用户名: 密码: 验证码:
微弧氧化钛表面组织结构调控和细胞行为及骨诱导性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用微弧氧化的方法在实体钛及微珠烧结的多孔钛表面制备了TiO_2基含硅钙元素的微弧氧化涂层。通过后续热处理和水热处理的方法对实体钛表面微弧氧化涂层进行表面改性。采用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X-射线光电子谱(XPS)、傅立叶变化红外光谱(FT-IR)、透射电子显微镜(TEM)、力学万能实验机和纳米压痕仪等分析手段研究了实体钛表面微弧氧化涂层改性前后和多孔钛表面微弧氧化涂层的组织结构、力学性能、物化性能及涂层在模拟体液中诱导磷灰石的能力。采用酶标仪、激光共聚焦显微镜(CLMS)、紫外分光光度计等分析手段,研究了涂层表面细胞增殖、黏附、细胞骨架、细胞活性等细胞学行为和血液相容性。通过种植体兔胫骨体内植入的实验方法、采用X射线影像、Micro-CT、生物力学测试、组织学切片等分析手段研究了种植体与兔胫骨组织的结合能力和体内相容性。此外,为解决植入体导致的炎症问题,本文研究了在涂层表面上载抗生素药物及释放机制。
     本文采用了100、200、400、600μm直径的钛珠真空烧结制备了多孔钛。采用EDTA-2Na~+Ca((CH_3COO)_2.H_2O+Na_2SiO_3.9H_2O+NaOH的电解液,在实体钛和多孔钛表面制备了TiO_2基含硅钙微弧氧化涂层(SC)。SC涂层中主要物相为锐钛矿,涂层和基体之间界面结合良好。SC涂层中主要含有Ca、Si、Na、Ti和O元素。随着微弧氧化电压升高,SC涂层表面Ca、Si和Na含量增加,Ti含量降低。各种元素在涂层内部存在梯度分布。SC涂层中Ti、O、Ca、Si分别对应Ti~(4+)和Ti~(2+)、O~(2-)、Ca~(2+)、Si~(4+)化学态。电压对Ca和Si元素的化学态没有明显的影响。随着制备电压增高,SC涂层表面硬度、弹性模量、抗腐蚀性提高,润湿性和表面粗糙度增加。随着钛珠直径的增加,多孔钛孔隙率与力学性能逐渐降低。多孔钛SC涂层厚度随钛珠直径增加而升高。
     SC涂层经过700℃和800℃热处理后表面形成金红石和榍石,表面变得粗糙,涂层厚度增加,抗腐蚀性能和力学性能提高。SC涂层热处理后除了Ti~(2+)转化为Ti~(4+)以外,其它各个元素的化学态不变。水热处理SC涂层表面形成竹叶状、条状、线状TiO_2。在水热反应过程中,Si、Ca离子发生溶解。此外,SC涂层水热处理过程中,涂层中的TiO_2会受到OH-离子的攻击,形成HTiO_3~-离子,引起Ca~(2+)和Na~+离子在涂层表面沉积,从而形成钛酸钙和钛酸钠水合物。
     在SBF浸泡过程中,SC涂层中的Na~+离子能够和SBF中的H_3O~+离子发生离子交换形成Si-OH,增强了磷灰石的形核。而且磷灰石能够生长嵌入SC涂层的微孔中。此外,电压增加使得SC涂层中Si、Ca含量增加,从而提高了磷灰石诱导能力。多孔钛SC涂层磷灰石诱导能力优于实体钛SC涂层,主要由于多孔结构和多孔钛SC涂层中引入的Si、Ca元素的含量高。由于榍石相的增多,热处理SC涂层随热处理温度升高诱导磷灰石能力增强。SC涂层经过水热处理以后形成HA和钛酸盐水合物,磷灰石诱导能力明显增强。在SBF浸泡过程中,钛酸盐水合物中的Ca~(2+)和Na~+离子与SBF中的H_3O~+离子发生交换形成Ti-OH,提高了磷灰石形成能力。各种诱导的磷灰石都含有HPO4~(2-)和CO3~(2-)等功能团。
     SC涂层及其改性涂层表面上载的头孢唑林钠/壳聚糖复合药物薄膜具有药物缓释性能。药物薄膜能够沉积到微弧氧化的微孔中,涂覆次数增加、壳聚糖的引入能增强头孢唑林钠的缓释能力。800oC热处理SC涂层表面药物缓释能力略好于其它涂层。多孔钛SC涂层表面药物缓释能力好于实体钛SC涂层,因为多孔钛具有更大的承载药物空间。壳聚糖和头孢唑林钠之间主要通过库伦作用、范德华力作用、氢键作用等形式进行结合。药物薄膜和SC及热处理SC涂层之间也会出现各种物理化学吸附反应,涉及到涂层的Si-OH、Ti-O结构和药物的-C=O、OH、-NH2基团发生作用。
     随着微弧氧化电压增高,SC涂层表面细胞增殖能力增强,涂层表面细胞活性与纯钛无差别,细胞骨架结构优于纯钛表面。多孔钛SC涂层表面细胞黏附能力早期弱于纯钛表面,但是后期黏附能力强于钛表面,且细胞黏附形态与钛珠直径有关。多孔钛SC涂层利于早期的细胞增殖,细胞培养7天后与未氧化多孔钛增殖能力无显著差别。不同直径钛珠烧结多孔钛SC涂层表面细胞活性差别不显著,多孔钛结构利于优化表面细胞肌动蛋白骨架。随着热处理温度提高,SC涂层表面的细胞黏附,增殖、细胞活性等均提高,细胞形态与骨架结构优良。水热处理SC涂层表面利于细胞黏附和增殖,细胞黏附形态完整。不同水热处理条件制备的SC涂层表面细胞黏附率、增殖率和细胞活性无显著差别。本实验各种涂层均无溶血能力,血液相容性良好。
     不同电压制备的SC涂层种植体、热处理SC涂层种植体植入兔胫骨内,体内相容性优良,在植入期间无排斥感染现象出现。种植体周围骨组织吸收良好,沿种植体有骨组织生长。自兔胫骨内取出的种植体可观察到沉积的骨组织和成骨细胞,骨组织与种植体的结合强度随微弧氧化电压和热处理温度增加而加强。多孔钛SC涂层种植体植入兔胫骨内,表现出的生物性能与实体钛SC种植体类似,但是与骨组织的结合强度高于实体钛SC涂层,因为多孔钛SC涂层的孔隙中有骨组织的长入。组织学观察植入兔体内三个月各种种植体均与骨组织良好结合。
     综上,本文中实体钛SC涂层、热处理和水热处理实体钛SC涂层及多孔钛SC涂层展现出了优良的磷灰石诱导能力、细胞相容性、血液相容性和体内生物活性,同时涂层表面涂覆头孢唑啉钠/壳聚糖药物膜具有明显的缓释作用。
Microarc oxidation (MAO) was used to produce TiO~(2-)based coatingscontaining Si and Ca on the surfaces of the entitative Ti and porous Ti prepared bysintering Ti beads. And then, the MAO coatings were modified by heat-treatmentand hydrothermal-treatment to enhance their bioactivity. The microstructures,mechanical properties, physical and chemical properties and apatite-formationability of the MAO coatings before and after modification were investigated by theX-ray diffraction(XRD), raman spectroscopy(Raman), scanning electronicmicroscope(SEM), atomic force microscope(AFM), X-ray photoelectronicspectroscopy(XPS),fourier transform-Infrared spectra (FT-IR),transmission electronmicroscope(TEM), mechanics universal testing machines and nanoindentation. Theblood compatibility and cell biological behaviors such as cell proliferation, cellattachment, cytoskeleton and cellular activities of the MAO coatings without andwith modifications were investigated by microplate reader for ELISA, Laserscanning confocal microscope(CLMS) and ultraviolet-visible pectrophotometer. Thein vivo compatibility and bonding strength of the implants covered MAO coatingswithout and with subsequent modifications between new bones were investigatedafter implanting in rabbit tibia for different time by X-ray Diagnostic imaging,Micro-CT, Biomechanics, histologic cross-sectional anatomy. In addition, toovercome the inflammation resulted from implants, drug coating technique was usedto deposit antibacterial drugs on implants.
     In this paper, porous titanium was fabricated by sintering titanium beads withdifferent diameters of100,200,400and600μm. TiO~(2-)based coatings containing Siand Ca (SC) were prepared on entitative Ti and porous tianium in the electrolytecontaining EDTA-2Na, Ca((CH_3COO)_2.H_2O, Na_2SiO_3.9H_2O and NaOH. The mainphase compositions of SC coatings are anatase and the main elemental compositionsare Ca, Si, Na, Ti and O. And the interface bonding strength between SC coatingsand Ti is good. With increasing the applied voltage, the concentrations of Ca, Si andNa increased and that of Ti decreased. A graded distribution in the elementalconcentration along the coating depth was observed. In the current results, thechemical states of Ti, O, Ca and Si were Ti~(4+)and Ti~(2+), O~(2-), Ca~(2+), Si~(4+). At the sametime, the applied voltage does not affect the chemical states of Ca and Si. In addition,the hardness, elastic modulus and corrosion resistance of SC coatings wereenhanced and the wetting ability and surface roughness of SC coatings improved byincrease the applied voltage. With increasing the titanium bead diameter, theporosity and mechanical properties decreased. In addition, the thickness of the SC coatings on the porous titanium increased.
     After heat treatment of the SC coating at700℃and800℃, rutile and sphenewere formed. With increasing heat treatment temperature, the surfaces of SCcoatings became rougher and the coating thickness, corrosion resistance andmechanical properties were improved. After heat treatment of SC coatings, except ofthe change in the chemical states of Ti~(2+)to Ti~(4+), the chemical states of Ca, Si and Oelements did not change. On the surface of hydrothermal heated SC coatings,bamboo-, band-and line-like TiO_2were observed. During the hydrothermaltreatment process, Si and Ca elements were released into the NaOH aqueoussolution. In addition, TiO_2of SC coatings could be attacked by OH-ions in theNaOH aqueous solution, forming HTiO_3~-ions, which could result in the depositionof Ca~(2+)and Na~+ions on the modified surface to form calcium titanate and sodiumtitanate hydrates.
     During SBF immersion, the ionic exchange of Na~+ions of SC coating with H_3O~+ions in SBF can result in the formation of Si-OH groups, greatly promoting theapatite formation on the SC coatings. At the same time, the apatite can deposit in themicropores of SC coatings. In addition, increasing the applied voltage couldimprove the apatite forming ability of SC coatings due to high Ca and Siconcentrations in the SC coatings. The apatite forming ability of the porous titaniumis higher than that of entitative Ti due to its porous structure and higherconcentrations of Si and Ca. with increasing the heat treatment temperature, theapatite forming ability of SC coatings increased due to the formation of sphene. Thehydrothermal treated SC coatings show high apatite formation ability resulting fromthe formation of HA and titanates. During the SBF immersion process, the ionicexchanges of Ca~(2+)and Na~+ions of titanates on the hydrothermal treated SC coatingswith H_3O~+ions in the SBF cause the formation of Ti-OH groups, which greatlyimprove the apatite formation ability. In addition, the induced apatites by all kindsof coatings contain HPO4~(2-)and CO3~(2-)groups.
     The cefazolin sodium/chitosan drug films on the SC coating show drugslow-release ability. The drug films could deposit into the micropores of SCcoatings. The increase of deposition times and the addition of chitosam can improvethe slow-release ability of drug film. And the slow-release ability of drug films onthe heat-treated SC coating at800oC is higher than that of other coatings. Thereactions between chitosam and cefazolin could involve coulombic interactions, vander Waals force, and H-bonding etc. In addition, interface reactions between drugfilms and SC and heat-treated SC coatings could occur such as physical andchemical absorption involving various groups such as Si-OH, Ti-O of substrates and-C=O,-OH and-NH2groups of drug films.
     The cell proliferation on the surface of SC coatings increased with increasing the applied voltage. The effect of SC coatings on the cellular activity is not obviouscompared to pure titanium. The cell attachment ability on the porous titanium withSC coatings was lower than that on pure titanium at the early cell culture. However,it enhanced at latter cell culture. Moreover, the morphology of the attached cells isrelative to the diameter of titanium beads. The porous titanium with SC coatings isbenefit to the cell proliferation at early cell culture after1and3days, however, noobvious difference in the cell proliferation was observed between porous titaniumwithout and with SC coatings after cell culture for7days. The effect of the titaniumbeads diameter on the cellular activity is not obvious. However, the porous structureof porous titanium could optimize the cell actin skeleton. With increasing the heattreatment temperature, the cell attachment, cell proliferation and cellular activitywere enhanced, at the same time, the cytoskeleton and cell morphology are good.Hydrothermal treatment could improve the cell proliferation and attachment on theSC coatings. In addition, the attaching morphology on the hydrothermal treated SCcoatings is integrity. The hydrothermal treatment procedure has not evident effect onthe cell attachment ratio, cell proliferation and cell activity. No All coatings showgood blood compatibility.
     The in vivo biocompatibility of the SC coatings before and after heat treatmentis very good, and no rejection and infection were found after implantation. Moreover,the bone tissue absorption is also good, and new bone could grow on the surface ofthe implants. The bone tissue and osteoblast could be observed on the surfaces of theimplants after being taken out from the rabbit tibia. The bonding strength betweennew bone and implants increased with increasing the applied voltage and heattreatment. The porous titanium with SC coatings shows similar in vivobiocompatibility compared to entitative Ti with SC coatings. However, the bondingstrength between implants and new bones is higher than that of entitative Ti, sincethe new bone can grow in the pores of the porous titanium. Good interfaces of newbones and various implants were observed after implanting for3months in rabbit.
     Above all, the entitative Ti with SC coatings before and after heat treatment orhydrothermal treatment, as well as the porous titanium with SC coatings, showsgood apatite forming ability, cell compatibility, blood compatibility and in vivobiocompatibility. In addition, The cefazolin sodium/chitosan drug films on the SCcoating show drug slow-release ability.
引文
[1] Wagner H, Wagner M. Conus Hip Prosthesis[J]. Acta Chir Orthop TraumatolCech,2001,68(4):213-221.
    [2] Biehl V, Breme J. Metallic Biomaterials[J]. Materialwissenschaft UndWerkstofftechnik,2001,32:137-141.
    [3] Liu X Y, Paul K C, Ding C X. Surface Modification of Titanium, TitaniumAlloys, and Related Materials for Biomedical Applications[J]. MaterialsScience Engineering,2004,47(3-4):49-121.
    [4] Nie X, Leyland A, Matthews A. Deposition of Layered BioceramicHydroxyapatite/TiO2Coatings on Titanium Alloys Using a Hybrid Techniqueof Microarc Oxidation and Electrophoresis[J]. Surface and CoatingsTechnology,2000,125:407-414.
    [5] Zhang Y M, Bataillon-Linez P, Huang P, Zhao Y M, Han Y, Traisnel M, XuK W, Hildebrand H F. Surface Analyses of Microarc Oxidized andHydrothermally Treated Titanium and Effect on Osteoblast Behavior[J].Journal of Biomedical Materials Research,2004,68(2):383-391.
    [6] Li L H, Kim H W, Lee S H, Kong Y M, Kim H E. Biocompatibility ofTitanium Implants Modified by Microarc Oxidation and HydroxyapatiteCoating[J]. Journal of Biomedical Materials Research,2005,73(1):48-54.
    [7] Jones F H. Teeth and Bones: Applications of Surface Science to DentalMaterials and Related Biomaterials[J]. Surface Science Reports,2001,42:75-205.
    [8] Qu S X, Guo X, Weng J, Cheng J C Y, Feng B, Yeung H Y, Zhang X D.Evaluation of the Expression of Collagen Type Iin Porous Calcium PhosphateCeramics Implanted in an Extra-Osseous Site[J]. Biomaterials,2004,25:659-667.
    [9] Ripamonti U. Soluble Osteogenic Molecular Signals and the Induction ofBone Formation[J]. Biomaterials,2006,27:807-822.
    [10] Advincula M C, Rahemtulla F G, Advincula R C, Ada E T, Lemons J E,Bellis S L. Osteoblast Adhesion and Matrix Mineralization onSol-Gel-Derived Titanium Oxide[J]. Biomaterials,2006,27:2201-2212.
    [11] Ramaswamy Y, Wu C T, Hummel A V, Combes V, Grau G, Zreiqat H. TheResponses of Osteoblasts, Osteoclasts and Endothelial Cells to ZirconiumModified Calcium-Silicate-Based Ceramic[J]. Biomaterials,2008,29(33):4392-4402.
    [12] Ozin G A, Varaksa N, Coombs N, Davies J E, Perovicd D D, Zilioxe M. BoneMimetics: a Composite of Hydroxyapatite and Calcium Dodecyl PhosphateLamellar Phase[J]. Journal of Materials Chemistry,1997,7(8):1601-1607.
    [13] Long M, Rack H J. Titanium Alloys in Total Joint Replacement-A MaterialsScience Perspective[J]. Biomaterials,1998,19:1621-1639.
    [14] Wang K. The Use of Titanium for Medical Application in the USA[J].Materials Science and Engineering,1996,213(1-2):134-137.
    [15] Yanovska A, Kuznetsov V, Stanislavov A, Danilchenko S, Sukhodub L.Synthesis and Characterization of Hydroxyapatite-Based Coatings forMedical Implants Obtained on Chemically Modified Ti6Al4V Substrates[J].Surface and Coatings Technology,2011,205(23-24):5324-5329.
    [16] Liu Y J, Luo J, Liu B, Zhang J Y. The Cytocompatibility Investigation ofTi6Al4V Modified with a Fluorine-Contained Copolymer Thin Film[J].Applied Surface Science,2011,257(15):6429-6434.
    [17] Panjwani B, Satyanarayana N, Sinha S K. Tribological Characterization of aBiocompatible Thin Film of UHMWPE on Ti6Al4V and the Effects of PFPEas Top Lubricating Layer[J]. Journal of the Mechanical Behavior ofBiomedical Materials,2011,4(7):953-960.
    [18] Semlitsch M, Staub F, Webber H. Titanium-Aluminum-Niobium Alloy,Development for Biocompatible, High Strength Surgical Implants[J]. BiomedTechnik,1985,30(12):334-339.
    [19] Cui W F, Guo A H. Microstructures and Properties of Biomedical TiNbZrFeβ-Titanium Alloy Under Aging Conditions[J]. Materials Science andEngineering,2009,527(1-2):258-262.
    [20] Yu Z T, Wang G, Ma X Q. Reaserch Development and Applieation ofBiomedical Titanium Alloy Materials[M]. Materials Science Forum,2009,(618-619):303-306.
    [21]查树银,崔振铎,朱胜利.新型医用β-Ti13Nb13Zr合金组织[J].金属热处理,2006,2:17-21.
    [22] Yao J, Glant T T, Lark M W, Mikecz K, Jacobs J J, Hutchinson N I,Hoerrner L A, Kuettner K E, Galante J O. The Potential Role of Fibroblasts inPeriprosthetic Osteolysis: Fibroblast Response to Ti Particles[J]. Journal ofBone and Mineral Research,1995,10(9):1417-1427.
    [23] Barrere F, Valk C M, Meijer G, Dalmeijer R A, Geoot K, Layrolle P.Osteointegration of Biomimetic Apatite Coating Applied onto Dense andPorous Metal Implants in Femurs of Goats[J]. Journal of BiomedicalMaterials Research,2003,67(1):655-665.
    [24] Huiskes R, Welnans H, Riebergen B. The Relationship Between StressShielding and Bone Resorption Around Total Hip Stems and the Effects ofFlexible Materials[J]. Clinical Orthopaedics and Related Research,1992,274:124-134.
    [25] Head W C, Bauk D J, Emerson R H. Titanium as the Material of Choice forCementless Femoral Components in Total Hip Arthroplasty[J]. ClinicalOrthopaedics and Related Research,1995,311:85-90.
    [26] Ryad G, Pandit A, Apatsidis D P. Fabrication Methods of Porous Metals forUse in Orthopaedic Applications[J]. Biomaterials,2006,27(13):2651-2670.
    [27] Anselme K. Osteoblast Adhesion on Biomaterials[J]. Biomaterials,2000,21:667-681.
    [28] Wen C E, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T.Processing of Biocompatible Porous Ti and Mg[J]. Scripta Materialia,2001,45(10):1147-1153.
    [29] Nomura N, Kohama T, Oh I H, Hanada S, Chiba A, Kanehira M, Sasaki K.Mechanical Properties of Porous Ti-15Mo-5Zr-3Al Compacts Prepared byPowder Sintering[J]. Materials Science and Engineering,2005,25(3):330-335.
    [30] Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamur T.Mechanical Properties and Osteoconductivity of Porous BioactiveTitanium[J]. Biomaterials,2005,26(30):6014-6023.
    [31] Li J P, Li S H, Groot K D, Layroll P. Preparation and Characterization ofPorous Titanium[J]. Key Engineering Materials,2002,218-220:51-54.
    [32]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33(1):5-11.
    [33] Zou C M, Zhang E L, Li M W, Zeng S Y. Preparation Microstructure andMechanical Properties of Porous Titanium Sintered by Ti Fibres[J]. Journalof Materials Science: Materials in Medicine,2008,19:401-405.
    [34]邹鹑鸣,张二林,曾松岩.纤维烧结多孔钛及其表面生长仿生Ca-P涂层[J].稀有金属材料与工程,2007,36(8):1394-1397.
    [35]邹鹑鸣,张二林,毛玉红,曾松岩.钛表面仿生制备Si-HA涂层的热力学分析[J].稀有金属材料与工程,2007,36(11):1905-1908.
    [36] Zhang E, Zou C M. Porous Titanium and Silicon-Substituted HydroxyapatiteBiomodification Prepared by a Biomimetic Process: Characterization and inVivo Evaluation[J]. Acta Biomaterialia,2009,5(5):1732-1741.
    [37] Oh I H, Nomura N, Masahashi N, Hanad S. Mechanica Properties of PorousTitanium Compacts Prepared by Powder Sintering[J]. Scripta Materialia,2003,49:1197-1202.
    [38] Chang C K, Huang J Q, Xia J Y, Ding C X. Study on Crystallization Kineticsof Plasma Sprayed Hydroxyapatite Coating[J]. Ceramics International,1999,25:479-483.
    [39] Jaworski R, Pierlot C, Pawlowski L, Bigan M, Martel M. Design of theSynthesis of Fine HA Powder for Suspension Plasma Spraying[J]. Surfaceand Coatings Technology,2009,203(15):2092-2097.
    [40] Rakngarm A, Mutoh Y. Characterization and Fatigue Damage of PlasmaSprayed HAp Top Coat with Ti and HAp/Ti Bond Coat Layers onCommercially Pure Titanium Substrate[J]. Journal of the MechanicalBehavior of Biomedical Materials,2009,2(5):444-453.
    [41] Feng C F, Khor K A, Liu E J, Cheang P. Phase Transformations in PlasmaSprayed Hydroxyapatite Coatings[J]. Scripta Mater,2000,42:103-109.
    [42] Milella E, Cosentino F, Licciulli A, Massaro C. Preparation andCharacterization of Tania/Hydroxyapatite Composite Coatings Obtained bySol-Gel Process[J]. Biomaterials,2001,22:1425-1431.
    [43] Hsieh M F, Perng L H, Chin T S. Hydroxyapatite Coating on Ti6Al4V AlloyUsing a Sol-Gel Derived Precursor[J]. Materials Chemistry and Physics,2002,74:245-250.
    [44] Im K H, Lee S B, Kim K M, Lee Y K. Improvement of Bonding Strength toTitanium Surface by Sol-Gel Derived Hybrid Coating of Hydroxyapatite andTitania by Sol-Gel Process[J]. Surface and Coatings Technology,2007,202(4-7):1135-1138.
    [45] Harle J, Kim H W, Jonathan N M, Knowles C, Salih V. Initial Responses ofHuman Osteoblasts to Sol-Gel Modified Titanium with Hydroxyapatite andTitania Composition[J]. Acta Biomaterialia,2006,2(5):547-556.
    [46] Hwang K, Lim Y. Chemical and Structural Changes of Hydroxyapatite Filmsby Using a Sol-Gel Method[J]. Surface and Coatings Technology,1999,115:172-175.
    [47] Liu D M, Yang Q Z, Troczynski T. Sol-Gel Hydroxyapatite Coatings onStainless Steel Substrates[J]. Biomaterials,2002,23:691-698.
    [48] Hwang K, Song J, Kang B, Park Y. Sol-Gel Derived Hydroxyapatite Films onAlumina Substrates[J]. Surface and Coatings Technology,2000,123:252-255.
    [49]李旭东,翁杰,王培禄,赵纯培,张兴栋.离子束技术沉积羟基磷灰石薄膜的结构及溶解性能[J].无机材料学报,1998,13(4):541-546.
    [50]王昌祥,陈治清.离子束辅助沉积技术制备HA/TI植入材料的设计[J].生物医学工程学杂志,1999,16(2):140-142.
    [51] Luo Z S, Cui F Z, Feng Q L, Li H D, Zhu X D, Spector M. In Vitro and inVivo Evaluation of Degradability of Hydroxyapatite Coatings Synthesized byIon Beam-Assisted Deposition[J]. Surface and Coatings Technology,2000,131:192-195.
    [52]黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报,2003,31(6):591-597.
    [53] Olbrich K C, Andersen T T, Blumenstock F A, Bizios R. Surfaces Modifiedwith Covalently-Immobilized Adhesive Peptides Affect Fibroblast PopulationMotility[J]. Biomaterials,1996,17(8):759-764.
    [54] Stoch A, Bro ek A, Kmita G, Stoch J, Jastrzebski W, Rakowska A.Electrophoretic Coating of Hydroxyapatite on Titanium Implants[J]. Journalof Molecular Structure,2001,596:191-200.
    [55] Zhang Y Y, Tao J, Pang Y C, Wang W, Wang T. Electrochemical Depositionof Hydroxyapatite Coatings on Titanium[J]. Transactions of NonferrousMetals Society of China,2006,16(3):633-637.
    [56] Nishiguchi S, Kato H, Fujita H. Titanium Metal form Direct Bonding to Boneafter Alkali and Heat Treat Ment[J]. Biomaterials,2001,22(18):2525-2532.
    [57] Kokubo T, Kim H M, Miyaji F, Takadama H, Miyazaki T. Ceramic-Metal andCeramic-Ploymer Composites Prepared by a Biomimetic Process[J].Composites Part A: Applied Science and Manufacturing,1999,30(4):405-409.
    [58]徐淑华,王迎军,罗承萍.生物羟基磷灰石涂层材料的研究进展[J].材料导报,2002,26(1):48-56.
    [59] Buser D, Nydegger T, Oxland T, et al. Interface Shear Strength of TitaniumImplants with Asandblasted and Acid-Etehed Surfsce: a Biomeehanical Studyin the Maxilla of Miniature Pigs[J]. Journal of Biomedical Materials Research,1999,45(2):75-83.
    [60] Kokubo T, Kim H M, Kawashita M. Novel Bioactive Materials with DifferentMechanical Properties[J]. Biomaterials,2003,24:2161-2175.
    [61] Kim H M, Miyaji F, Kokubo T, Nakamura T. Preparation of Bioactive Ti andIts Alloys via Simple Chemical Surface Treatment[J]. Journal of BiomedicalMaterials Research,1996,32:409-417.
    [62] Kim H M, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Graded SurfaceStructure of Bioactive Titanium Prepared by Chemical Treatment[J]. Journalof Biomedical Materials Research,1999,45:100-107.
    [63] Kim H M, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T. BioactiveMacroporous Titanium Surface Layer on Titanium Substrate[J]. Journal ofBiomedical Materials Research,2000,52:553-557.
    [64] Wang C X, Wang M, Zhou X. Nucleation and Growth of Apatite onChemically Treated Titanium Alloy: an Electrochemical ImpedanceSpectroscopy Study[J]. Biomaterials,2003,24:3069-3077.
    [65] Takadama H, Kim H M, Kokubo T, Nakamura T. An X-Ray PhotoelectronSpectroscopy Study of the Process of Apatite Formation on BioactiveTitanium Metal[J]. Journal of Biomedical Materials Research,2001,55:185-193.
    [66] Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim H M,Kokubo T. Bioactive Titanium: Effect of Sodium Removal on theBone-Bonding Ability of Bioactive Titanium Prepared by Alkali and HeatTreatment[J]. Journal of Biomedical Materials Research,2001,56:562-570.
    [67] Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T,Kim H M, Kokubo T. Bonding of Alkali-and Heat-Treated Tantalum Implantsto Bone[J]. Journal of Biomedical Materials Research,2000,53(1):28-35.
    [68] Yan W Q, Nakamura T, Kobayashi M, Kim H M, Miyaji F, Kokubo T.Bonding of Chemically Treated Titanium Implants to Bone[J]. Journal ofBiomedical Materials Research,1997,37:267-275.
    [69] Pan J, Liao H, Leygraf C, Thierry D, Li J. Variation of Oxide Films onTitanium Induced by Osteoblast-Like Cell Culture and the Influence of anH2O2Pretreatment[J]. Journal of Biomedical Materials Research,1998,40:244-256.
    [70] Pan J, Thierry D, Leygraf C. Hydrogen Peroxide Toward Enhanced OxideGrowth on Titanium in PBS Solution: Blue Coloration and ClinicalRelevance[J]. Journal of Biomedical Materials Research,1996,30:393-402.
    [71] Maitz M F, Poon R W Y, Liu X Y, Pham M T, Chu P K. Bioactivity ofTitanium Following Sodium Plasma Immersion Ion Implantation andDeposition[J]. Biomaterials,2005,26:5465-5473.
    [72] Gaona M, Lima R S, Marple B R. Nanostructured Titania/HydroxyapatiteComposite Coatings Deposited by High Velocity Oxy-Fuel(HVOF)Spraying[J]. Materials Science and Engineering,2007,458:141-149.
    [73] Lima R S, Khor K A, Li H, Cheang P. HVOF Spraying of NanostructuredHydroxyapatite for Biomedical Applications[J]. Materials Science andEngineering,2005,396(1-2):181-187.
    [74] Li M Q, Ma C, Shang D S. Hydroxyapatite Graded Coatings Made throughSubsonic Thermal Sprapying[M]. Materials Science Forum,2003,423-425:327-330.
    [75] Lin D Y, Zhao Y T, Zhang Z. Preparation of Hydroxyapatite CoatingDeposited on the Titanium Alloy Surface with Magnetron SputteringTechnique[J]. Chinese Journal of Clinical Rehabilitation,2006,10(33):155-157.
    [76] Ding S J. Properties and Immersion Behavior of Magnetron-SputteredMulti-Layered Hydroxyapatite/Titanium Composite Coatings[J].Biomaterials,2003,24:4233-4238.
    [77]贺永信,顾云峰,曹海萍,常程康,毛大立.羟基磷灰石涂层种植体骨愈合的实验研究[J].上海口腔医学,2002,11(4):335-339.
    [78]邓迟,张亚平,高家诚.激光熔覆生物陶瓷涂层和界面的研究[J].应用激光,2006,26(1):21-23.
    [79]张亚平,高家诚,文静,王勇.钛基激光涂覆生物陶瓷涂层的生物相容性[J].中国生物医学工程学报,2002,21(3):242-245.
    [80] Katto M, Nakamura M, Tanaka T, Nakayama T. Hydroxyapatite CoatingsDeposited by Laser-Assisted Laser Ablation Method[J]. Applied SurfaceScience,2002,30(197-198):768-771.
    [81]周友龙,黄楠,张继春.爆炸法制备钛基体羟基磷灰石涂层试验研究[J].西南交通大学学报,2002,37(1):49-52.
    [82]石玉龙,茹凤虎,彭红端.铝材表面的等离子微弧氧化技术研究[J].电镀与涂饰,2000,19(1):17-18.
    [83] Rudnev V S, Vasileva M S, Lukiyanchuk I V. On the Surface Structure ofCoatings Formed by Anodic Spark Method[J]. Protection of Metal,2004,40(4):352-357.
    [84]左洪波,孔庆山,尚文琦.等离子体增强电化学表面陶瓷化技术[J].材料保护,1995,28(7):33-35.
    [85]左洪波,郝相君,孔庆山,李欣.一种新型表面改性技术-等离子体增强电化学表面陶瓷化(PECC)[J].中国表面工程,1999,2:38-40.
    [86] Güntherschulze A, Betz H. Neue Untersuchungen über Die ElcktrdytischeVentilwirkung: II. Die Oxydschicht von Sb, Bi, W, Zr, Al, Zn, Mg[J]. Z Phys,1931,37(8-9):726-734.
    [87] Güntherschulze A, Betz H. Die Elektronenstromung in Isolatoren BeiExtremen Feldstarken[J]. Z Phys,1934,91:70-96.
    [88]薛文斌,邓志威,来永春,陈如意,张通和.有色金属表面微弧氧化技术评述[J].金属热处理,2000,1:1-3.
    [89] Patel J L, Saka N. Micro Plasmic coatings[J]. Am.Ceram.Soc.Bull,2001,80(4):27-29.
    [90] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J. PlasmaElectrolysis for Surface Engineering[J]. Surface and Coatings Technology,1999,122:73-93.
    [91] Curran J A, Kalkanc H, Magnrova Yu, et al. Mullite-Rich Plasma ElectrolyticOxide Coatings for Thermal Barrier Application[J]. Surface and CoatingsTechnology,2007,201(21):8683-8687.
    [92] Lonnyuk B, Apachitei I, Duszczyk J. The Effect of Oxide Coatings on FatigueProperties of7475-T6Alummum Alloy[J]. Surface and Coatings Technology,2007,201(21):8688-8694.
    [93] Xue W B, Wang C, Tian H, et al. Corrosion Behaviors and Galvanic Studiesof Micro Arc Oxidation Films on Al-Zn-Mg-Cu Alloy[J]. Surface andCoatings Technology,2007,201(21):8695-8701.
    [94] Monfort F, Berkani A, Matykina E, et al. Development of Anodic Coatings onAluminum under Sparking Conditions in Silicate Electrolyte[J]. CorrosionScience,2007,49(2):672-693.
    [95] Jiang Z H, Zeng X B, Yao Z P. Preoaration of Micro-Arc Oxidation CoatingMagnesium Alloy and Its Thermal Shock Resistance Property[J]. Rare Metals,2006,25(3):270-273.
    [96]魏同波,田军,压达元. LY12铝合金微弧氧化陶瓷层的结构和性能[J].材料研究学报,2004,18(2):161-166.
    [97]李颂.镁合金微弧氧化膜的制备、表征及其性能研究[D].长春:吉林大学材料学院,2007:38-45.
    [98]冯俊,沈丽如,冯洁,廖勇刚,钟莺,袁国民.汽车发动机活塞的微弧氧化处理[J].特种铸造及有色合金,2003,1:52-55.
    [99]马臣,王颖慧,曲立杰,张向宇.钛合金微弧氧化技术的研究现状及展望[J].中国陶瓷工业,2007,14(1):46-49.
    [100]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景[J].金属热处理,2004,29(1):23-29.
    [101] Denisenko V A, Pokrovskll V A, Osipova N I. Mass SpectrometricInvestigation of TiO2Films Obtained by Mieroarc Oxidation[J]. Proteetion ofMetals,1989,25(6):765-766.
    [102] Kandinskll M P, Gordienko P S, Ziatdinov A M. X-Ray Electron Study ofTitanium Coatings Prepared in Phosphate Electrolyte by the MicroarcOxidation Method[J]. Zhurnal Neorganicheskoi Khimii,1989,34(4):823-826.
    [103] Wang Y M, Jiang B L, Guo L X, Lei T Q. Tribological Behavior of MicroarcOxidation Coatings Formed on Titanium Alloys Against Steel in Dry andSolid Lubrication Sliding[J]. Applied Surface Science,2006,252(8):2989-2998.
    [104] Wang Y M, Jiang B L, Lei T Q, Guo L X. Microarc Oxidation CoatingsFormed on Ti6A14V in Na2SiO3System Solution: Microstructure,Mechanical and Tribological Properties[J]. Suface and Coatings Technology,2006,201(1-2):82-89.
    [105] Hao G D, Yao Z P, Jiang Z H. Salt Spray Corrosion Test of Micro-PlassmaOxidation Ceramic Coatings on Ti Alloy[J]. Rare Metals,2007,26(6):560-564.
    [106] Hao G D, Jiang Z H, Yao Z P, et al. Influence of Calcination Ambiences onPhase Composition and High Temperature Oxidation Resistance Property ofCeramic Coatings on Ti-6Al-4V Alloy by Micro-Plasma Oxidation[J]. KeyEngineering Materials,2007,336-338:2481-2483.
    [107] Hao G D, Guo Y L, Zhang X M, et al. Preparation of Ceramic CompositeCoatings on Ti-6Al-4V Alloy by Surface Nanocrystallization/Micro-ArcOxidation[J]. Key Engineering Materials,2008,368-372:1322-1324.
    [108]郝国栋,姜兆华,姚忠平,吴晓宏,线恒泽.焙烧气氛对Ti-6Al-4V合金微弧氧化陶瓷膜相组成影响[J].稀有金属材料与工程,2007,36(2):693-695.
    [109] Hao G D, Jiang Z H, Wu X H, et al. Influences of Argon Atmosphere onCeramic Coatings on Ti-6Al-4V Alloy by Micro-Plasma Oxidation inDifferent Solutions[M]. Materials Science Forum,2007,546-549:1717-1720.
    [110] Yao Z P, Jiang Z H, Wang F P, et al. Oxidation Behavior of Cerami Coatingson Ti-6Al-4V by Micro-Plasma Oxidation[J]. Journal of Materials ProcessingTechnology,2007,190(1-3):117-122.
    [111]姚忠平,姜兆华,郝国栋,王福平.高温氧化对钛合金微弧氧化陶瓷膜组成与结构的影响[J].材料科学与工艺,2008,16(1):23-26.
    [112]陈根余,吴汉华,李乐,常鸿,唐元广.电学参数对胶体中工业纯钛微弧氧化膜特性的影响[J].物理学报,2010,59(3):1958-1963.
    [113]陈根余,吴汉华,唐元广,常鸿,徐铭泽.外电阻对纯钛微弧氧化膜特性的影响[J].稀有金属材料与工程,2010,39(8):1485-1491.
    [114]于松楠,吴汉华,陈根余,袁鑫,李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响[J].物理学报,2011,60(2):028104-l-025104-5.
    [115]唐元广,吴汉华,常鸿,陈根余,桑勇,白亦真.阴极电压脉冲占空比对钛合金微弧氧化膜特性的影响[J].物理学报,2009,58(7):4840-4845.
    [116]常鸿,吴汉华,唐元广,陈根余,董琳.工业纯钛微弧氧化膜的结构及拉曼光谱分析[J].光谱学与光谱分析,2009,29(9):2453-2456.
    [117] Wang J B, Wu H H, Li Q J, et al. Characteristics of Grain Growth of MicroarcOxidation Coatings on Pure Titanium[J]. Chinese Physics,2005,14(12):2598-2601.
    [118]汪剑波,吴汉华,金曾孙,唐元广,常鸿.钛合金微弧氧化膜微晶生长特性的研究[J].无机材料学报,2006,21(3):731-735.
    [119]汪剑波,吴汉华,吕宪义,王秀琴,李全军,金曾孙.恒定电流密度下钛微弧氧化膜的特性研究[J].云南大学学报,2005,27(S1):320-324.
    [120] Wu H H, Wang J B, Long B Y, et al. Ultra-Hard Ceramic Coatings Fabricatedthrough Microarc Oxidation on Aluminium Alloy[J]. Applied Surface Science,2005,252(5):1545-1552.
    [121] Song W H, Ryu H S, Hong S H. Apatite Induction on Ca-Containing TitaniaFormed by Micro-Arc Oxidation[J]. Journal of the USA Ceramic Society,2005,88(9):2642-2644.
    [122] Wei D Q, Zhou Y, Jia D C, Wang Y M. Influence of Applied Voltage on theStructure of Micro-Plasma Oxidized Titania Coating that Formed in anElectrolyte Containing Nano-HA and Calcium and Phosphate Salts[J]. KeyEngineering Materials,2008,368-372:1209-1211.
    [123] Wei D Q, Zhou Y, Wang Y M, Jia D C. Effect of Dehydration on Structureand Induction Capability for Apatite Formation of Anodic Spark DepositedTiO2-Based Film with Chemical Modification[J]. Thin Solid Film,2008,516:6413-6420.
    [124]魏大庆,周玉,王亚明,贾德昌.钛合金表面等离子体电解氧化生成含钙磷生物梯度涂层的研究[J].稀有金属材料与工程,2008,37:569-572.
    [125]郭恒,陈吉华,马楚凡,成炜.溶胶-凝胶/微弧氧化复合制备种植体表面HA/TiO2复合涂层的研究[J].中国美容医学,2007,16(3):394-398.
    [126] Takebe J, Itoh S, Okada J, Ishibashi K. Anodic Oxidation and HydrothermalTreatment of Titanium Results in a Surface that Causes Increased Attachmentand Altered Cytoskeletal Morphology of Rat Bone Marrow Stromal Cells inVitro[J]. Journal of Biomedical Materials Research,2000,51:398-407.
    [127] Song H J, Shin K Ha, Kook M S, Oh H K, Park Y J. Effects of the ElectricConditions of AC-Type Microarc Oxidation and Hydrothermal TreatmentSolution on the Characteristics of Hydroxyapatite Formed on Titanium[J].Surface and Coatings Technology,2010,204(14):2273-2278.
    [128] Wei D Q, Zhou Y. Characteristic and Biocompatibility of the TiO2-BasedCoatings Containing Amorphous Calcium Phosphate Before and After HeatTreatment[J]. Applied Surface Science,2009,255:6232-6239.
    [129]李超,成艳,郑玉峰. PLA药物涂层包被TiNi合金的表面特性与蛋白质吸附行为[J].中国生物医学工程学报,2006,25:602-606.
    [130]尹民,袁媛,刘昌胜.316L不锈钢表面聚乙烯-乙烯醇药物涂层的制备及性能[J].华东理工大学学报(自然科学版),2005,31:386-390.
    [131] Zhang X K, Meng L J, Lu Q H, Fei Z F, Dyson P J. Targeted Delivery andControlled Release of Doxorubicin to Cancer Cells Using Modified SingleWall Carbon Nanotubes[J]. Biomaterials,2009,30:6041-6047.
    [132] Mani G, Chandrasekar B, Feldman M D, Patel D, Agrawal C M. Interaction ofEndothelial Cells with Self-Assembled Monolayers for Potential Use inDrug-Eluting Coronary Stents[J]. Journal of Biomedical Materials Research,2009,90(2):789-801.
    [133] Mani G, Johnson D M, Marton D, Feldman M D, Patel D, Ayon A A, AgrawalC M. Drug Delivery from Gold and Titanium Surfaces Using Self-AssembledMonolayers[J]. Biomaterials,2008,29:4561-4573.
    [134] Forsgren J, Brohede U, Mihranyan A, Engqvist H, Str mme M. Fast Loading,Slow Release-A New Strategy for Incorporating Antibiotics toHydroxyapatite[J]. Key Engineering Materials,2009,396-398:523-526.
    [135] Fuentes G, Peón E, Campos Y, López N, Resende C X, De A S, Loria D G.Application of New Statistical Approach to Study Drug Release from OCPCoating on Titanium Sheets[J]. Key Engineering Materials,2009,396-398:511-514.
    [136] Campos A M D, Sańchez A, Gref R, Calvo P, Alonsoa M J. The Effect of aPEG Versus a Chitosan Coating on the Interaction of Drug Colloidal Carrierswith the Ocular Mucosa[J]. European Journal of Pharmaceutical Sciences,2003,20:73-81.
    [137] Campos M G N, Satsangi N, Rawls H R, Mei L H I. Chitosan Cross-LinkedFilms for Drug Delivery Application[M]. Macromolecular Symposia,2009,279:169-174.
    [138] Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. Recent Advances onChitosan-Based Micro-and Nanoparticles in Drug Delivery[J]. Journal ofControlled Release,2004,100:5-28.
    [139] Park J H, Saravanakumar G, Kim K, Kwon I C. Targeted Delivery of LowMolecular Drugs Using Chitosan and Its Derivatives[J]. Advanced DrugDelivery Reviews,2010,62(1):28-41.
    [140] Rodriguesa L B, Leitea H F, Yoshidab M I, Salibaa J B, Juniora A S C,Faracoa A A G. In Vitro Release and Characterization of Chitosan Films asDexamethasone Carrier[J]. International Journal of Pharmaceutics,2009,368(1-2):1-6.
    [141] Naficy S, Razal J M, Spinks G M, Wallace G G. Modulated Release ofDexamethasone from Chitosan-Carbon Nanotube Films[J]. Sensors andActuators A: Physical,2009,155(1):120-124.
    [142] Peng C Y, Zhao Q H, Gao C Y. Sustained Delivery of Doxorubicin by PorousCaCO3and Chitosan/Alginate Multilayers-Coated CaCO3Microparticles[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,353:132-139.
    [143] Crcarevska M S, Dodov M G, Goracinova K. Chitosan Coated Ca-AlginateMicroparticles Loaded with Budesonide for Delivery to the Inflamed ColonicMucosa[J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,68:565-578.
    [144] Depan D, Kumar A P, Singh R P. Cell Proliferation and Controlled DrugRelease Studies of Nanohybrids Based on Chitosan-G-Lactic Acid andMontmorillonite[J]. Acta Biomaterialia,2009,5:93-100.
    [145]刘晨光,刘成圣,孟祥红.壳聚糖作为药物缓释材料的研究进展[J].高技术通讯,2003,3:98-102.
    [146] Pantaleone D, Yapani M. Unusual Susceptibility of Chitosan to EnzymeHydrolysis[J]. Carbohydrate Research,1992,237:325-332.
    [147]陈云,胡健,赵国骏.胃蛋白酶催化壳聚糖糖降解的特性研究[J].扬州大学学报,2000,3(3):31-34.
    [148] Felt O, Furrer P, Mayer J M. Topical Use of Chitosan Ophthalmology:Tolerance Assessment and Evaluation of Precorneal Retention[J].International Journal of Pharmaceutics,1999,180(2):185-193.
    [149]马建标,王红军,何炳林.壳聚糖膜的制备及其对人、大鼠皮肤成纤维细胞的相容性[J].天津工业大学学报,2001,20(1):1-5.
    [150]曾敏峰,孙旭东,姚献东.壳聚糖基多孔膜的制备方法进展[J].高分子材料科学与工程,2005,21(2):52-55.
    [151]舒晓正,朱康杰.壳聚糖-海藻酸钠微囊对蛋白质控制释放的研究[J].功能高分子学报,1999,4:423-426.
    [152]卢凤琦,曹宗顺,赵焰.壳聚糖-海藻酸盐微囊对药物的缓解作用[J].中国医药工业杂志,1996,27(6):247-249.
    [153] Gungor S, Yildi A, zsoy Y, et al. Investigation on Mefenamic AcidSustained Release Tablets with Water-Insoluble Gel[J]. Il Farmaco,2003,58(5):397-403.
    [154] Kokubo T. Bioactive Glass Ceramics: Properties and Applications[J].Biomaterials,1991,12(2):155-163.
    [155] Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yammamuro T. Solutions Able toReproduce in Vivo Surface Structure Changes in Bioactive GlassceramicA-W[J]. Journal of Biomedical Materials Research,1990,24:721-734.
    [156] Song W H, Jun Y K, Han Y, Hong S H. Biomimetic Apatite Coatings onMicro-Arc Oxidized Titania[J]. Biomaterials,2004,25(17):3341-3349.
    [157] Liu X Y, Dinga C X, Chu P K. Mechanism of Apatite Formation onWollastonite Coatings in Simulated Body Fluids[J]. Biomaterials,2004,25(10):1755-1761.
    [158]俞耀庭.生物医学材料[M].天津:天津大学出版社,2000:33-38.
    [159]刘宝林,顾晓明.口腔领面外科学[M].沈阳:辽宁科学技术出版社,1999:220-225.
    [160] Chou L S, Firth J D, UittO V J, Brunette D M. Substratum SurfaceTopography Alters Cell Shape and Regulates Fibronectin mRNA Level,mRNA Stability, Secretion and Assembly in Human Fibroblasts[J]. Journal ofCell Science,1995,108:1563-1573.
    [161] Redick S D, Settles D L, Briscoe G, et al. Defining Fibronectin's CellAdhesion Synergy Site by Site-Directed Mutagenesis[J]. Journal of CellBiology,2000,149:521-527.
    [162] Uchida M, Kim H M, Kokubo T, Fujibayashi S, Nakamura T. StructuralDependence of Apatite Formation on Titania Gels in a Simulated BodyFluid[J]. Journal of Biomedical Materials Research,2003,64:164-170.
    [163] Mao C B, Li H D, Cui F Z, Feng Q L, Wang H, Ma C L. Oriented Growth ofHydroxyapatite on (0001) Textured Titanium with FunctionalizedSelf-Assembled Silane Monolayer as Template[J]. Journal of MaterialsChemistry,1998,8(12):2795-2801.
    [164] Core o J, Martínez A, Core o O, Bolarín A, Sánchez F. Calcium andPhosphate Adsorption as Initial Steps of Apatite Nucleation onSol-Gel-Prepared Titania Surface[J]. Journal of Biomedical MaterialsResearch,2003,64(1):131-137.
    [165] Anselme K, Linez P, Bigerelle M, et a1. The Relative Influence of theTopography and Chemistry of TiAl6V4Surfaces on Osteoblastic CellBehavior[J]. Biomaterials,2000,21(15):1567-1577.
    [166] Sauer G R, Wuthier E, Fourier Transformer Infrared Characterization ofMineral Phases Formed during Induction of Mineralization byCollagenase-Released Matrix Vesicles in Vitro[J]. Journal BiologicalChemistry,1988,263(27):13718-13724.
    [167] Liao H, Anderssonc A S, Sutherland D, et al. Response of Rat Osteoblast-LikeCells to Microstructured Model Sufaces in Vitro[J]. Biomaterials,2003,24(4):649-654.
    [168] Karlsson M, Palsgard E, Wilshaw P R, et al. Initial in Vitro Inieraction ofOsteoblasts with Nano-Porous Alumina[J]. Biomaterials,2003,24(18):3039-3046.
    [169]顾新丰,蒋垚,韩培,张小农.钛合金表面纳米化对成骨细胞薪附的影响[J].中国临床康复,2006,10(25):46-48.
    [170] Schouten C, Meijer G J, Jeroen J J P, Spauwen P H M, Jansen J A. TheQuantitative Assessment of Peri-Implant Bone Responses UsingHistomorphometry and Micro-Computed Tomography[J]. Biomaterials,2009,30(27):4539-4549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700