用户名: 密码: 验证码:
电热蒸发原子光谱/质谱联用技术及痕量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电感耦合等离子体原子发射光谱/质谱(ICP-AES/MS)具有灵敏度高,线性范围宽,分析速度快和可同时测定多元素等优点,已成为痕量/超痕量分析的主要方法之一,广泛应用于生命、食品、临床、新材料、环境、地质、冶金和核技术等领域。应当指出,从原子光谱到原子质谱标志着分析科学学科发展中的重要突破。
     新进样技术研究一直是原子光谱/质谱分析界关注的热点之一。电热蒸发(ETV),作为一种使待测物以气态形式引入ICP-AES/MS的进样技术,具有以下一些突出的优点:(1)进样效率高(~80%),方法的检出限得到显著改善;(2)试样的蒸发和激发(电离)过程分步进行,有利于实验参数的优化和降低基体产生的干扰;(3)耗样量少,微克级或微升级;(4)可直接分析固体试样,省去了样品预处理;(5)利用化学改进剂可进一步提高方法的灵敏度与选择性。
     本论文的研究目的是,系统研究和发展ETV-ICP-MS联用新技术,将聚四氟乙烯(PTFE)化学改进剂(氟化剂)引入ETV-ICP-MS体系,探索降低质谱干扰和基体效应的途径,研究其规律性及机理,在此基础上,建立ETV-ICP-MS直接分析固体试样(难熔材料、生物试样)的新方法。此外,研究ETV-ICP-AES/MS与有特色的分离富集前处理技术联用,并将它用于痕量元素成分和形态分析。主要研究内容包括:
     (1)建立了氟化电热蒸发(FETV)-ICP-MS直接测定难熔Nb_2O_5固体粉末中的痕量杂质的新方法,试样以悬浮体形式引入(一次分析,所需试样的量仅为0.002mg),无需任何化学前处理。对石墨炉与ICP之间的接口进行了改进,并对影响分析物信号强度的石墨炉载气和辅助载气的流速进行了优化;研究了在不同实验条件下的分析物电热蒸发信号轮廓,及悬浮体中基体总量对分析物信号的影响;用实验方法详细考察了PTFE分解产物可能产生的质谱干扰并对这一干扰的可能性进行了评价。提出了一种用实验手段判断基体效应是否存在的新方法。结果表明,应用FETV-ICP-MS直接测定痕量金属杂质,基体(Nb_2O_5)在悬浮体中的浓度不大于200mg L~(-1)时,不存在基体效应:用标准溶液工作曲线法、标准加入法及常规溶液雾化法所测定的结果一致。
     (2)通过对试样的适当稀释和对石墨炉升温程序的有效控制,可以完全消除或显著降低血清试样中主要基体(有机基体和无机基体)产生的影响;详细考察了存在或不存在PTFE的条件下非金属元素Cl、S、P和金属元素Na、K、Ca、Mg在石墨炉中的挥发行为,并优化了实验参数。据此,建立了石墨炉原位分离基体后,用ETV-ICP-MS直接测定生物流体中痕量难熔元素的新方法。该法已成功应用于人血清中痕量V、Cr、Mo、Ba、La、Ce和W的同时/直接测定,无需任何化学前处理,无需基体匹配,灵敏、简单、快速及试样消耗少。
     (3)以纳米二氧化钛为吸附材料,考察了在不同pH条件下,纳米二氧化钛对
Inductively coupled plasma atomic emission spectrometry / mass spectrometry (ICP-AES/MS) has several advantages for trace element determination: low detection limits, wide linear dynamic range, multi-element detection capability, and high sample throughput. Therefore, it has a widespread application in an extensive field such as life science, food science, clinical chemistry, material technology, environmental science, geological chemistry, metallurgic chemistry, and nuclear technology. And it is worthy of note that the appearance of ICP-MS is a significant breakthrough in atomic spectrometry.Electrothermal vaporization (ETV), which converts both the solution and the solid samples to the vapor state, is considered to be a useful technique of sample introduction for ICP-AES / MS over conventional pneumatic nebulization. The advantages of ETV can be described as follows: (1) high efficiency of sample introduction (~ 80%), which results in low detection limit; (2) separation processes of vaporization and excitation / ionization of analyte, which is beneficial to the optimization of experimental parameters and alleviation of interferences caused by matrix; (3) small size of sample requirement, which could be applied to the analysis of samples at micro-level; (4) capability of direct solid analysis, which reduces sample pretreatment and gives low risk of contamination and analyte loss; (5) and the sensitivity and selectivity of the method can be promoted further with the usage of chemical modifier.The objective of this dissertation is to study the vaporization behaviors of refractory / carbide forming elements in a graphite furnace with / without the use of polytetrafluoroethylene (PTFE) emulsion as chemical modifier; to explore the possibility of in-situ elimination of spectral interferences and matrix effect in the graphite furnace; and then to develop a new method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS for the direct analysis of micro-amount of refractory solid powder and biological samples. For the analysis of ultra-trace elements and elemental species, some new separation / preconcentration techniques was developed and combined with ETV-ICP-MS. The main interests of this dissertation are summarized as follows:(1) A method of slurry sampling FETV-ICP-MS was developed to directly determine the trace impurities in niobium pentaoxide solid powder in which a PTFE emulsion was used as fluorinating modifier to promote the vaporization of refractory elements from a graphite furnace and to avoid the formation of thermal stable carbides. For one analysis run, only 0.002 mg of Nb_2O_5 sample was required. The electrothermal vaporizer device was connected to the ICP system by a laboratory-built interface, and the flow rates of sample carrier gas and auxiliary carrier gas were optimized experimentally. The
    potentially polyatomic interferences resulting from the pyrolysates of PTFE were evaluated. A new method by stepwise diluting the sample matrix is proposed for investigating the matrix effect and the results showed that no obvious matrix effect was observed with the sample matrix (Nb2O5) concentration of less than 200 mg I/1. The proposed method has been applied to determine the trace impurities in M^Os powder, and both the results obtained from the external calibration curves and the standard addition curves were in a good agreement with those obtained by conventional nebulization ICP-MS.(2) A method of in situ removal of matrix was proposed for direct determination of the trace refractory elements in human serum by ETV-ICP-MS with the use of PTFE as fluorinating reagent. Attention has been paid to investigating the vaporization behaviors of both refractory elements of interest and matrix elements (Na, K, Ca, Mg, Cl, S, P) in a graphite furnace with the PTFE modifier presence or not. It was shown that the potential interferences of the organic and inorganic matrices in serum sample could be eliminated or reduced to a neglectable level with properly diluting the human serum and deliberately optimizing the ETV temperature program. The proposed method has been applied to the direct simultaneous determination of V, Cr, Mo, Ba, La, Ce and W in human serum.(3) Anew method for the determination of La3+ and La complexes in solution using a nanometer-sized titanium dioxide as solid-phase extractant and fiuorination assisted electrothermal vaporization (FETV)-ICP-AES as sensitive detector has been developed. The effect of pH on the adsorption characteristics of nanometer TiC>2 for La3+ and La-complexes of citric acid, 2-hydroxyisobutyric acid, and humic acid has been investigated and optimized. Based on the difference in volatility between fluorides of analyte (lanthanum) and matrix (titanium), an in-situ removal of the adsorbent matrix (TiCb) from a graphite furnace was realized. Therefore, the La3+ in solution and La-complexes absorbed on nanometer-sized titanium dioxide could be determined respectively by FETV-ICP-AES without any chemical pretreatment. The proposed method has been applied for the determination of free La3+ and La-complexes in synthetic solutions and soil extracts with satisfactory results.(4) Anew method is described for single-drop microextraction of trace rare earth elements La, Y and Yb with l-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) / benzene solution as organic phase. ETV-ICP-MS was used to determine the analyte in post-extraction organic drop. Several parameters, which influence the microextraction behavior of analyte, such as sample flow rate, microdroplet volume, solvent and extraction time, were investigated and the optimized experimental conditions were established, hi order to explore the process of microextraction, the conventional pneumatic nebulization ICP-MS was used for on-line monitoring the analyte concentration change in the aqueous phase. Based on the obtained experimental results, a dynamic model for continuous-flow
    microextraction of inorganic elements has been supposed. Under the selected experimental conditions, the preconcentration factors with a 25 min cycle-flow microextraction of a 1 mL sample were 233, 242 and 244 for La, Y and Yb, respectively. The proposed method was applied to the analysis of biological materials (GBW07605 Tea leaves and GBW07601 Human hair), and the results obtained were in good agreement with the certified values.(5) A procedure for copper, zinc and manganese determination in food samples by slurry sampling graphite furnace atomic absorption spectrometry (GFAAS) is proposed. The analysis results of food reference materials (NIST SRM1567, 1568) agreed with the reference value and the spiked recoveries of real samples were in the range of 95% -106%.(6) The mechanism of vaporization / atomization of Cr, Ni, Zr, Nb and Yb has been studied using ETV-ICP-MS and GFAAS. The behavior of vaporization / atomization of Cr, Ni, Zr, Nb and Yb in a graphite furnace with and without chemical modifiers (Pd, Mg, PTFE) were compared. The effect of some operation parameters such as atomization temperature and ICP power on the signal intensities and the signal profiles of Cr, Ni, Zr, Nb and Yb in ETV-ICP-MS were investigated. It was found that: (1) Pd and Mg have no obvious modification on the behavior of vaporization and atomization of Cr, Ni, Zr, Nb and Yb in the graphite furnace. (2) In the presence of PTFE, the behavior of vaporization of Cr, Ni, Zr, Nb and Yb were remarkably changed, the formation of refractory carbides were successfully circumvented, and the vaporization temperatures were decreased significantly; the signal intensities of Cr and Ni in GFAAS were enhanced in some extent, however, those of Yb, Nb and Zr were restrained greatly. It was attributed to the high bond dissociation energies of the fluorides of Yb, Nb and Zr, which caused ineffective dissociation / atomization of analytes in the graphite furnace.
引文
1 J.A.C. Broekaert, State-of-the-art and trends of development in analytical atomic spectrometry with inductively coupled plasmas as radiation and ion sources, Spectrochim. Acta Part B, 2000, 55, 739
    2 S. Greenfield, I. Jones, C. T. Berry, High-pressure plasma as spectroscopic emission sources, Analyst, 1964, 89, 713
    3 R.H. Wendt, V. A. Fassel, Induction-coupled plasma spectrometric excitation source, Anal Chem., 1965, 37, 920
    4 A.L. Gray, Mass spectrometric analysis of solutions using an atmospheric pressure ion source, Analyst, 1975, 100, 289
    5 R.S. Houk, V. A. Fassel, G D. Flesch, H. J. Srec, A. L. Gray, C. E. Taylor, Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Anal Chem., 1980, 52, 2283
    6 R.S. Houk, A. Montaser, V. A. Fassel, Mass spectra and ionization temperature in an argon inductively coupled plasma, Appl Spectrasc., 1983, 36, 425
    7 A.R. Date, A. L. Gray, Plasma-source mass spectrometry using an inductively coupled plasma and a high-resolution quadrupole mass filter, Analyst, 1981, 106, 1255
    8 A.L. Gray, A. R. Date, Development progress in plasma-source mass spectrometry, Analyst, 1983, 108, 159
    9 A.L. Gray, A. R. Date, Inductively coupled plasma-source mass spectrometry using continuum-flow ion extraction, Analyst, 1983, 108, 1033
    10 A.L. Gray, A. R. Date, Progress in plasma-source mass spectrometry, Spectrochim. Acta Part B, 1983, 38, 29
    11 J.A.C. Broekaert, R. F. Browner, R. K. Marcus, Sample introduction in atomic spectrometry, Special Issue, Spectrochim. Acta Part B, 1995, 50, 271
    12 T.S. Conver, J. Yang, J. A. Korochak, New developments in thennospray sample introduction for atomic spectrometry, Spectrochim. Acta Part B, 1997, 52, 1087
    13 H. Bemdt, J. Yanez, High-temperature hydraulic high-pressure nebulization: a recent nebulizatiuon for atomic spectrometry-invited lecture, J. Anal. At. Spectrom., 1996, 11, 703
    14 丁兰,金海燕,徐蔚青,梁枫,曹彦波,金钦汉,—种新型的ICP-AES用低功率微波热雾化系统,高等学校化学学报,1999,20,874
    15 丁兰,金海燕,刘淼,梁枫,郇延富,曹彦波,张寒琦,金钦汉,用低功率微波热雾化器与十字交叉气动雾化器作为ICP-AES进样装置的比较,高等学校化学学报,2001,21,1661
    16 E. Debrah, G Legere, Improving sensitivity and detection limits in ICP MS with a novel high-efficiency sample introduction system, At. Spectrosc., 1999, 20(2), 73
    17 M.G Minnich, A. Montaser, Direct injection high efficiency nebulization in inductively coupled plasma mass spectrometry under cool and normal plasma conditions, Appl. Spectrosc., 2000, 54, 1261
    18 B.W. Acon, J. A. McLean, A. Montaser, A large bore-direct injection high efficiency nebulizer for inductively coupled plasma spectrometry, Anal. Chem., 2000, 72, 1865
    19 M. G Minnich, J. A. McLean, A. Montaser, Spatial aerosol characteristics of a direct injection high efficiency nebulizer via optical pattemation, Spectrochim. Acta Part B, 2001, 56, 1113
    20 M. Wind, A. Eisenmenger, W. D. Lehmann Modified direct injection high efficiency nebulizer with minimized dead volume for the analysis of biological samples by micro-and nano-LC-ICP MS, J. Anal. At. Spectrom., 2002, 17, 21
    21 C.S. Westphal, J. A. McLean, B. W. Acon, A. Allen, A. Montaser, Axial inductively coupled plasma time-of-flight mass spectrometry using direct liquid sample introduction, J. Anal. At. Spectrom., 2002, 17, 669
    22 J.X.Li, T. Umemura, T. Odake, K. Tsunoda, A high-efficiency cross-flow micronebulizer for inductively coupled plasma mass spectrometry, Anal. Chem., 2001, 73, 1416
    23 Y.Sung, H.B.Lim, Double membrane desolvator for direct analysis of isopropyl alcohol in inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS), Microchem. J., 2000, 64, 51
    24 E Kohl, N. Jakubowski, R. Brandt, C, Pilger, Broekaert, J. A. C. Broekaert, New strategies for trace analyses of zirconium (IV) oxide, silicon carbide and aluminium oxide ceramic powders, Fresenius J. Anal. Chem., 1997, 359, 317
    25 H.B.Lim, T.H.Kim, S.H.Eom, Y.Sung, M.H.Moon, D.W.Lee, Vaporization process ofSiO2 particles for slurry injection in inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom., 2002, 17, 109
    26 张占恩,我妻和明,固体直接进样大功率微波诱导氮等离子体发射光谱法测定金属元素,光谱学与光谱分析,2003,23,361
    27 Z.Wang, Z.M.Ni, D.Qiu, T.Chen, G Tao, P.Y.Yang, Determinaion of metal impurities in titanium dioxide using slurry sample introduction by axial viewing inductively coupled plasma optical emission spectrometry, J Anal. At. Spectrom., 2004, 19, 273
    28 喻昕,廖振环,江祖成,FI-HG-ICP-AES测定痕量镉的研究,武汉大学学报(自然科学版),1997,43,751
    29 郭小伟,郭旭明,硼氢化钠与锌在水样水溶液中的反应研究及其分析应用,分析化学,1998,26,674
    30 X.Guo, B.Huang, Z.Sun, R.Ke, Q.Wang, Z.Gong, Preliminary study on a vapour generation technique for nickel without using carbon monoxide by inductively coupled plasma atomic-emission spectrometry, Spectrochim. Acta Part B, 2000, 55, 943
    31 K. Hoppstock, J.S. Becker, H.J. Dietze, Assessment of the determination of selenium-79 using double-focusing sector field ICP MS after hydride generation, At. Spectrosc., 1997, 18(6), 180
    32 L.S.Zhang, S.M. Combs, Double calibration (external calibration and stable isotope dilution) for determining selenium in plant tissue by hydride generation inductively coupled plasma mass spectrometry, J., AOAC. Int., 1998, 81, 1060
    33 Y.L.Feng, H.Y.Chen, L.C.Tlan, H. Narasaki, Off-line separation and determination of inotganic arsenic species in natural water by high-resolution inductively coupled plasma mass spectrometry with hydride generation combined with reaction of arsenic (V) and L-cysteine, Anal. Chim. Acta, 1998, 375, 167
    34 C.Moor, J.W.H.Lam, R.E.Sturgeon, A novel introduction system for hydride generation-inductively coupled plasma mass spectrometry: determination of selenium in biological materials, J Anal At. Spectrom., 2000, 15, 143
    35 A.A.Menegario, M.F. Cine, Rapid sequential determination of arsenic and selenium in waters and plant digest by hydride generation inductively coupled plasma-mass spectrometry, Spectrochim. Acta Part B, 2000, 55, 355
    36 J.Li, F.Lu, T. Umemura, K.I.Tsunoda, Determination of lead by hydride generation inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2000, 419, 65
    37 Y.L.Feng, H. Narasaki, L.C.Tian, H.Y.Chen, Speciation of antimony(Ⅲ) and antimony(Ⅴ) by hydride generation high-resolution ICP MS combined with prereduction of antimony(Ⅴ) with L-cysteine, At. Spectrosc., 2000, 21, 30
    38 M.J. Ellwood, W.A.Maher, An automated hydride generation-cryogenic trapping-ICP MS system for measuring inorganic and methylated Ge, Sb and As species in marine and fresh waters, J. Anal. At Spectrom., 2002, 17, 197
    39 E. Schmeisser, W. Goessler, N. Kienzl, K. A. Francescoin Volatile analytes formed from arsenosugars: determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses, Anal. Chem., 2004, 76, 418
    40 R. Knight, S. J. Haswell S. W. Lindow, J. Batly, Determination of mercury in hair by coupled CVAA-ICP MS, J. Anal. At. Spectrom., 1999, 14, 127
    41 D. Karunasagar, J. Arunachalam, S. Gangadharan, Development of a "collect and punch" cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels, J. Anal. At. Spectrom., 1998, 13, 679
    42 Z. Mester, J.W.Lam, R.E.Sturgeon, J. Pawliszyn, Determination of methylmercury by solid-phase microextraction inductively coupled plasma mass spectrometry: a new sample introduction method for volatile metal species, J. Anal. At. Spectrom., 2000, 15, 837
    43 S.J. Christopher, S.E.Long, M.S. Reatick, J. D. Fassett, Development of isotope dilution cold vapour inductively coupled plasma mass spectrometry and its application to the certification of mercury in NIST standard reference materials, Anal. Chem., 2001, 73, 2190
    44 C.J. Park, S.A.Yim, Determination of nickel in water samples by isotope dilution inductively coupled plasma mass specrtrometry with sample introduction by carbonyl vapor generation, J. Anal. At. Spectrom., 1999, 14, 1061
    45 Z. Mester, R.E. Sturgeon, J.W.Lam, Sampling and determination of metal hydrides by solid-phase microextraction thermal desorption inductively coupled plasma mass spectrometry, J Anal. At. Spectrom., 2000, 15, 1461
    46 Z. Mester, R.E. Sturgeon, J.W.Lam, P.S. Maxwell, L. Peter, Speciation without chromatography. Part I. Determination of tributyltin in aqueous samples by chloride generation, headspace solid-phase microextraction and inductively coupled plasma time of flight mass spectrometry, J. Anal. At. Spectrom., 2001,16, 1263
    47 方肇伦,原子光谱分析中的流动注射法,分析化学,1986,14,549
    48 徐淑坤,流动注射分析,大学化学,1991,6,24
    49 X.P.Yan, Y.Jiang, Flow injection online preconcentration and separation coupled with atomic MS for Wace element (speciation) analysis based on sorption of organometallic complexes in a knotted reactor, Trends Anal. Chem., 2001, 20, 552
    50 X.P.Yan, R. Kerrich, M. J. Hendry, Flow-injection online group preconcentration and separation of (ultra) trace rare-earth elements in environmental and geological samples by precipitation using a knotted reactor as a filterless collector for inductively coupled plasma mass spectrometric determintion, J. Anal. At. Spectrom., 1999, 14, 215
    51 X.P.Yan, R. Kerrich, M.J. Hendry, Determination of (ultra)trace amounts of arsenic(Ⅲ) and arsenic(Ⅴ) in water by inductively coupled plasma mass spectrometry coupled with flow-injection online sorption preconcentration and separation in a knotted reactor, Anal. Chem., 1998, 70, 4736
    52 X.P.Yan, M.J. Hendry, R. Kerrich, Speciation of dissolved iron(Ⅲ) and iron(Ⅱ) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry, Anal. Chem., 2000, 72, 1879
    53 K. Benkhedda, H.G Infante, E. Ivanova, F.C. Adams, Determination of sub-parts-per-trillion levels of rare earth elements in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line sorption preconcentration in a knotted reactor, J. Anal. At. Spectrom., 2001, 16, 995
    54 H.H.Chen, D. Beauchemin, Determination of trace metals in saline water using flow injection on-line precipitation coupled with inductively coupled plasma mass spectaometry, J. Anal. At. Spectrom., 2001, 16, 1356
    55 C.Zhang, F.B.Wu, Y.Y.Zhang, X.Wang, X.R.Zhang, A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in hurnan serum, J. Anal. At. Spectrom., 2001, 16, 1393
    56 O.B. Egorov, M.J. O'Hara, O.T. Farmer, J.W. Grate, Extraction, chromatographic separations and analysis of actinides using sequential injection techniques with online inductively coupled plasma mass spectrometry (ICP MS) detection, Analyst, 2001, 126, 1594
    57 J.H.Wang, E.H. Hansen, Interfacing sequential injection on-line preconcentration using a renewable micro-column incorporated in a "lab-on-valve" system with direct injection nebulization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2001, 16, 1349
    58 K. Benkhedda, H.G Infante, E. Ivanova, F.C. Adams, Trace metal analysis of natural waters and biological samples by axial inductively coupled plasma time of flight mass spectrometry (ICP-TOFMS) with flow-injection online adsorption preconcentration using a knotted reactor, J. Anal. At. Spectrom., 2000, 15, 1349
    59 G Centineo, M.M. Bayon, A. Sanz-Medel, Flow-injection analysis with inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of elements forming hydrides and its application to urine, J. Anal. At. Spectrom., 2000, 15, 1357
    60 R.E. Russo, X.Mao, H.Liu, J. Gonzalez, S.Mao, Laser ablation in analytical chemistry-a review, Talanta, 2002, 57, 425
    61 S.F. Durrant, Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects, J. Anal. At. Spectrom., 1999, 14, 1385
    62 E. Hoffmann, C. Ludke, J. Skole, H. Stephanowitz, J. Wollbrandt, W. Becker, New methodical and instrumental developments in laser ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 2002, 57, 1535
    63 M. Guillong, D. Gunther, Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry, J. Anal. At. Spectrom., 2002, 17, 831
    64 Z. Chen, Inter-element fractionation and correction in laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1999, 14, 1823
    65 J. Kosler, H.P. Longerich, M.N. Tubrett, Effect of oxygen on laser-induced elemental fractionation in LA-ICP-MS analysis, Anal. Bioanal. Chem., 2002, 374, 251
    66 R.E. Russo, X.L.Mao, J.J. Gonzalez, S.S.Mao, Femtosecond laser ablation ICP MS, J. Anal. At. Spectrom., 2002, 17, 1072
    67 M.M. Heino, P.Le Coustumer, D.F.X. Donard, Micro-and macro-scale investigation of fiactionation and matrix effects in LA-ICP-MS at 1064 nm and 266 nm on glassy materials, J. Anal. At Spectrom., 2001, 16, 542
    68 D. Grnther, D. Bleiner, M. Guillong, B. Hattendorf, I. Horn, Access to isotopic and elemental composition and their distribution in solid materials by caser ablation-inductively coupled plasma mass spectrometry, Chimia; chemie report, 2001, 55, 778
    69 J. Gonzalez, X.L.Mao, J. Roy, S.S.Mao, R.E. Russo, Comparison of 193, 213 and 266 nm laser ablation ICP MS, J. Anal. At. Spectrom., 2002, 17, 1108
    70 C.Liu, X.L.Mao, S.S.Mao, X.Zeng, R. Greif, R.E. Russo, Nanosecond and femtosecond laser ablation of brass: particulate and ICPMS measurements, Anal. Chem., 2004, 76, 379
    71 C.A. Craig, K.E.Jan, is, L.J. Clarke, An assessment of calibration strategies for the quantitative and semi-quantitative analysis of calcium carbonate matrices by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), J. Anal. At. Spectrom., 2000, 15, 1001
    72 M.Bi, A.M. Ruiz, B.W. Smith, J.D. Winefordner, Study of solution calibration of NIST soil and glass samples by laser ablation inductively coupled plasma mass spectrornetry, Appl. Spectrosc., 2000, 54, 639
    73 V.R. Bellotto, N. Miekeley, Improvements in calibration procedures for the quantitative determination of trace elements in carbonate material (mussel shells) by laser ablation ICP MS, Fresenius J. Anal Chem., 2000, 367, 635
    74 S.L.Lin, C.Peng, Studies on the application of laser sampling-inductively coupled plasma atomic-emission spectrornetry to the determination of rare-earth and refractory elements J Anal At. Spectrom., 1990, 5, 509
    75 K.Song, K.Cha, J.Lee, H.Park, S.C.Lee, Analysis of rare-earth elements in soil sample by using laser-ablation ion trap mass spectrometry, Microchem. J., 2001, 68, 265
    76 D. Malinovsky, I. Rodushkin, M.D. Axelsson, D.C. Baxter, Determination of rhenium and osmium concentrations in molybdenite using laser ablation double focusing sector field ICP-MS, J Geochem. Explor., 2004, 81, 71
    77 R.J. Roux, S.B. Shirey, L. Benton, E.H. Hauri, T.O. Mock, In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (B) at the nanogram level, Chem. Geology, 2004, 203,123
    78 罗彦,胡圣虹,刘勇胜,高山,林守麟,激光剥蚀电感耦合等离子体质谱微区分析新进展,分析化学,2001,29,1345
    79 B. Gratuze, M. Blet-Lemarquand J. N. Barrandon, Mass spectrometry with laser sampling: a new tool to characterize archaeological materials, J. Radioanal. Nucl. Chem., 2001, 247, 645
    80 J.S. Becker, State-of-the-art and progress in precise and accurate isotope ratio measurements by ICP-MS and LA-ICP-MS. Plenary Lecture, J. Anal. At. Spectrom., 2002, 17, 1172
    81 N.J. Pearson, O. Alard, W.L. Griffin, S.E. Jackson, S.Y. O'Reilly, In situ measurement of rhenium-osmium isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results, Geochim. Cosmochim. Acta, 2002, 66, 1037
    82 B.J.A. Willigers, J. A. Baker, E.J. Krogstad, D.W. Peate, Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS, Geochim. Cosmochim. Acta, 2002, 66, 1051
    83 T. Hirata, In-situ precise isotopic analysis of tungsten using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) with time resolved data acquisition, J. Anal. At. Spectrom., 2002, 17, 204
    84 E.D.Young, R.D. Ash, A. Galy, N.S. Belshaw, Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes, Geochim. Cosmochim. Acta, 2002, 66, 683
    85 江祖成,田笠卿,陈新坤,胡斌,冯永来,现代原子发射光谱分析,科学出版社,1999,P437,P456
    86 陈新坤,马锦秋,黄志荣,韩双录,高压液相色谱电感耦合等离子体发射光谱联用技术在元素形态分析中的应用,岩矿测试,1998,17,51
    87 R.Rui, W.Maher, F. Kirkowa, Measurement of inorganic and methylmercury in fish tissues by enzymatic hydrolysis and HPLC-ICP-MS, J. Anal. At. Spectrom., 2002, 17, 1560
    88 A. Seubert, Online coupling of ion chromatography with ICP AES and ICP MS, Trends Anal Chem., 2001, 20, 274
    89 S. Mazan, G. Cretier, N. Gilon, J.M. Mermet, J.C. Rocca, Porous graphitic carbon as stationary phase for LC-ICP MS separation of arsenic compounds in water, Anal. Chem., 2002, 74, 1281
    90 C.N. Ferrarello, M.R.F. de Lacampa, A. Sanz-Medel, Multielement trace-element speciation in metal-biomolecules by chromatography coupled with ICP-MS, Anal Bioanal. Chem., 2002, 373, 412
    91 D. Glindemann G llgen, R. Herrmnann, T. Gollan, Advanced GC/ICP-MS design for high-boiling analyte speciation and large volume solvent injection, J. Anal. At. Spectrom., 2002, 17, 1386
    92 B. Bouyssiere, J. Szpunar, R. Lobinski, Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis, Spectrochim. Acta Part B, 2002, 57, 805
    93 S.S. Kannarnkumarath, K. Wrobel, C.B'Hymer, J.A. Caruso, Capillary electrophoresis-inductively coupled plasma-mass spectrornetry: an attractive complernetary technique for elemental speciation analysis, J. Chromatogr. A, 2002, 975, 245
    94 贾丽,陈曦,王小如,徐木生,杨芃原,毛细管电泳在形态分析中应用,色谱,1998,16,402
    95 A. Prange, D. Schaumloffel, Hyphenated techniques for the characterization and quantification of metallothionein isoforms, Anal. Bioanal. Chem., 2002, 373, 441
    96 D.E. Nixon, V.A. Fassel, R.N. Kniseley, Inductively coupled plasma-optical emission analytical spectroscopy, tantalum filament vaporization of microliter samples, Anal Chem., 1974, 46, 210
    97 A.M. Gunn, D.L. Millard, G.F. Kirkbright, Optical emission spectrometry with an inductively coupled radio-frequency argon plasma source and sample introduction with a graphite rod electrothermal vaporization device. Part 1. Instrumentation assembly and performance characteristics, Analyst, 1978, 103, 1066
    98 T. Kantor, E. Pungor, J. Sztaisz, L. Bezur, Graphite furnace and flame atomic-absorption technique for thermoanalytical investigations, Talanta, 1979, 26, 357
    99 J. Ip, Y. Thornassen, L.P.P. Butler, B. Radziuk, J.C. VanLoon, Combined furnace-flame non-dispersive atomic fluorescence spectrometry for direct simultaneous multi-element analysis of air filters, Anal. Chim Acta, 1979, 110, 1
    100 J.M. Carey, J.A. Caruso, Electrothermal vaporization for sample introduction in plasma source spectrometry, Critic R. Anal. Chem., 1992, 23, 397
    101 A.M.Esteban B. Slowikowski, Electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS): a valuable tool for direct multielement determination in solid samples, Critic R. Anal. Chem., 2003, 33, 43
    102 M.A.Belarra, M. Resano, F. Vanhaecke, L. Moens, Direct solid sampling with electrothermal vaporization/atomization: what for and how?. Trends Anal. Chem., 2002, 21, 828
    103 R.E.Sturgeon, The graphite furnace and its role in atomic spectroscopy, Fresenius J. Anal. Chem., 1996, 355, 425
    104 X.Hou, K.E.LeVine, A. Salido, B.T.Jones, M. Ezer, S. Elwood, J.B.Simeonsson, Tungsten coil devices in atomic spectrometry: absorption, fluorescence, and emission, Anal. Sci., 2001, 17, 175
    105 H. Matusiewicz, F.L.Fricke, R.M.Barnes, Modification of a commercial electrothermal vaporization system for inductively coupled plasma spectrometry: evaluation and matrix effects, J. Anal. At. Spectrom., 1986, 1, 203
    106 R.Tsukahara, M.Kubota, Some characteristics of inductively coupled plasma mass spectrometry with sample introduction by tungsten furnace electrothermal vaporization, Spectrochim. ,Acta Part B, 1990, 45, 779
    107 V.Karanassios, J.M.Ren.E.D.Salin, ETV sample introduction system for the analysis of palletized solid by inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom., 1991, 6, 527
    108 H. Matusiewicz, R.M.Barnes, An electrothermal sample introduction system for ICP spectrometry, Appl. Spectrosc., 1984, 38, 745
    109 W.L.Shen, J.A. Caruso, F. L. Fricke, R. D. Satzger, Electrothermal vaporisation vaporisation interface for sample introduction in inductively coupled plasma mass spectrometry, J. Anal. At Spectrom., 1990, 5, 451
    110 R. Verrept, R. Dams, U. Kurfurst, Electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the analysis of solid samples: contribution to instrumentation and methodology, Fresenius J. Anal. Chem., 1993, 346, 1035
    111 R.W. Fonseca, N. J. Miller-Ihli, Analyte transport studies of aqueous solutions and slurry samples using electrothermal vaporization ICP-MS, Appl. Spectrosc., 1995, 49, 403
    112 D.C. Gregoire, D. M. Goltz, M. M. Lamoureux, C. L. Chakrabarti Vaporization of acids and their effect on analyte signal in electrothemal vaporization inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom., 1994, 9, 919
    113 S.Z.Chen, T. Y.Peng, Z. C.Jiang, B.Hu, Direct determination of rare-earth impurities in lanthanum oxide by fluorination assisted electrothermal vaporization inductively coupled plasma atomic-emission spectrometry with slurry sampling, J. Anal. At. Spectrom., 1999, 14, 1723
    114 T. Kantor, Sample introduction with graphite furnace electrothermal vaporization into an inductively coupled plasma: effects of streaming conditions and gaseous phase additives, Spectrochim. Acta Part B, 2000, 55, 431
    115 T. Kantor, M. T. C. de Loos-Vollebregt, Carrier gas flow optimization for an end-on type of electrothermal vaporizer used for sample introduction in plasma Source spectrometry, Spectrochim. Acta Part B, 2003, 58, 1901
    116 M.P. Escobar, B. W. Smith, J. D. Winefordner, Determination of metallo-oganic species in lubricating oil by electrothermal vaporization inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 1996, 320, 11
    117 U. Schaffer, V. Krivan, A graphite furnace electrothermal vaporization system for inductively coupled plasma atomic emission spectrometry, Anal. Chem., 1998, 70, 482
    118 J.D. Venable, M. Detwiler, J. A. Holcombe, Multiplexed electrothermal vaporization sample introduction system for inductively coupled plasma spectrometry, Spectrochim. Acta Part B, 2001, 56, 1697
    119 M. E. Rybak, E. D. Salin, Development and characterization of induction heating-electrothermal vaporization (IH-ETV) sample introduction for inductively coupled plasma spectrometry, Spectrochim. Acta Part B, 2001, 56, 289
    120 J. M. Ren, M. E. Rybak, E. D. Salin, Elimination of arcing in induction heating-electrothermal vaporization (IH-ETV) for sample introduction into inductively coupled plasmas, J Anal. At Spectrom., 2003, 18, 485
    121 E.D. Salin, J. M. Ren, Direct filter vaporization with induction heating-electrothermal vaporization (IH-ETV) and a foam carbon surface, J. Anal. At. Spectrom., 2003, 18, 953
    122 D.L. Styris, L. J. Prell, D. A. Redfield, J. A. Holcombe, D. A. Bass, V. Majidi, Mechanisms of selenium vaporization with palladium modifiers using electrothermal atomization and mass spectrometry detection, Anal. Chem., 1991, 63, 508
    123 R. W, Fonseca, J. McNally, J. A. Holcombe, Mechanisms of vaporization for silver and gold using electrothermal atomization, Spectrochim. Acta Part B, 1993, 48, 79
    124 J. G Jackson, R. W. Fonseca, J. A. Holcombe, Detection of surface aggregates of trace amounts of copper and silver on graphite using secondary ion mass spectrometry at elevated temperaturs, J Anal. At.Spectrom., 1994, 9, 167
    125 R. W. Fonseca, K. I. Wolfe, J. A. Holcombe, Mechanisms of vaporization for Cr using electrothermal atomization, Spectrochim. Acta Part B, 1994, 49, 399
    126 J. G. Jackson, A. Novichikhim, R. W. Fonseca, J. A. Holcombe, Mass spectral studies of thermal decomposition of metal nitrates: an introduction to the discussion of two mechanisms, Spectrochim. Acta PartB, 1995, 50, 1423
    127 D. Langer, J. Holcombe, Thermophoretic collection and analysis of submicrometer silver particles emitted from a graphite tube-type electrothermal vaporizer, Anal. Chem., 1999, 77, 582
    128 J. P. Byme, D. C. Gregoire, M. E. Benyounes, C. L. Chakrabarti Vaporization and atomization of the platinum group elements in the graphite furnace investigated by electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1997, 52, 1575
    129 R. St. C. McIntyre, D. C. Gregoire, C. L. Chakrabarti, Vaporization of radium and other alkaline-earth elements in electrothermal-vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1997, 12, 547
    130 D.M. Goltz, D. C. Gregoire, C. L. Chakrabarti, Mechanism of vaporization of yttrium and rare earth elements in electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1995, 50, 1365
    131 J. E Byme, D. C. Gregoire, D. M. Goltz, C. L. Chakrabarti, Vaporization and atomization of boron in the graphite furnace investigated by electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim.Acta Part B, 1994, 49, 433
    132 D.M. Goltz, D. C. Gregoire, J. P. Byme, C. L. Chakrabatri, Vaporization and atomization of uranium in a graphite tube elctrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption Spectrometry, Spectrochim. Acta Part B, 1995, 50,803
    133 J. E Byme, D. M. Hughes, C. L. Chakrabarti, D. C. Gregoire, Mechanism of volatilization of tungsten in the graphite furnace investigated by electrothermal vaporization inductively coupled plasma mass spectrometry, J.Anal.At. Spectrom., 1994, 9, 913
    134 D.C. Gregoire, H. Naka, Mechanism of vaporization of sulfur in electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At Spectrom., 1995, 10, 823
    135 G Daminelli, D. A. Katskov, R. M. Mofolo, P. Tittarelli, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 1: Alkali halides, Spectrochim. Acta Part B, 1999, 54, 669
    136 G Daminelli, D. A. Katskov, R. M. Mofolo, T. Kantor, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 2: Magnesium chloride, Spectrochim. Acta Part B, 1999, 54, 683
    137 D. A. Katskov, R. M. Mofolo, P. Tittarelli, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 3: Alkaline earth fluorides, Spectrochim. Acta Part B, 2000, 55, 1577
    138 D.A. Katskov, R. M. Mofolo, P. Tittarelli, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 4: Alkaline earth chlorides, Spectrochim. Acta Part B, 2001, 56, 57
    139 R. M. Mofolo, C. M. Canario, D. A. Katskov, P. Tittarelli, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 5: Crallium, indium, and thallium nitrates and chlorides, Spectrochim Acta Part B, 2002, 57, 423
    140 D.A. Katskov, M. Lemme, P. Tittarelli, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 6: Sulfur, Spectrochim Acta Part B, 2004, 59, 101
    141 M. Lemme, D. A. Katskov, P. Tittarelli, Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 7: Alkaline metal sulfates and sulfides, Spectrochim. Acta PartB, 2004, 59, 115
    142 V. Majidi, N.Xu, R. G Smith, Electrothermal vaporization part 1: gas phase chemistry, Spectrochim.Acta Part B, 2000, 55, 3
    143 V. Majidi, R. G Smith, N. Xu, M. W. McMhon, R. Bossio, Electrothermal vaporization part 2: surfase chemistry, Spectrochim.Acta Part B, 2000, 55, 1787
    144 胡斌,电热蒸发进样—电感耦合等离子体原子发射光谱测定难熔元素的方法机理及分析应用研究,武汉大学博士学位论文,1992
    145 汪福意,氟化电热原子吸收光谱直接分析固体样品研究,武汉大学博士学位论文,1998
    146 G Galbacs, T.Kantor, L.Moens, R.Dams, Mass-spectrometric studies of thermal decomposition produets of reference materials for use in solid sampling atomic spectrometry, Spectrochim. Acta Part B, 1998, 53, 1335
    147 J. F. Alary, E. D. Salin, Quantitation of water and plasma diagnosis for electrothermal vaporization-inductively coupled plasma mass spectrometry: the use of argon and argide polyatomics as probing species, Spectrochim. Acta Part B, 1998, 53, 1705
    148 V. Majidi, N. J. Miller-Ihli, Influence of graphite substrate on analytical signals in electrothermal vaporization-inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1998, 53, 965
    149 K.H. Lee, S. J. Jiang, H. W. Liu, Determination of mercury in urine by electrothermal vaporization isotope dilution inductively coupled mass spectromtry, J. Anal. At. Spectrom., 1998, 13, 1227
    150 K. H. Lee, S. H. Liu, S. J. Jiang, Determintion of cadmium and lead in urine by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrornetry, Analyst, 1998, 123, 1557
    151 D.C. Gregoire; R. E. Sturgeon, Analyte transport efficiency with electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1999, 54, 773
    152 T. Kantor, S. Gucer, Efficiency of sample introduction into inductvely coupled plasma by graphite furnace electrothermal vaporization, Spectrochim. Acta Part B, 1999, 54, 763
    153 K.-C. Friese, U. Waetjen, K.-H. Grobecker, Analyte tranport efficiencies in electrothermal vaporization for ICP MS, Fresenius J. Anal. Chem., 2001, 370, 843
    154 M.E.Rybak, E.D.Salin, Closed-system trapping method for the direct determination of transport efficiency in electrothermal vaporization sample introduction, J. Anal. At. Spectrom., 2000, 15, 883
    155 J. Bemhardt, T. Buchkamp, G Hermann, G Lasnitschka, Transport efficiencies and analytical determinations with electrothermal vaporization employing electrostatic precipitation and electrothermal atomic spectroscopy, Spectrochim. Acta Part B, 1999, 54, 1821
    156 J. Bemhardt, T. Buchkamp, G Hermann, G Lasnitschka, Sample transport efficiency with electrothermal vaporization (ETV) and electrostatic deposition technique in multielement solid sample analysis of plant and cereal materials. Spectrochim. Acta Part B, 2000, 55, 449
    157 G Ertas, J.A.Holcombe, Determination of absolute transport efficiencies of beryllium, cadmium, indium, lead and bismuth for electrothenml vaporization sample introduction into an inductively coupled plasma using an in-line electrostatic precipitator, Spectrochim. Acta Part B, 2003, 58, 1597
    158 L Gras, M.T.C. de Loos-Vollebregt, Limiting effects on transport efficiency by matrix load in inductively coupled plasma optical emission spectrometry with electrothermal vaporization sample introduction, Spectrochim. Acta Part B, 2000, 55, 37
    159 J. Venable, J. A. Holcombe, Signal enhancements produced from extemally generated "carrier" particles in electrothermal vaporization-inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 2000, 55, 753
    160 J. Mora, L. Gras, E. H. van Veen, M. T. C. de Loos-Vollebregt, Electrothermal vaporization of mineral acid solutions in inductively coupled plasma mass spectrometry: comparison with sample nebulization, Spectrochim. Acta Part B, 1999, 54, 959
    161 S. Maestre, M. T. C. de Loos-Vollebregt, Plasma behaviour during electrothermal vaporization sample introduction in inductively coupled plasma atomic emission spectrometry, Spectrochim. Acta Part B, 2001, 56, 1209
    162 J. Venable, J. A. Holcombe, Peak broadening from an electrothermal vaporization sample introduction Source into an inductively coupled plasma, Spectrochim. Acta Part B, 2001, 56, 1431
    163 P.P. Mahoney, S. J. Ray, G. Li, G. M. Hieftje, Preliminary investigation of electrothermal vaporization sample introduction for inductively coupled plasma time-of-flight mass spectrometry, Ancd. Chem., 1999, 71, 1378
    164 J.P. Guzowski, J. A. C. Broekaert, G M. Hieftje, Electrothermal vaporization for sample introduction into a gas sampling glow discharge time-of-flight mass spectrometer, Spectrochim. Acta Part B, 2000, 55, 1295
    165 E. Bjom, W. Frech, E. Hoffmann, C. Ludke, Investigation and quantification of spectroscopic interferences from polyatomic species in inductively coupled plasma mass spectrornetry using electothermal vaporization or pneumatic nebulization for sample introduction, Spectrochim. Acta Part B, 1998, 53, 1765
    166 M. G R. Vale, B. Welz, Spectral and non-spectral interferences in the determination of thallium in environmental materials using electrothermal atomization and vaporization techniques case study, Spectrochim. Acta Part B, 2002, 57, 1821
    167 M. Ben-Younes, D. C. Gregoire, C. L. Chakrabarti, Effectiveness of ammonia in reducing carbon-based polyatomic ion interferences in electrothermal vaporization collision cell inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 2003, 58, 361
    168 R.E. Sturgeon, J. W. Lam, The ETV as a thermaochemical reactor for ICP-MS sample introduction, J. Anal.At Spectrom., 1999, 14, 785
    169 C. Y. Ho, S. J. Jiang, Electrothermal vaporization inductively coupled plasma mass spectrometry for determination of vanadium and chromium in soils, Spectrochim. Acta Part B, 2003, 58, 63
    170 S.M. Maia, J. B. Borba da Silva, A. J. Curtius, B. Welz, Determination of arsenic, manganese, lead and selenium in coal by slurry electrothermal vaporization inductively eoAupled plasma mass spectrometry, J. Anal.At Spectrom., 2000,15, 1081
    171 N.J. Miller-lhli, S. A. Baker, Microhomogeneity assessments using ultrasonic slurry sampling coupled with electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 2001, 56, 1673A
    172 J. Chen, Y. W. Wu, Z. C. Jiang, B. Hu, Cation exchange micro column combined with fluorination-assisted electrothermal vaporization ICP-AES for the speciation of aluminium in tea leaves, At Spectrosc., 2003, 24(3),93
    173 A. E da Silva, L. F. Dias, T. D. Saint'Pierre, A. J. Curtius, B. Welz, Determination of mercury and thallium in environmental reference materials using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with permanganate as modifier and calibration against aqueous standards, J.Anal. At. Spectrom., 2003,18, 344
    174 M.A. Vieira, T. D. S. Pierre, B. Welz, A. J. Curtius, Determination of As, Hg, Se and Sn in sediment slurries by CVG-ETV-ICP-MS with trapping in an k treated graphite tube and calibration against aqueous standards, J. Anal. At. Spectrom., 2004,19, 297
    175 P.C. Li, S. J. Jiang, Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of chromium, copper, cadmium, mercury and lead in rlce flour, Anal. Chim. Acta, 2003, 495, 143
    176 H. Matusiewicz, M. Kopras, Simultaneous determination of hydride forming elements (arsenic, bismuth, germanium, antimony, selenium) and mercury in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrormetry with their in situ trapping in a graphite furnace, J. Anal. At. Spectrom., 2003,18, 1415
    177 F. Vanhaecke, S. Boonen, L. Moens, R. Dams, Solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of arsenic in standard reference materials of plant origin, J. Anal. At. Spectrom., 1995, 10, 81
    178 F. Vanhaecke, G Galbacs, S. Boonen L. Moens, R. Dams, Use of the argon dimer-ion signal as a diagnostic tool in solid-rumpling electrothermal-vaporization inductively coupled plasma mass spectrometry, J. Anal.At Spectrom., 1995,10, 1047
    179 E Vanhaecke, M. Verstraete, L. Moens, R. Dams, M.Nekkers, Determination of the palladium content in a solid plastic material by electrothermal vaporization ICP-mass spectrometry (ETV-ICP MS), Anal. Commun., 1999, 36, 89
    180 N.H. Bings, Z. Stefanka, Development of a tungsten filament electrothermal vaporizer for inductively coupled plasma time-of-flight mass spectrometry and its possibilities for the analysis of human whole blood and serum, J Anal. At. Spectrom., 2003,18, 1088
    181 O. Mestek I. Tresl, R. Koplik, H. Pavelkova, M. Suchanek, B. Vanas, Custom-made interface between electrothermal vaporizer and inductively coupled plasma-mass spectrometer, determination of nickel by isotope dilution in plant samples, Talanta, 2001, 55, 595
    182 S.M. Maia, M. G R. Vale, B. Welz, A. J. Curtius, Feasibility of isotope dilution calibration for the determination of thallium in sediment using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 2001, 56, 1263
    183 S.J. Huang, S. J. Jiang, Determination of zinc, cadmium and lead in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry, J Anal. At. Spectrom., 2001,16, 664
    184 L.L. Yu, W. R Kelly, J. D. Fassett, R D. Vocke, Determination of sulfur in fossil fuels by isotope dilution electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2001, 16, 140
    185 I. Gelaude, R Dams, M. Resano, F. Vanhaecke, L. Moens, direct determination of methylmercury and inorganic mercury in biological materials by solid sampling-electrothermal vaporization-inductively coupled plasma-isotope dilution-mass spectrometry, Anal. Chem., 2002, 74, 3833
    186 C.Y. Ho, S. J. Jiang, Determination of chromium, zinc, cadmium and lead in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2002,17, 688
    187 J. E Maurice, G Wibetoe, K. E. Sjastad, Longitudinal distribution of thallium in human scalp hair determined by isotope dilution electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2002,17, 485
    188 J.P. Byme, G Chapple, Direct determination of trace metals in seawater by electrothermal vaporization inductively coupled plasma mass spectrometry with Pd-HNO3 modifier, At. Spectrosc., 1998,19(4), 116
    189 M.E. Benyounes D. C. Gregoire, C. L. Chakrabarti Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry, J. Anal. At. Spectrom., 1999,14, 1703
    190 H.C. Liao, S.J. Jiang, EDTA as the modifier for the determination of cadmium, mercury and lead in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1999,14, 1583
    191 H. W. Liu, S. J. Jiang, S. H. Liu, Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1999, 54, 1367
    192 H.C. Liao, S. J..Jiang Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1999, 54, 1233
    193 H. H, Lu, S. J. Jiang, Organic acids as the modifier to determine zinc, cadmium, thallium and lead in soil by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2001, 429, 247
    194 Y.C. Sun, C. H. Hsieh, Novel matrix modifier for direct determination of palladium in gold alloy by electrothermal vaporization inductively coupled plasma mass spectrometry, J.Anal. At. Spectrom., 2002, 17,94
    195 M. Song, T. U. Probst, N. G Berryman, Rapid and sensitive determination of radiocaesium (caesium-135 and caesium-137) in the presence of excess barium by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV ICP MS) with potassium thiocyante as modifier, Fresenius J. Anal. Chem., 2001,370, 744
    196 M. Song, T. U. Probst, Rapid determination of technetium-99 by electrothermal vaporization-inductively coupled plasma-mass spectrometry with sodium chlorate and nitric acid as modifiers, Anal. Chim. Acta. 2000, 413, 207
    197 M. C. Wende, J. A. C. Broekaert Investigations on the use of chemical modifiers for the direct determination of trace impurities in Al203 ceramic powders by slurry electrothermal evaporation coupled with inductively-coupled plasma mass spectrometry (ETV-ICP MS), Fresenius J. Anal. Chem., 2001, 370, 513
    198 W.C. Wei, P. H. Chi, M. H. Yang, Study on the effect of polyhydroxy compounds on the sensitivity enhancement of elements in electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2000,15, 1466
    199 M. Resano, M. Verstraete, F. Vanhaecke, L. Moens, A. van Alphen, E. R Denoyer, Simultaneous determination of cobalt, manganese, phosphorus and titanium in PET samples by solid sampling electrothermal vaporization ICP MS, J. Anal. At. Spectrom., 2000,15, 389
    200 L. F. Dias, T. D. Saintierre, S. M. Maia, M. A. Silva, V. L. Frescura, B. Welz, A. J. Curtius, Determination of arsenic, lead, selenium and tin in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry using Ru as permanent modifier and NaCI as a carrier, Spectrochim. Acta Part B, 2002, 57, 2003
    201 M. Resano, L. Balcaen, F. Vanhaecke, L. Moens, I. Geuens, Multi-element analysis of a thermographic material by means of solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 2002, 57, 495
    202 Y.L. Wu, B. Hu, Z. C. Jiang, S.Z. Chen, Low temperature vaporization for ICP AES determination of palladium in geological samples using sample introduction of gaseous palladium oxinate, J. Anal. At. Spectrom., 2002,17, 121
    203 M. Bettinelli, S. Spezia, C. Temi, A. Ronchi, C. Balducci, C. Minoia, Determination of rare-earth elements in urine by electrothermal vaporization inductively coupled plasma mass spectrometry, Rap. Commun. Mass Spectrom., 2002,16, 579
    204 Y. L. Wu, B. Hu, T. Y. Peng, Z. C. Jiang, Low-temperature volatilization of beryllium acetylacetonate for sample introduction in ETV ICP AES, Anal. Chim. Acta, 2001,439, 153
    205 Y. Okamoto, Determination of fluorine in aqueous samples by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV ICP MS), J. Anal At Spectrom., 2001, 16, 539
    206 T.Y. Peng, G Chang, Z. H. Sheng, Z. C. Jiang, B. Hu, Electrothermal ,vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of trace amounts of impurities in slurries of silicon carbide, Anal Chim.Acta, 2001, 433, 255
    207 L.B. Xia, Y. L Wu, Z. C. Jiang, S. Q. Li, B. Hu, Speciation of iron(Ⅲ) and iron(Ⅱ) in water samples by liquid-liquid extraction combined with low-temperature electrothermal vaporization (ETV) ICP-AES, Int. J. Environ. Anal. Chem., 2003, 83, 953
    208 J. Comte, P. Bienvenu, E. Brochard, J. M. Femandez, G Andreoletti, Determination of selenium-79 in solutions of fission products after pre-treatment by ion exchange chromatography and ETV-ICP MS, J. Anal. At. Spectrom., 2003,18, 702
    209 S.M. Maia, D. Pozebon, A. J. Curtius, Determination of cadmium, mercury, lead and thallium in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution, J. Anal. At. Spectrom., 2003,18, 330
    210 Z. Arslan, A. J. Paulson, Solid-phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV ICP-MS): an investigation of rare-earth element signatures in otolith microchemistry Anal. Chim. Acta, 2003, 476, 1
    211 P.J. Parsons, Y. Zhou, C. D. Palmer, K. M. Aldous, P. Brockman, Atomization and vaporization of lead from a blood matrix using rhodium-coated tungsten filaments with pseudo-simultaneous electrothermal atomic absorption and inductively coupled plasma mass spectrometric measurements, J. Anal. At. Spectrom., 2003,18, 4
    212 F. Vanhaecke, M. Resano, M. Verstraete, L. Moens, R. Dams, Multielement analysis of polyethylene using solid sampling electrothermal vaporization ICP mass spectrometry, Anal. Chem., 2000, 72, 4310
    213 M. Resano, M. Verstraete, F. Vanhaecke, L. Moens, J. Claessens, Direct determination of sulfur in bisphenol A at ultratrace levels by means of solid sampling-electrothermal vaporization ICP MS, J Anal. At. Spectrom., 2001,16, 793
    214 G. F. Kirkbright, R. D. Snook, Volatilization of refractory compound forming elements from a graphite electrothermal atomization device for sample introduction into an inductively coupled argon plasma, Anal. Chem,, 1979, 51, 1938
    215 G. Zaray, F. Leis, T. Kantor, J. Hassler, G. Tolg, Analysis of silicon carbide powder by ETV-ICP-AES, Fresenius J. Anal. Chem., 1993, 346, 1042
    216 J.M. Ren, E. D. Salin, Direct solid sample analysis using furnace vaporization with Freon modification and inductively coupled plasma atomic emission spectrometry-I. Vaporization of oxides and carbides, Spectrochim. Acta Part B, 1994, 49, 555
    217 B. Wanner, P. Richner, B. Magyar, The role of modifiers in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of B, La and U, Spectrochim. Acta Part B, 1996, 51, 817
    218 T. Kantor, Electrothermal vaporization and laser ablation sample introduction for flame and plasma spectrometrie analysis of solid and solution samples, Spectrochim. Acta Part B, 2001, 56, 1523
    219 S. Tao, J. Kumamaru Low-temperature electrothermal vaporization of refractory elements as 8-hydroxyquinolinate complexes in inductively coupled plasma atomic-emission spectrometry. Part 2. Determination of trace amounts of chromium in aluminium alloy and rock samples, J. Anal. At. Spectrom., 1996,11, 111
    220 T. Y. Peng, Z. C. Jiang, Volatilization studies of lanthanum, yttrium and europium as their 1-phenyl-3-methyl-4-benzoylpyrazolone [5] complexes from an electrothermal vaporizer for sample introduction in inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom., 1998,13,75
    221 Y.L. Wu, B. Hu, T. Y. Peng, Z. H. Liao, Z. C. Jiang, Electrothermal volatilization of aluminium as 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone chelate for gaseous sample introduction in ICP AES, Talanta, 2001, 55, 841
    222 Z. F. Fan, B. Hu, Z. C. Jiang, S. Q. Li, Low-temperature electrothermal vaporization of thenoyltrifluoroacetone complex of Sc(Ⅲ) and Y(Ⅲ) for sample introduction in an inductively coupled plasma atomic emission spectrometry, and their determination in biological samples, Anal. Bioanal. Chem., 2004, 378, 456
    223 M. Huang, Z. C. Jiang, Y. E. Zeng, Fluorination and Volatilization of Refractory Elements from a Graphite Furnace for Sample Introduction into an Inductively Coupled Plasma Using a Polytetrafluoroethylene Slurry, J. Anal. At. Spectrom., 1991, 6, 211
    224 B. Hu, Z. C. Jiang, Y. C. Qin, Y. E. Zeng, Fluorination with polytetrafluoroethylene slurry in electrothermal vaporization-inductively coupled plasma atomic emission spectrometry, Anal Chim. Acta, 1996, 319, 255
    225 F. Y. Wang, Z. C. Jiang, B. Hu, T. Y. Peng, Comparative studies on chemical modification of polytetrafluoroethylene slurry in ETV-ICP-AES and ETAAS, J. Anal At Spectrom., 1999,14, 1619
    226 Z.C. Jiang, B. Hu, Y. C. Qin, Y. E. Zeng, Fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry: an effective method for direct determination of refractory elements in solid biological samples, Microchem. J., 1996, 53, 326
    227 T.Y. Peng, Z. H. Sheng, B. Hu, Z. C. Jiang, Direct analysis of silicon carbide by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry using a slurry sampling technique, Analyst, 2000,125, 2089
    228 S.Z. Chen, F. Li, A. H. Liao, T. Y. Peng, Z. C. Jiang, Study on the direct analysis of solid powder biological samples using fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry with PTFE slurry modifier, Fresenius J. Anal. Chem., 1999, 364, 556
    229 C. J. Park, G. E. M. Hall, Analysis of geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporization: Part 2: Determination of thallium, J. Anal. At. Spectrom., 1988, 3, 355
    230 C.J. Park, J. C. VanLoon, P. Arrowsmith, J. B. French, Sample analysis using plasma source mass spectrometry with electrothermal sample introduction, Anal. Chem., 1987, 59, 2191
    231 C.J. Park, G E. M. Hall, Electrothermal vaporization as a means of sample introduction into an inductively coupled plasro, a mass spectrometry: a preliminary report of new analytical technique, Pap. Geol. Surv. Can., 1986, 86-1B, 767
    232 A. R Date, Y. Y. Cheung, Studies in the determination of lead isotope ratios by inductively coupled plasma mass spectrometry, Analyst, 1987,112, 1531
    233 J.M. Carey, E. H. Evans, J. A. Caruso, W. L Shen, Evaluation of a modified commercial graphite furnace for reduction of isobaric interferences in argon inductively coupled plasma mass spectrometry, Spectrochim.Acta Part B, 1991,46, 1711
    234 D. C. Gregoire, Sample introduction techniques for the determination of osmium isotope ratios by inductively coupled plasma mass spectrometry,Anal. Chem., 1990,62, 141
    235 D.C. Gregoire, J. Lee, Determination of cadmium and zinc isotope ratios in sheep's blood and organ tissue by electrothermal-vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1994, 9, 397
    236 J. Turner, S. J. Hill, E. Hywel Evans, B. Fairman, C. S. J. WolffBriche, Accurate analysis of selenium in water and serum using ETV-ICP-MS with isotope dilution, J. Anal. At Spectrom., 2000,15, 743
    237 E. Bjom, D. C. Baxter, W. Frech, Calibration errors due to variations in peak characteristics in the measurement of transient signals by inductively coupled plasma-scanning mass spectrometry, J. Anal. At. Spectrom., 2002,17, 1582
    238 D. Langer, J. A. Holcombe, Simple transient extension chamber to permit full mass scans with electrothermal vaporization inductively coupled plasma mass spectrometry, Appl. Spectrosc., 1999, 53, 1244
    239 C. Moor, P. Boll, S. Wiget, Determination of impurities in micro-amounts of silver alloys by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after in-situ-digestion in the graphite furnace, Fresenius J. Anal. Chem., 1997,359, 404
    240 A. G Coedo, T. Dorado, I. Padilla, R Maibusch, H. M. Kuss, Slurry sampling electrothemal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis, Spectrochim. Acta Part B, 2000, 55, 185
    241 P. Hulmston, R. C. Hutton, Analytical capabilities of electrothermal vaporization inductively coupled plasma mass spectrometry, Spectroscopy, 1991, 6, 35
    242 J. Marshall, J. Franks, Multielement analysis and reduction of spectral interferences using electrothermal vaporization inductively coupled plasma mass spectrometry. At. Spectrosc., 1990,11, 177
    243 M. Resano, M. Verstraete, F. Vanhaecke, L. Moens, Evaluation of the multi-element capabilities of electrothermal vaporization quadrupole-based ICP mass spectrometry, J. Anal. At. Spectrom., 2001, 16, 1018
    244 J.D. Venable, D. Langer, J. A. Holcombe, Optimizing the multielement analysis capabilities of an ICP quadrupole mass spectrometer using electrothermal vaporization sample introduction, Anal. Chem., 2002, 74,3744
    245 G Ertas, J. A. Holcombe, Use of a simple transient extension chamber with ETV-ICPMS: quantitative analysis and matrix effects, J. Anal. At. Spectrom., 2003,18, 878
    246 W.J. Balsanek J. D. Venable, J. A. Holcombe, Generation of a square wave inductively coupled plasma scanning mass spectrometry signal using electrothermal vaporization sample introduction, J. Anal. At. Spectrom., 2003,18, 59
    247 J.S. Becker, Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science, Spectrochim. Acta Part B, 2002, 57, 1805
    248 J. S. Becker, H. J. Dietze, State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials, Int. J. Mass Spectrom., 2003, 228, 127
    249 R. Sing, Direct sample insertion for inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B, 1999,54,411
    250 江祖成,蔡汝秀,张华山 著,稀土元素分析化学,科学出版社,2000
    251 M. Ovari, G Zaray, J. Hassler, Solid sampling electrothermal vaporization inductively coupled plasma atomic emission spectrometric method for analysis of amphipods (Dikerogammarus villosus) samples, Microchem.J.,2002, 73, 125
    252 S.Z. Chen, Z. C. Jiang, B. Hu, Z. H. Liao, T. Y. Peng, Direct determination of trace elements in micro amounts of biological samples using electrothermal vaporization coupled to ICP-AES, At. Spectrosc., 2002, 23(3), 86
    253 B. Hu, Z. C. Jiang, T. Y. Peng, Y. C. Qin, The application of chemical modification in electrothermal vaporization-inductively coupled plasma atomic-emission spectrometry, Talanta, 1999, 49, 357
    254 B. Hu, Z. C. Jiang, Y. E. Zeng, Slurry sampling and fluorination-electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the direct determination of molybdenum in food, J. Anal At. Spectrom., 1991, 6, 623
    255 丁健华,陈世忠,廖振环,江祖成,FETV-ICP-AES 直接测定中药漏芦中微量稀土元素的研究分析试验室,2000,19(6),1
    256 江相成,A Golloch,胡斌,熊宏春,陈世忠,G Fisher,C.Luhr,琥珀试样中痕量元素的直接同时测定-氟化辅助电热蒸发等离子体光谱法,分析科学学报,2000,16,177
    257 C.C.Chery.H, Chassaigne,L. Verbeeck,R. Comelis,F. Vanhaecke,L. Moens,Detection and quanlification of selenium in proteins by means of gel electropholesis and electrothermal vaporization ICP MS,J.Anal.At.Spectrom., 2002.17,576
    258 J.W.H. Lam, R. E. Sturgeon, J. W. Mclaten, Ultra-trace determination of selenium in sediments by electrothermal vaporization inductively coupled plasma mass spectrometry: use of the ETV as a thermochemical reactor, Spectrochim. Acta Part B, 1999,54, 443
    259 F. Vanhaecke, I. Gelaude, L. Moens, R. Dams, Solid sampling electrothermal vaporization inductively coupled plasma mass speetrometry (ETV-ICP-MS) for the direct determination of mercury in sludge samples, Anal. Chim. Acta., 1999, 383, 253
    260 M. E. Rybak, E. D. Salin, Direct determination of metals in soils and sediments by induction heating-electrothermal vaporization (IH-ETV) inductively coupled plasma-optical emission spectrometry (ICP AES),Appl. Spectrosc., 2001,55, 816
    261 W. Schron, A. Liebmann, W. Nimmerfall, Direct solid sample analysis of sediments, soils, rocks and advanced ceramics by electrothermal vaporization (ETV)-ICP AES and GF AAS, Fresenius J. Anal Chem., 2000, 366, 79
    262 F. Vanhaecke, M. Resano, M. P. Lopez, L. Moens, Determination of platinum and rhodium in environmental matrices by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry,Anal. Chem., 2002, 74, 6040
    263 C. Luedke, E. Hoffmann, J. Skole, M. Kriews, Determination of trace metals in size fractionated particles from Arctic air by electrothermal vaporization inductively coupled plasma mass spectrornetry, J. Anal. At. Spectrom., 1999,14, 1685
    264 H. Nickel, J. A. C. Broekaert, Some topical applications of plasma atomic spectrochemical methods for the analysis of ceramic powders, Fresenius J.Anal. Chem., 1999,363, 145
    265 M.C. Wende, J. A. C. Broekaert, Direct solid sampling electrothermal vaporization of alumina for analysis by inductively coupled plasma optical emission spectrometry, Spectrochim. Acta Part B, 2002, 57, 1897
    266 M. Lucic, V. Krivan, Analysis of aluminium-based ceramic powders by electrothermal vaporization inductively coupled plasma atomic emission spectrometry using a tungsten coil and slurry sampling, Fresenius J. Anal. Chem., 1999,363,64
    267 U. Schaeffer, V. Krivan, Multi-element analysis of graphite and silicon carbide by inductively coupled plasma atomic-emission spectrometry using solid sampling and electrothermal vaporization, Anal. Chem., 1999, 71,849
    268 K.C. Friese, V. Krivan, Direct analysis of tantalum powders by electrothermal vaporization inductively coupled plasma atomic-emission speetrometry, Fresenius J. Anal. Chem., 1999, 364, 72
    269 T.Y. Peng, G Chang, L. Wang, Z. C. Jiang, B. Hu, Sluny sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders, Fresenius J. Anal. Chem., 2001, 369, 461
    270 T.Y. Peng, Z. C. Jiang, B. Hu, Z. H. Liao, Direct determination of traee copper and chromium in silicon nitride by fluorinating electrothermal vaporization inductively coupled plasma atomic-emission spectrometry with the slurry sampling technique, Fresenius J. Anal. Chem., 1999, 364, 551
    271 T.Y. Peng, Z. C. Jiang, Y. C. Qin, Slurry sampling of silicon nitride powder combined with fluorination assisted electrothermal vaporization for direct determination of titanium, yttrium and aluminum by ICP-AES, J.Anal.At. Spectrom., 1999,14, 1049
    272 彭天右,阎琴,胡斌,江祖成,悬浮体进样/氟化电热蒸发(ETV)/-ICP-AES直接测定二氧化钛粉末中痕量钇,高等学校化学学报,2000,21,694
    273 S.Z. Chen, L. Wang, Z. H. Liao, T. Y. Peng, B. Hu, Z. C. Jiang, In situ separation of a matrix for the direct analysis of zirconium dioxide powder by electrothermal-vaporization ICP AES with a poly(tetrafluoroethylene) slurry modifier, Anal. Sci., 2000,16, 877
    274 T.Y. Peng, P. W. Du, B. Hu, Z. C. Jiang, Direct analysis of titanium dioxide solid powder by fluorination assisted electromthermal vaporization inductively coupled plasma atomic-emission spectrometry, Anal. Chim. Acta 2000, 421, 75
    275 B. Cai, B. Hu, Z. C. Jiang, Direct determination of trace rare earth elements in high purity yttrium oxide using fluorination assisted electrothermal vaporization inductively coupled plasma atomic-emission spectrometry with slurry sampling, Fresenius J. Anal. Chem., 2000, 367, 259
    276 M. Resano, M. Verstraete, F. Vanhaecke, L. Moens, Direct determination of trace amounts of silicon in polyamides by means of solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2002,17, 897
    277 Y. Hu, F. Vanhaecke, L. Moens, R. Dams, I. Geuen, Determination of ruthenium in photographic materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry, J.Anal. At. Spectrom., 1999,14, 589
    278 F. Vanhaecke, M. Resano, L. Moens, Electrothermal vaporization ICP-mass spectrometry (ETV-ICP-MS) for the determination and speciation of trace elements in solid samples-A review of real-life applications from the author's lab, Anal. Bioanal. Chem., 2002, 374, 188
    279 K. C. Friese, K. H. Grobecker, U. Watjen, Development of an electrothermal vaporization ICP-MS method and assessment of its applicability to studies of the homogeneity of reference materials, Fresenius J. Anal. Chem., 2001, 370, 499
    280 S.Z. Chen, T. Y. Peng, Z. C. Jiang, Determination ofrare-earth impurities in high-purity zirconium dioxide by electrothermal vaporization inductively coupled plasma atomic-emission spectrometry using 1-phenyl-3-methyl-4-benzoyl-5-pyrazone as extractant and chemical modifier, Anal. Letters, 1999, 32, 411
    281 T. Buchkamp, G Hermann, Solid sampling by electrothermal vaporization in combination with electrostatic particle deposition for electrothermal atomization multi-element analysis, Spectrochim. ActaPart B, 1999, 54, 657
    282 H.C. Xiong, B. Hu, T. Y. Peng, S. Z. Chen, Z. C. Jiang, Separation/preconcentration of lanthanum and europium by micro-colunm packed with immobilized 1-phenyl-3-methyl-4-bonzoyl-5-pyrazone on microcrystalline naphthalene and determination by electrothermal vaporization inductively coupled plasma-atomic emission spectrometry, Anal. Sci., 1999,15, 737
    283 H.C. Xiong, B. Hu, Z. C. Jiang, Micro-column separation/preconcentration combined with fluorinating electrothermal vaporization-inductively coupled plasma atomic emission spectrometry for determination of ultratrace rare earth elements, J. Anal. At. Spectrom., 2000,15, 759
    284 熊宏春,胡斌,黄卫红,彭天右,陈世忠,江祖成,微晶萘负载PMBP微柱分离预富集与电热蒸发电感耦合等离子体原子发射光谱联用测定痕量稀土元素,高等学校化学学报,2000,21,1647
    285 熊宏春,胡斌,江祖成,—种用于电热蒸发-原子光谱的微型化固相萃取技术,高等学校化学学报 2000,21,1035
    286 H.Z. Wu, N. Watanabe, R. Tsukahara, T. Itoh, Y. Gohshi, M. Owari, Highly sensitive determination of trace rare-earth elements in ultra-pure rare-earth compounds by combining ICP MS with HPLC and electrothermal vaporization, Bunseki Kagaku, 2000, 49, 91
    287 Q. Shuai, Y. C. Qin, B. Hu, H. C. Xiong, Z. C. Jiang, Determination of rare-earth impurities in high-purity lanthanum oxide using electrothermal vaporization-ICP AES after HPLC separation, Anal. Sci., 2000, 16, 957
    288 Q. Shuai, B. Hu, Y. C. Qin, R. Wanjau, Z. C. Jiang, Determination of trace rare-earth impurities in high-purity cerium oxide by using electrothermal vaporization ICP AES after HPLC separation with 2-ethylhexyl hydrogen 2-ethylhexylphosphonate rein as the stationary phase, J. Anal. At. Spectrom., 2000, 15, 1413
    289 D. Pozebon, V. L. Dressler, A. J. Curtius, Comparison of the performance of FI-ICP-MS and FI-ETV-ICP-MS systems for the determination of trace elements in seawater, Anal. Chim. Acta, 2001,438, 215
    290 M.A.M. da Silva, V. L. A. Frescura, A. J. Curtius, Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry, following cloud point extraction, Spectrochim. Acta Part B, 2001, 56, 1941
    291 J.P. Matousek, R. Iavetz, K. J. Powell, H. Louie, Mechanistic studies on the trapping and desorption of volatile hydrides and mercury for their determination by electrothermal vaporization-inductively-coupled plasma mass spectrometry Spectrochim. Acta Part B, 2002, 57, 147
    292 Matusiewicz, H.; Kopras, M. Simultaneous determination of hydride forming elements (arsenic, bismuth, germanium, antitnony, selenium) and mercury in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace, J. Anal.At. Spectrom., 2003,18, 1415
    293 Y.P. Hang, Y. C. Qin, Z. C. Jiang, B. Hu, Direct analysis of trace rare-earth elements by fluorination assisted electrothermal vaporizafion-ICP AES with slurry sampling through nano-sized titanium dioxide separation/preconcentration, Anal. Sci., 2002,18, 843
    294 吴英亮,江祖成,胡斌,微滴溶剂萃取与低温电热蒸发ICP-AES联用新技术,高等学校化学学报,2003,24,1793
    295 T. Tanaka, Y. Ando, T. Saitoh, M. Hiraide, Preconcentration of traces of cobalt, nickel, copper and lead in water by thermoresponsive polymer-mediated extraction for tungsten filament electrothermal vaporization-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2002,17, 1556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700