibition of copper corrosion by silane coatings. Corros Sci, 2004, 46: 2853.
    8. Lee C C, Mansfeld F. Automatic classification of polymer coatingquality using artificial neural networks. Corros Sci, 1999, 41:439.
    9. Funke W, Arslanov V V. The effect of water on the adhesion of organic coatings on aluminium. Prog Org Coat , 1988 , 15 : 355
    10. Marsh J , Scantlebury J D , Lyon S B. The effect of surface/ primer treatments on the performance of alkyd coated steel. Corros Sci, 2001, 43 (5): 829.
    11.杜作栋,陈剑华.有机硅化学[M].北京:高等教育出版社,1990 :184~206.
    12.蒋宪明.硅烷偶联剂在填充复合材料中的应用[J].国外塑料,1994 (2) :5~12.
    13.徐溢,唐守渊,陈立军.铁表面硅烷试剂膜的反射吸收红外光谱.分析测试学报,2002,21(2):72-4.
    14. V. Subramanian ,W. J . van Ooij. Effect of the Amine Functional Group on Corrosion Rate of Iron Coated with Films of Organofunctional Silanes [J]. Corrosion March , 1998 ,54 (3) :204~215.
    15. V. Subramanian,W.J . van Ooij. Siane Based Metal Pretreatment as Alternatives to Chromating [J]. Surface Engineering , 1999 ,15 (20) :168~172.
    16.徐溢,王楠,徐铭熙.钢铁表面防腐硅烷膜表面涂层.重庆大学学报(自然科学版),2001,24(2):135-6.
    17.许立宁路民旭徐喜成,等.钢表面硅烷处理层的粘接性能及防腐性能.北京科技大学学报,2008,30(1):21-4.
    18.周宁琳.有机硅聚合物导论[M] .北京:科学出版社,2000 ,5 ,第1版:168~172.
    19.晨光化工研究院有机硅编写组.有机硅单体及聚合物[M] .北京:化学工业出版社,1986 :430.
    20. Vignesh Palanivel, Danqing Zhu, Wim J. Van Ooij. Nanoparticle filled silane films as chromate replacements for aluminum alloys[J ] .Progress in Organic Coatings ,2003 , (47) :384~92.
    21.王楠,徐溢,杨立华.硅烷试剂防腐蚀工艺研究[J] .材料保护,2001 ,34 (11) :32 - 34.
    22.吴纪森.有机硅及其应用[M] .北京:科学技术文献出版社,1990 :309.
    23. G. P. Sundararajan, W. J. van Ooij. Silane Based Pretreatments for Automotive Steels [P]. Surface Engineering ,2000 ,16 (4) :315~20.
    24.徐溢,王楠,张小凤.直接用作金属表面新型防护涂层的硅烷偶联剂水解效果分析[J ] .腐蚀与防护,2000 ,21 (4) :157~159.
    25.徐溢,滕毅,唐守渊.提高硅烷试剂溶液稳定性的研究[J ] .腐蚀与防护, 2002 ,23 (5) :193~195.
    26.林思聪,高分子生物材料分子工程研究进展(上) ,高分子通报, 1997,( 1) , 1- 14.
    27. Bengtson JR, Mark DB, Honan MB, et al. Detection of restenosis after elective percutaneous transluminal coronary angioplasty using the exerciser treadmill test. Am J Cardiol, 1990, 65:28- 34.
    28. Zee RY, Hoh J, Cheng S, et al. Multi - locus interactions predict risk for post- PTCA restenosis: an approach to the genetic analysis of common complex disease. Pharmacogenomics J, 2002, 2:197 -201.
    29. Vaidya S, Walwaikar P, Kadhe G. Evaluation of anti–atherosclerotic andvasculoprotective effect of long acting nifedipine in patients after PTCA. J Indian Med Assoc, 2001, 99:519- 22.
    30.黄楠,杨萍,冷永祥,等.生物材料表面工程进展.中国科学基金,1999,13: 69.
    31. Schwartz RS, Huber FKC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model. J Am Coll Cardiol, 1992, 19:267- 74.
    32. Koster R,Vieluf D,Kiehn M,et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 2000;356(9245):1895-1897
    33. Wataha JC,Lockwood PE,Marek M,et al. Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. J Biomed Mater Res 1999;45(3):251-7
    34.刘敬肖,杨大智,王伟强,等.管腔内支架用金属材料的生物相容性及其表面改性[J].功能材料,2000,31(6):584-6.
    35. Mehran R,Aymong ED,Ashby DT,et al. Safety of an aspirin-aloneregimen after intracoronary stenting with a heparin-coated stent:final results of the HOPE (HEPACOAT and an Antithrombotic Regimen ofAspirin Alone) study. Circulation 2003;108(9):1078-83.
    36. Sperling C,Houska M,Brynda E,et al. In vitro hemocompatibility of albumin-heparin multilayer coatings on polyethersulfone prepared by the layer-by-layer technique. J Biomed Mater Res A 2006;76(4):681-9.
    37. Dai Z,Mohwald H. Highly stable and biocompatible nafion-based capsules with controlled permeability for low-molecular-weight species. Chemistry 2002;8(20):4751-5
    38. Poussard L,Burel F,Couvercelle JP,et al. In vitro thrombogenicity investigation of new water-dispersible polyurethane anionomers bearing carboxylate groups. J Biomater Sci Polym Ed 2005;16(3):335-51
    39. Serizawa T,Yamaguchi M,Matsuyama T,et al. Alternating bioactivity of polymeric layer-by-layer assemblies:anti- vs procoagulation of human blood on chitosan and dextran sulfate layers. Biomacromolecules 2000;1(3):306-9
    40. Yu K. Study of plasma protein adsorption on biomaterials substituting for hardtissue of human body, J Biomed Eng, 1996; 13 (3)∶1 89.
    41. Wen XJ. Micro rough surface and its bio-effects of metallic biomaterials ( II) Bio-effects of micro rough surface of metallic biomaterials. J Biomed Eng, 1997; 14 (2)∶1 64.
    42. Aiping Z, Tian C. Blood compatibility of surface-engineered poly (ethylene terephthalate) via o-carboxymethylchitosan. Colloids Surf B Biointerfaces. 2006,1;50(2):120-5.
    43. Wang YX, Robertson JL, Spillman WB ,et al .Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm Res. 2004 Aug; 21(8):1362-73.
    44. Higuchi A, Shirano K, Harashima M,et al. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials. 2002 ,23(13):2659-66.
    45. Lahann J, Klee D, Thelen H. Improvement of haemocompatibility of metallic stents by polymer ciating. Journal of Materials Sciences: Materials in Medicine, 1999; 10∶443
    46. Verweire I, Schacht E, Qiang BP. Evaluation of fluorinated polymers as coronary stent coating, Journal of Materials Science: Materials in Medicine, 2000; 11∶207
    47. Popma. JJ, Alexandra J. Contemporary stent designs: Technical consideration, role of intravascularultrasond, and anticoaqulation therapy. P rogress in Cardiovasc Dis, 1996; 39∶83
    48.顾汉卿主编.生物医学材料学.天津:天津科技翻译出版社, 1993∶352
    49.吴云鹏,梁子钧.生物流变学.北京:高等教育出版社, 1988∶4 80.
    50. Elwing H. Protein adsorption and ellipsometry in biomaterial research. Biomaterials, 1998; 19∶3 97
    51. Kidoaki S, Matsuda T. Mechanistic aspects of protein material interactions p robed by atomic force microscopy. Colloids and Surfaces B: Bio interfaces, 2002; 23∶153.
    52. Yu K. Study of plasma protein adsorption on biomaterials substituting for hard tissue of human body, J Biomed Eng, 1996; 13 (3)∶1 89.
    53.喻凯.人体硬组织替代材料表面对血浆蛋白的吸附研究.生物医学工程学杂志, 1996; 13 (3)∶1 89 .
    54.文学军.金属生物材料的微粗糙表面及其生物学效应(II)——金属生物材料的粗糙表面的生物学效应.生物医学工程学杂志, 1997; 14 (2)∶1 64 .顾汉卿,徐国风.生物医学材料学.天津:天津科技翻译出版社.1993.
    55. Alfieri O, Maisano F, Bonis M, et al. The double-orifice technique in mitral valve repair: a simp le solution for complex problems [J]. J Thorac Cardiovasc Surg, 2001, 122 (4): 674-81.
    56. .马祖伟.聚乳酸软骨组织工程支架制备、改性及其细胞相容性研究.浙江大学博士学位论文,2003.
    57.熊猛,夏文森.切应力对PLGA膜片上内皮细胞形态及功能的影响[J ] .第四军医大学学报, 2005 , 26 (1) : 21-3.
    58. Jiro A, Pat rick W. Endothelial progenitor cell capture by stents coated wit h antibody against CD34 [J]. J Am Coll Cardiol, 2005, 45 (10): 1574-79.
    59. Bbbapulle MN, Eisenberg MJ. Coated stents for prevention of restenosis: part 1[J ] . Circulation, 2002, 106: 2734-40.
    60. Van der Giessen W J, Lincoff A M, Schwartz R S, et al .Marked inflammatory sequelae to implantation of biodegradable and non- biodegradable polymers in porcine coronary arteries [J]. Circulation, 1996, 94:1690-97.
    61. Iwasaki Y, Tojo Y, Kurosaki T, et al. Reduced adhesion of blood cells to biodegradable polymers by introducing hosphorylcholine moieties [J]. J Biomed Mater Res, 2003, 65A: 164-9.
    62.吴军正,陈建元.四噢盐比色法试验中有关条件的探讨.第四军医大学学报,1991;12 (4): 304.
    63. Thomson A, Law F G, Rushton N, et al. Blood compatibility of diamond-like carbon coating. Biomaterials, 1991, 12(1): 37~40.
    64. Dion I, Roques X, More N, et al. Ex vivo leucocyte adhesion and protein adsorption on TiN. Biomaterials, 1993, 14(9): 712~9.
    65.张兴栋.生物材料的发展动态和趋势.新材料产业, 2000, (12): 78~81
    66. Chen J Y, Wan G J, Leng J X, et al. Behavior of cultured human umbilical veinendothelial cells on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface & CoatingsTechnology, 2004, (186): 270~6
    67.王仲涛,雷建章,应国华主编.组织和细胞扫描电镜图谱.北京:人民卫生出版社, 1986.
    68.汪钟,郑植荃主编.现代血栓病学.北京:北京医科大学中国协和医科大学联合出版社, 1997.
    69. Chaturvedi S, Yadav JS. The role of antiplatelet therapy in carotid stenting for ischemic stroke prevention. Stroke. 2006; 37(6):1572-77.
    70. Liu LM. Zhongguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu. 2008; 12(22):4431-4.
    71. Li JJ. Inflammatory response, drug-eluting stent and restenosis. ChinMed J (Engl). 2008; 121(6):566-72.
    72. Hsieh NK, Chen HI. Interacting leukocytes predict atherosclerosis and restenosis. Stroke. 2007; 38(12):e162-3.
    73. Koziński M,Sukiennik A,Rychter M,et al. Restenosis after coronary angioplasty: pathomechanism and potential targets for therapeuticintervention. Focus on inflammation. Postepy Hig Med Dosw (Online).2007; 61:58-73.
    74. Davis C, Fischer J, Ley K, et al. The role of inflammation in vascular injury and repair. J Thromb Haemost. 2003;1(8):1699-709.
    75. Massberg S, Gawaz M,Gruner S, et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med.2003; 197(1):41-9.
    76. Chaturved IS, Yadav JS. The role of antiplatelet therapy in carotid stenting for ischemic stroke prevention [J]. Stroke, 2006, 37: 1572-7.
    77. Jeong MH, Owen WG, Staab ME, and et al. Porcine model ofstent thrombosis: platelets are the primary component of acute stent closure [J]. Cathet Cardiovasc Diagn, 1996, 38: 38-43.
    78. Mckev FM, Radnall MS, Cleveland TJ, et al. Thebenefits of combined anti-platelet treatment in carotid artery stenting [J]. Eur J Vasc Endovasc Surg, 2005, 29: 522-7.
    79. Kopp CW, Steiner S, Nasel C, et al. Abciximab reduces monocyte tissue factor in carotid angioplasty and stenting [J].Stroke, 2003, 34: 2560-7.
    80. Michelson AD, Barnard MR, Krueger LA, et al. Circulating monocyte platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction [J]. Circulation, 2001, 104: 1533-7.
    81. Furman MI, Barnard MR, Krueger LA, et al. Circulating monocyte platelet aggregates are an early marker of acute myocardial infarction [J]. J Am Coll Cardiol, 2001, 38: 1002-6.
    82. Valgimigli M, Airoldi F, Zimarino M. Stent choice in primary percutaneous coronary intervention: drug-eluting stents or bare metal stents? J Cardiovasc Med (Hagerstown). 2009 Oct; 10 Suppl 1:S17-26.
    83. Krylov AL..Thrombosis of stents with an antiproliferative coating. Review of the literature. Angiol Sosud Khir. 2009; 15(1):59-66.
    84. Justice J, Yacono C. Justice J, Yacono C. Use of drug-eluting stents for patients with coronary heart disease. JAAPA. 2009 Aug; 22(8):30-4.
    85. Byrne RA, Sarafoff N, Kastrati A, Drug-eluting stents in percutaneous coronary intervention: a benefit-risk assessment.Drug Saf. 2009; 32(9):749-70.
    86. Palmaz J C,Benson A, Sp rague E A, et al. Influence of surface topography on endothelialization of intravascular metallic material [J]. J Vasc Interv Radiol, 1999, 10 (4): 439-4.
    87.沈阳,王贵学,全学军,等. NiTi合金血管内支架表面改性及其生物相容性研究[ J ].中国医疗器械杂志, 2006, 30 ( 1) :326.
    88. Van Belle E, Tio F O, Chen D, et al. Passivation of metallicstents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening [J]. J Am Coll Cardiol, 1997, 29: 1371-9.
    89. Grewe P H, Deneke T, Machraoui A. et al. Acute and chronic tissue response to coronary stent implantation: payhologic fingdings in human specimen[ J ]. J Am Coll Cardiol, 2000, 35 (1):157-63.
    90. Kornowski R, HongM K, Tio F O, et al. In stent restenosis: contributions ofinflammatory response and arterial injury to neointimal hyperplasia [J]. J Am Coll Cardiol, 1998, 31 (1):224-30.
    91. Zhao H, van Humbeeck J, Sohier J, et al. Electrochemical polishing of 316L stainless steel slotted tube coronary stents [J]. J Mater Sci MacerMed, 2002, 13 (10): 911-6.
    92. Lahann J , Klee D, Thelen H. Imp rovement of haemocompatibility of metallic stents by po lymer ciating.Journal ofM aterials Sciences:M aterials in M edicine, 1999; 10∶443
    93. V erweire I, Schach t E, Q iang BP. Evaluation of fluo rinated po lymers as co ronary stent coating, Journal of M aterials Science: M aterials inM edicine, 2000; 11∶207
    94. Popma. JJ , A lexandra J. Contempo rary stent designs: Technical consideration, ro le of intravascular ultrasond, and anticoaqulation therapy. P rogress in Cardiovasc D is, 1996; 39∶83
    95. Charles JM , David RH, Robert SS. Novel Stents fo r the Prevention of Pesteno sis TCM , 1997; 7 (7)∶245
    96. Gu HQ. Biomaterilas. T ianjing: T ianjing Science T ranslation Press, 1993∶352[
    97.顾汉卿主编.生物医学材料学.天津:天津科技翻译出版社, 1993∶352 ]
    98. Wu YP, L iang ZJ. Bio rheo logy. BeiJ ing: H igher Education Press, 1988∶480吴云鹏,梁子钧.生物流变学.北京:高等教育出版社, 1988∶480
    99. Elw ing H. P ro tein adso rp tion and ellip sometry in biomaterial research. Biomaterials, 1998; 19∶397
    100. Kidoak i S, M atsuda T. M echanistic aspects of protein? material interactions p robed by atom ic fo rce m icro scopy. Co llo ids and Surfaces B: Bio interfaces, 2002; 23∶153
    101. Yu K. Study of p lasma p ro tein adso rp tion on biomaterials substituting fo r hard tissue of human body, J Biomed Eng,1996; 13 (3)∶189
    102.喻凯.人体硬组织替代材料表面对血浆蛋白的吸附研究.生物医学工程学杂志, 1996; 13 (3)∶189
    103. Wen XJ. M icro rough surface and its bio2effects of metallic biomaterials (II)2Bio2effects of m icro rough surface of metallic biomaterials. J Biomed Eng, 1997; 14 (2)∶164
    104.文学军.金属生物材料的微粗糙表面及其生物学效应(II)——金属生物材料的粗糙表面的生物学效应.生物医学工程学杂志, 1997; 14 (2)∶164
    105. Petra BW. Investigation of adsorption induced structural changes of p roteins at soild?liquid interfaced by differential scanning calorimetry. Thermo chemical Acta, 2002; 382∶175
    106. Shettlemo re M G, Bundy J. Examination of in vivo influences on bio luminescent microbial assessment of corrosion product toxicity. Biomaterials, 2001; 22∶2215
    107. Gutensohn K, Beythien C, Bau J , et al. In vitro analyses of diamond like carbon coated stents: reduction of metal ion release, p latelet activation, and rombogenicity. Thrombosis Research, 2000; 99∶577
    108. Staro svetskyD, Go tman I. T iN coating imp roves the corrosion behavio r of superelastic N iT i surgical alloys. Surface and Coatings Techno logy, 2001; 148
    109. Amon M , Bo lzA , Heublein B, et al. Coating of cardiovascular stents w ith amorphous silicion carbide to reduce thrombogenicity. IEEE, 1994
    110. JonesM I, M cCo ll IR, Grant DM , et al. Haemocompatibility of DLC and T iC-T iN Interlayers on titanium. D imond and RelatedM aterials , 1999; 8∶457
    111. Selfert B, Romaniuk P. Bio reso rbable, heparinized polymer for stent coating: in vitro studies on heparinization efficiency, maintenance of anticoagulant p roperties and imp rovement of stent haemocompatibility. Journal of M aterials Science: Materials in Medicine, 1996; 7∶465
    112. Fu Zhang, Kang ET, N eoh. KG, et al. Surface modification of stainless steel by grafting of poly (ethylene glycol) for reduction in pro tain adsorption. Biomaterials, 2001; 22∶541
    113. Lahann J , Klee D, Pluester W , et al. Bioactive immobilization ofr h irudin on CVD-coated metallic imp lant devices. Biomaterials, 2001; 22∶817
    114. Charles JM, David RH, Robert SS. Novel stents for the prevention of restenosis.TCM, 1997; 7 (7)∶245
    115.许玉韵.2004年心血管疾病防治回顾并展望2005年.中国医药导刊.2005(01):1~5
    116.于新蕊,汤青.心血管疾病将成为威胁全球健康的炸弹.国外医学,社会医学分册.2005(2):96
    117.胡大一.美国心脏病学学会第54届年会热点荟萃.中华心血管病杂志.2005(06):1222~1223
    118.胡大一.WCC/ESC 2006会议主题:心血管疾病和人口老龄化.中国心血管病研究杂志.2006(10):721~723
    119.徐士欣,焦连亭,包承鑫.血小板活化与血液凝固.国外医学,临床生物化学与检验学分册.2004,25(05):480~482
    120.朱忠勇.凝血的新概念.上海医学.1997,20(02):115~117
    121.胡玉锋.水溶性壳聚糖衍生物在生物材料表面的构建及其抗凝血性能研究.南京师范大学.硕士学位论文.2005:11~13
    122. N.Volcker,D.Klee,H.Hocker,et al.Functionalization of silicone rubber for the covalentimmobilization of fibronectin.Journal of Materials Science-Materials in Medicine.2001,12(2):111~119
    123.崔迎春,徐建平.Ca2+对血液凝固的作用探究.化学教学.2003,10(10):22
    124. S.Dong, S.Sapieha, H.P.Schreiber.Mechanical Properties of Corona-Modified Cellulose/Poly-ethylene Composites.Polymer Engineer and Science. 1993,33(6):343~346
    125.何美霞,贺石林.凝血理论的修正及其意义.生物学通报.2000,35(11):4~6
    126.张建荣.新型壳聚糖衍生物抗凝血材料.天津大学.硕士学位论文.2004:7~9
    127.陈宝林,王东安,封麟先,张欣.生物医用高分子材料的血液相容性研究-抗凝血材料的设计.绥化学院学报.2007,21(1):186~188
    128.孙燕慧,丘坤元,冯新德.聚醚氨酯的氧化及其接枝共聚合的研究.高分子学报.1983(02):81~87
    129. M.Nystrom,M.J.Jarvinen.Modification of Polysulfone Ultrafiltration Membranes with UV Irradiation and Hydrophilicity Increasing Agents.Journal of Membrane Science.1991,60:275~296
    130.张安兄,吕德龙,钟伟,程为庄,杜强国.生物材料的血液相容性.上海生物医学工程.2004,25(03):53~58
    131. J.Yamauchi,A.Yamaoka,K.Ikemoto.Graft copolymerization of methyl methacrylate onto polypropylene oxidized with ozone.Journal of Applied Polymer Science.1991,43:1197~1203
    132. Y.Uyama,Y.J.Ikada.Graft Polymerization of Acrylamide onto UV-Irradiated Films.Journal of Applied Polymer Science.1988,36:1087~1096
    133. Fujimoto, Y.Takebayashi, H.Inoue, Y.Ikada.Ozone-induced graft copolymerization onto polymer surface. Journal of Polymer Science Part A-Polymer Chemistry.1993,31:1035~1043
    134. M.Suzuki,A.Kishida,H.Iwata.Graft Copolymerization of Acrylamide onto a Polyethylene Surface Pretreated with Glow Discharge .Macromolecules.1986,19:1804~1808
    135. T.Atsushi,T.Jun-ichi,K.Tisato,T.Motowo.Effect of aggregation state of hard segment in segmented poly(urethaneureas)on their fatigue behavior after interaction with blood components.Journal of Biomedical Materials Research.1985,19(1):13~34
    136. F.Poncin-Epaillard,B.Chevet,J.C.Broses.Modification of Isotactic Polypropylene by aCold Plasma or an Electron Beam and Grafting of the Acrylic Acid onto these Activated Polymers. Journal of Applied Polymer Science.1994,53:1291~1306
    137. R.Eloy,J.Belleville,M.C.Rissoan and J.Baguet.Heparinization of Medical GradePolyurethanes.J Biomater Applicat.1988,2(4):475~519
    138. .Tan, J.Ji, M.A.Barbosa, C.Fonseca, J.C.Shen.Constructing Thromboresistant Surface on Biomedical Stainless Steel via Layer-by-Layer Deposition Anticoagulant. Biomaterials.2003,24(25):4699~4705
    139. T.W.Chung,M.G.Yang,D.Z.Liu,W.P.Chen,C.I.Pan,S.S.Wang.Enhancing growth -48-human endothelial cells on Arg-Gly-Asp(RGD)embedded poly(-caprolactone)(PCL)surface with nanometer scale of surface disturbance.Journal of Biomedical MaterialsResearch PartA.2005,72A(2):213~219
    140. T.Atsushi, W.H.Robert, J.C.Arthur, L.C.Stuart.Effect of soft segment chemistry on the biostability of segmented polyurethanes.II.In vitro hydrolytic degradation and lipod sorption. Journal of Biomedical Materials Research. 1992,26(6):801~818
    141.徐良,景在平.人造血管移植物自然内皮化的研究.中华实验外科杂志.1997,14(5):316~317
    142. G.S.John,J.Graham,D.N.William and P.A.Underwood.Adhesion and Growth of Cultured Human Endothelial Cells on Perfluorosulphonate:Pole of Vitronectin and Fibponectin in Cell Attachment .Biomaterials.1991,12(6):531~539
    143.徐良,景在平.国产真丝涤纶血管移植自然内皮化研究.上海生物医学工程杂志.1998,19(2):19~20
    144.高润霖.冠心病介入治疗进展.中国循环杂志2002;17:326一330
    145. K.S.Claude,H.Sylvie and J.P.Cazenave.Culture of Human Vascular Endothelial Cells on a Positively Charged Polystyrene Surface,Primaria:Comparison with Fibronectin-Coated Tissue Culture Grade Polystyrene . Biomaterials.1989,10(2):85~90
    146. LoweHC,OesterleSN,KhaehiginaLM,etal.Coronayrin一stentrestenosis:current status and future strategies.JAmCollCardiol 2002;39:183一193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700