用户名: 密码: 验证码:
大豆分离蛋白质和聚氨酯改性聚丙烯腈纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白质来源于轧油后的豆粕,可再生降解,与来自动物资源的蛋白质相比价格低廉。大豆蛋白质在材料领域应用研究有利于解决日益严重的环境问题,噌加农副产品的附加值。因此近年来,视为石油基高分子的替代物之一的大豆分离蛋白质(SPI),广泛应用于塑料、粘合剂、纺织材料等领域。
     聚丙烯腈(PAN)和聚氨酯(PU)作为通用高分子材料,具有优良的性能。在材料加工中,通过共混可以综合多组分体系的优良性能,获得性能更加突出的新材料。添加适量尿素(Urea)的二甲亚砜(DMSO)可以溶解SPI,而二甲亚砜为聚丙烯腈、聚氨酯的良溶剂,因此本文首次研究了SPI在DMSO/Urea中的分散状态及其特性;PAN/SPI/PU多组分体系分子间的相互作用和相容增容情况;SPI在DMSO/Urea和PAN/SPI/PU多组分体系在DMSO中的流变特性;通过湿法纺丝制备PAN/SPI/PU共混纤维,表征分析了纤维纺丝成型机理及其结构性能。
     考察了大豆分离蛋白在二甲亚砜/尿素中的溶解特性,实验结果显示SPI在所研究条件下最大溶解度约为4.8%。Urea是SPI能在DMSO中溶解的重要因素,而热处理条件影响SPI在DMSO中的溶解,在实验范围内,合适的尿素浓度、热处理温度和时间为分别3M,90℃,2h。随urea浓度增加,SPI在DMSO/Urea中凝胶化的临界浓度增大,当DMSO浓度达到一定值后,临界浓度随DMSO浓度增大变化不大。随SPI浓度不同,在DMSO/Urea中呈现溶液、溶胶、凝胶三种状态。
     相容性是影响多组分高聚物体系结构性能的重要因素,本文通过红外光谱、混合热计算、稀溶液粘度法、玻璃化转变温度法及显微镜形态观察法对多组分体系分子间的相互作用和相容性进行表征分析。研究结果表明,SPI/PU具有部分相容性,而PAN/SPI、PAN/PU的相容性差,但仍然存在弱的分子间相互作用。PAN/SPI/PU体系有明显相分离现象,体系相容性差。合成制备了丙烯腈─大豆分离蛋白接枝共聚物(AN-g-SPI)和水解聚丙烯腈(HPAN)作为相容剂,随AN-g-SPI、HPAN含量增加共混膜的力学性能改善。
     流变性能直接影响着纤维的纺丝成型过程和所制备纤维的结构性能。实验结果发现SPI在DMSO/Urea中剪切变稀,随浓度增加,由于其分散状态发生变化,则流动行为差异加大。原液浓度影响共混溶液的流动和成丝性,当含固量为23%时,纺丝原液的成丝性最好。SPI和PU对PAN流变性能的影响相反,SPI的加入降低了PAN溶液流动性,PAN/SPI溶液的非牛顿指数随SPI含量增加呈下降趋势,结构粘度指数则呈增加趋势。PAN/SPI/PU多组分体系的流变性能受SPI和PU含量的影响较大,可通过调整组分改变流动行为。SPI和PU的加入降低了PAN/DMSC溶液对温度的敏感性,升温有助于改善体系的流动性。
     PAN/SPI/PU纤维成型机理的研究中主要探讨了凝固浴浓度和温度、拉伸比的分配比例和倍数、干燥致密化的温度和时间、交联剂的种类和浓度对其成型及性能的影响。实验结果表明:凝固浴浓度60%、温度22℃,预拉伸倍数1.5-2倍,纤维拉伸性能好。120℃干燥致密化15-20min可得强度高而干燥致密化时间也合适的纤维。采用在凝固浴中添加交联剂的方法以改善PAN/SPI纤维的性能。比较乙二醛和戊二醛的作用后,发现乙二醛加入可明显改善纤维拉伸性能,纤维拉伸强度提高近2倍,随乙二醛浓度提高纤维性能提高,但浓度超过10%后改善作用不明显。
     利用红外光谱、蛋白酶水解法、表面接触角、回潮率、DSC、TGA、力学性能测试、酸性染料染色等方法对PAN/SPI/PU纤维结构性能分析表征显示:PAN/SPI/PU纤维中确实含有PAN、SPI和PU共同的特征吸收峰,然而在实验范围内蛋白酶水解法发现所测纤维中的蛋白质含量比理论添加量少。随SPI含量的增加,纤维热分解起始和峰值温度略向低温方向移动;具有部分生物降解性能;酸性染料染色性能提高;纤维的表面接触角减小,吸湿性提高。
Soy protein isolated (SPI) has been considered recently as an alternative to petroleum polymer in the manufacture of adhesives, plastics, textiles et al. Soy protein is available from renewable resources and biodegradable. Utilizing soy protein for materials will help to solve environmental and petroleum resource problems and add value for agricultural by-products.
     Polyacrylonitrile (PAN) and polyurethane (PU) are general polymer material, and they have excellent performance, respectively. Blending is an important method in polymer manufacture, which may combine the advantages of both components. In this paper, the dispersion states and rheological properties of SPI in dimethylsulphoxide/urea, miscibility, interactions and rheological properties of PAN/SPI/PU system in DMSO, structure-property relationships of PAN/SPI/PU fiber were studied.
     Dimethylsulfoxide(DMSO)/urea was chosen as a mixture solvent system to dissolve soy protein. The dispersion status and properties of SPI in DMSO/urea were studied. The result showed that SPI has relatively high solubility in DMSO/urea mixture solvent and urea served as a key factor of dissolving SPI in the system. The solubility properties and gelation phenomenon of SPI were studied in DMSO/Urea. The effects, such as heating time, temperature and concentration of urea were discussed. SPI in the DMSO/urea mixture system exhibited different dispersion statuses with increasing of SPI content.
     Miscibility and interaction properties of PAN/SPI blend systems were studied by using methods of fourier transform infrared(FTIR), heat of mixing, dilute solution viscometry, phase contrast microscope. It was found that SPI/PU was partly miscilbility system and PAN/SPI, PAN/PU was immiscible system respectively, however there existed attractive interaction. In order to promote the compatibility, the main products of graft copolymerization of acrylonitrile and SPI (AN-g-SPI) and the alkaline hydrolysis polyacrylonitrile (HPAN) were used as the compatibilizers, and the mechanical properties of blends were improved observably.
     The SPI dispersed system in DMSO/Urea was shear-thinning fluid and flow behavior was different with increasing content of SPI because the change of dispersed state. The effects of SPI and PU on the rheological properties of PAN solutions were opposite. The Non-Newtonian index of PAN/SPI solutions decreased and corresponding structure viscosity index of that increased with increasing of SPI content on the whole. The fluid properties of PAN solution was worsened with the addition of SPI. The rheological properties of PAN/SPI/PU solutions were affected by the contents of SPI and PU. In any case, the increase of temperature contributed to the improvement of the fluid properties of blend solutions.
     The effect of temperature and concentration of coagulation bath, the multiple and corresponding distributive proportion of multiple drawing, temperature and time of drying, the type and concentration of crosslink agent on the properties of blend fiber were investigated. The result shown it was better to get good performance fibres when the concentration of coagulating agent was 60%, and the temperature of coagulation bath was 22℃, the drawing multiple in washing bath was 1.5-2 and the drying time was 15-20 minutes at 120℃.The effect of glutaraldehyde and glyoxal as cross-linking agent at coagulation bath on PAN/SPI fiber were studied. It was found that the mechanical properties of fibres used by glyoxal were improved.
     The methods of fourier transform infrared(FTIR), enzymatic hydrolysis, scanning electron microscopy(SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), mechanical property, dye adsorption, contact angle and moisture regain measurements were employed to investigate the structure and properties of PAN/SPI/PU fiber. The results show that the concentration of SPI in PAN/SPI/PU fibers determinately increased with increasing of addition SPI by using enzymatic hydrolysis though there was loss of SPI content compared with addition of SPI weight. The PAN/SPI/PU fibers were partly biodegrability system. The thermo degraded temperature slightly decreased with increasing of content of SPI in the PAN/SPI fiber. The dye adsorption for acidic dye and moisture regain of PAN/SPI fibers increased and the contact angle of that decreased with increasing of SPI ratio as well as compared with a referenced PAN fiber prepared via the same method.
引文
1. Fr. Pat. 178,367, 1886.
    2. Brit.Pat.2694,1887.
    3. Brit.Pat. 15,522,1894.
    4. Brit.Pat. 6700, 1898.
    5. D.R.P. 170051,1906.
    6. Wormell, R. L., New fibres from proteins. Butterworths scientific publications london, 1954.
    7. Brit.Pat.559,848, 1944.
    8. Brit.Pat.467704,1937.
    9. Brit.Pat 502,710, 1939.
    10. Brit.Pat. 525,157,1940.
    11. Rose, H. W., The Rayon and Synthetic Fiber Industry of Japan. New York, 1948; p380.
    12. Mohanty, A. K.; Misra, M.; Drzal, L. T., Sustainable bio-composites from renewable resources:opportunities and challenges in the green materials world. Journal of Polymers and the environment 2002, 10, 19-26.
    13. Choi, W. Y; Lee, C. M.; Park, H. J., Development of biodegradable hot-melt adhesive based on poly-e-caprolactone and soy protein isolate for food packaging system. LWT--Food Science and Technology 2006,39, (6), 591-597.
    14. Zhong, Z.; Sun, X. S.; Wang, D.; Ratto, J. A., Wet Strength and Water Resistance of Modified Soy Protein Adhesives and Effects of Drying Treatment. Journal of Polymers and the Environment 2003,11, (4), 137-144.
    15. Zhong, Z.; Sun, X. S.; Wang, D., Isoelectric pH of polyamide-epichlorohydrin modified soy protein improved water resistance and adhesion properties. Journal of Applied Polymer Science 2007, 103, (4), 2261-2270.
    16. Pearson, A.M., Soy protein in: Developments in Food Protein. 1983; p 67-108.
    17. Derbyshire, E.; Wright, D. J.; Boulter, D., Legumin and vicilin, storage proteins of legume seeds. Phytochemistry (Elsevier) 1976,15, (1), 3-24.
    18. Ly, Y. T. P.; Johnson, L. A.; Jane, J., Soy Protein as Biopolymer in: Biopolymers from Renewable Resource. Berlin, 1998; p 144-176.
    19. Nash, A. M.; Kwolek, W. F.; Wolf, W. J., Extraction of proteins from steamed soybean meal with water and aqueous 2-mercaptoethanol. Cereal Chemistry 1979,56, (5), 473-5.
    20. Murphy, P. A.; Resurreccion, A. P., Varietal and environmental differences in soybean glycinin and b-conglycinin content. Journal of Agricultural and Food Chemistry 1984,32, (4), 911-915.
    21. Wolf, W. J., Purification and properties of the proteins. Soybeans: Chem. Technol. 1972, 1, 93-143.
    22. Hirano, H.; Kagawa, H.; Kamata, Y; Yamauchi, F., Structural homology among the major 7 S globulin subunits of soybean seed storage proteins. Phytochemistry 1986,26, (1), 41-45.
    23. Thanh, V. H.; Shibasaki, K., Major proteins of soybean seeds: Subunit structure of conglycinin Journal of Agricultural and Food Chemistry 1978, 26, (3), 692-695.
    24. Thanh, V. H.; Shibasaki, K., Major proteins of soybean seeds. A straightforward fractionation and their characterization. J Agric Food Chem FIELD Full Journal Title: Journal of agricultural and food chemistry 1976,24,(6),1117-1121.
    25.Thanh,V.H.;Shibasaki,K.,Beta-conglycinin from soybean proteins.Isolation and immunological and physicochemical properties of the monomeric forms.Biochim Biophys Acta FIELD Full Journal Title:Biochimica et biophysica acta 1977,490,(2),370-384.
    26.Utsumi,S.;Matsumura,Y.;Mori,T.,Structure-function relationships of soy proteins.Food Science and Technology(New York)1997,80,(Food Proteins and Their Applications),257-291.
    27.Koshiyama,I.,Purification and physico-chemical properties of 11S globulin in soybean seeds.Int J Pept Protein Res FIELD Full Journal Title:International journal of peptide and protein research 1972,4,(3),167-76.
    28.Koshiyama,I.;Fukushima,D.,A note on carbohydrates in the 11S globulin of soybean seeds.Cereal Chemistry 1976,53,(5),768-769.
    29.Badley,R.A.;Atkinson,D.;Hanser,H.;Oldani,D.;Green,J.P.;Stubbs,J.M.,Structure,physical,and chemical properties of the soy bean protein glycinin.Biochimica et Biophysica Acta,Protein Structure 1975,412,(2),214-228.
    30.Staswick,P.E.;Hermodson,M.A.;Nielsen,N.C.,Identification of the cystines which link the acidic and basic components of the glycinin subunits.J Biol Chem FIELD Full Journal Titie:The Journal of biological chemistry 1984,259,(21),13431-13435.
    31.Kelly,J.J.;Pressey,R.,Studies with soybean protein and fiber formation.Cereal Chemistry 1966,43,(2),195-206.
    32.Ishino,K.;Okamoto,S.,Molecular interaction in alkali denatured soybean proteins.Cereal Chemistry 1975,52,(1),9-21.
    33.Smith,A.K.,Proteins as industrial raw materials.Chem.Industries 1946,58,974-977.
    34.Hua,Y.;Huang,Y.;Qiu,A.;Liu,X.,Properties of soy protein isolate prepared from aqueous alcohol washed soy flakes.Food Research International 2005,38,(3),273-279.
    35.Fukushima,D.,Denaturation of soybean proteins by organic solvents.Cereal Chemistry 1969,46,(2),156-63.
    36.陈复生,李里特,辰已英三.大豆 7S 球蛋白凝胶光学性质的研究,中国粮油学报2001,16,(2),41-46.
    37.Li,Y.;Zhong,F.;Ma,J.,Gelation properties of 7S and 11S of soybean protein.Journal of Food Science and Biotechnology 2005,24,(6),19-23.
    38.Renkema Jacoba,M.S.;van Vliet,T.,Heat-induced gel formation by soy proteins at neutral pH.J Agric Food Chem FIELD Full Journal Title:Journal of agricultural and food chemistry 2002,50,(6),1569-1573.
    39.Renkema,J.M.S.;Lakemond,C.M.M.;de Jongh,H.H.J.;Gruppen,H.;van Vliet,T,The effect of pH on heat denaturation and gel forming properties of soy proteins.Journal of Biotechnology 2000,79,(3),223-230.
    40.Renkema,J.M.S.;Van Vliet,T.,Heat-Induced Gel Formation by Soy Proteins at Neutral pH.Journal of Agricultural and Food Chemistry 2002,50,(6),1569-1573.
    41.Renkema,J.M.S.;van Vliet,T.,Concentration dependence of dynamic moduli of heat-induced soy protein gels.Food Hydrocolloids 2004,18,(3),483-487.
    42.Nakamura,T.;Utsumi,S.;Mori,T.,Effects of temperature on the different stages in thermal gelling of glycinin.Journal of Agricultural and Food Chemistry 1985,33,(6),1201-1203.
    43.Catsimpoolas,N.;Meyer,E.W.,Gelation Phenomena of Soybean Globulins.I.Protein-Protein Interactions.Cereal Chemistry 1970,47,(5),559-570.
    44. Damodaran, S., Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: effect on gelation. Journal of Agricultural and Food Chemistry 1988, 36, (2), 262-269.
    45. Graiver, D.; Waikul, L. H.; Berger, C; Narayan, R., Biodegradable soy protein-polyester blends by reactive extrusion process. Journal of Applied Polymer Science 2004, 92, (5), 3231-3239.
    46. Vlad, M.; Srinivasan, G; Grewell, D., Improvement of the mechanical properties of soy protein isolate based plastics. Annual Technical Conference - Society of Plastics Engineers 2007, 65th, 1718-1721.
    47. Mungara, P.; Zhang, J.; Zhang, S.; Jane, J.-L., Soy protein utilization in compression-molded, extruded, and injection-molded degradable plastics. Protein-Based Films and Coatings 2002, 621-638.
    48. Tummala, P.; Liu, W.; Drzal, L. T.; Mohanty, A. K.; Misra, M., Influence of Plasticizers on Thermal and Mechanical Properties and Morphology of Soy-Based Bioplastics. Industrial & Engineering Chemistry Research 2006,45, (22), 7491-7496.
    49. Wang, S.; Sue, H. J.; Jane, J., Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. Journal of Macromolecular Science, Pure and Applied Chemistry 1996, A33, (5), 557-569.
    50. Carrera Sanchez, C; Molina Ortiz, S. E.; Rodriquez Rosario, M.; Anon, M. C; Rodriguez Patino, J. M., Effect of pH on Structural, Topographical, and Dynamic Characteristics of Soy Globulin Films at the Air-Water Interface. Langmuir 2003,19, (18), 7478-7487.
    51. Tang, C.-H.; Jiang, Y.; Wen, Q.-B.; Yang, X.-Q., Effect of transglutaminase treatment on the properties of cast films of soy protein isolates. Journal of Biotechnology 2005,120, (3), 296-307.
    52. Rhim, J.-W.; Lee, J.-H.; Kwak, H.-S., Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Science and Biotechnology 2005,14, (1), 112-116.
    53. Kurose, T.; Urman, K.; Otaigbe, J. U.; Lochhead, R. Y; Thames, S. E, Effect of uniaxial drawing of soy protein isolate biopolymer film on structure and mechanical properties. Polymer Engineering and Science 2007, 47, (4), 374-380.
    54. Park, S. K.; Hettiarachchy, N. S., Physical and mechanical properties of soy protein-based plastic foams. Journal of the American Oil Chemists' Society 1999, 76, (10), 1201-1205.
    55. Wang, Y; Cao, X.; Zhang, L., Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience 2006, 6, (7), 524-531.
    56. Zheng, H.; Tan, Z. a.; Zhan, Y. R.; Huang, J., Morphology and properties of soy protein plastics modified with chitin. Journal of Applied Polymer Science 2003,90, (13), 3676-3682.
    57. Ai, F.; Zheng, H.; Wei, M.; Huang, J., Soy protein plastics reinforced and toughened by SiO2 nanoparticles. Journal of Applied Polymer Science 2007,105, (3), 1597-1604.
    58. Zhong, Z.; Sun, X. S., Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer 2001,42, (16), 6961-6969.
    59. Zhong, Z.; Sun, S. X., Properties of soy protein isolate/poly(ethylene-co-ethyl acrylate-co-maleic anhydride) blends. Journal of Applied Polymer Science 2003, 88, (2), 407-413.
    60. Wang, N.; Zhang, L.; Gu, J., Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. Journal of Applied Polymer Science 2005, 95, (2), 465-473.
    61. Lodha, P.; Netravali, A. N., Characterization of interfacial and mechanical properties of \"green\" composites with soy protein isolate and ramie fiber. Journal of Materials Science 2002, 37, (17), 3657-3665.
    62.Chen,Y.;Zhang,L.,Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution.Journal of Applied Polymer Science 2004,94,(2),748-757.
    63.Zhang,Y.;Ghasemzadeh,S.;Kotliar,A.M.;Kumar,S.;Presnell,S.;Williams,L.D.,Fibers from soybean protein and poly(vinyl alcohol).Journal of Applied Polymer Science 1999,71,(1),11-19.
    64.Zhang,X.;Min,B.G.;Kumar,S.,Solution spinning and characterization of poly(vinyl alcohol)/soybean protein blend fibers.Journal of Applied Polymer Science 2003,90,(3),716-721.
    65.李官奇.一种蛋白质合成纤维及其制造方法.CN03111814.3,2003.
    66.李官奇,李贺泽.植物蛋白质合成纤维及制造方法.CN03111737.6,2003.
    67.淳于永祥,赵瑾.大豆分离蛋白改性的聚乙烯醇纤维.CN01104271.0,2001.
    68.阎子鹏.植物蛋白-腈纶-聚乙烯醇复合纤维及其制造方法CN200310113557.8,2003.
    69.张瑞文,王惠平,刘赤乾等.一种大豆蛋白粘胶纤维的制造方法,CN02138823.7,2002.
    70.陈玉林,邵长金,刘赤乾等.大豆蛋白纤维素纤维的制造方法.CN200410010327.3,2004.
    71.姜岩,隋淑英,姜丽.大豆蛋白/粘胶共混纤维及其性能.纺织学报,2006,27,(2),71-73.
    72.黄翔宇,章悦庭,沈新元 杨庆.植物蛋白-腈纶复合纤维及其制造方.CN03115288.0,2003.
    73.吴弘玮.东华大学学位论文,上海,2005.
    74.沈婕.东华大学学位论文,上海,2003.
    75.顾利霞,肖茹,陈大俊,朱庆芳.大豆蛋白质/聚氨酯/聚丙烯腈共混复合纤维及制备方法.CN200510024370.X,2005.
    76.顾利霞,肖茹,孙刚,康庄.植物蛋白质/聚氨酯/聚丙烯腈共混复合纤维及制备方法.CN200510024372.9,2005.
    77.顾利霞,肖茹,尹端,沈婕.一种大豆蛋白质溶液及其制备方法CN200510024371.4,2005.
    78.Wang,H.;Wang,T.;Johnson,L.A.,Mechanism for refunctionalizing heat-denatured soy protein by alkaline hydrothermal cooking.Journal of the American Oil Chemists'Society 2006,83,(1),39-45.
    79.Hua,Y.;Cui,S.W.;wang,Q.;Mine,Y.;Poysa,V.,Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours.Food Research International 2005,38,(4),377-385.
    80.Kang,I.-J.;Lee,Y.-S.,Effects of b-conglycinin and glycinin on thermal gelation and gel properties of soy protein.Food Science and Biotechnology 2005,14,(1),11-15.
    81.Renkema,J.M.S.;Gruppen,H.;Van Vliet,T.,Influence of pH and Ionic Strength on Heat-Induced Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and Their Protein Compositions.Journal of Agricultural and Food Chemistry 2002,50,(21),6064-6071.
    82.Zhong,F.;Wang,Z.;Xu,S.-Y.;Shoemaker,C.F.,The evaluation of proteases as coagulants for soy protein dispersions.Food Chemistry 2006,100,(4),1371-1376.
    83.Tang,C.-H.;Wu,H.;Chen,Z.;Yang,X.-Q.,Formation and properties of glycinin-rich and b-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase.Food Research International 2005,39,(1),87-97.
    84.Vu Huu,T.;Shibasaki,K.,Major proteins of soybean seeds.A straightforward fractionation and their characterization.Journal of Agricultural and Food Chemistry 1976,24,(6),1117-21.
    85.Iwabuchi,S.;Yamauchi,F.,Determination of glycinin and b-conglycinin in soybean proteins by immunological methods.Journal of Agricultural and Food Chemistry 1987,35,(2),200-5.
    86.Reiffers-Magnani,C.K.;Cuq,J.L.;Watzke,H.J.,Depletion flocculation and thermodynamic incompatibility in whey protein stabilised O/W emulsions.Food Hydrocolloids 2000,14,(6),521-530.
    87.Tanford,C.,Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. Journal of the American Chemical Society 1962, 84, 4240-7.
    88. Renkema Jacoba, M. S. wageningen university, 2001.
    89. Nagano, T.; Hirotsuka, M.; Mori, H.; Kohyamo, K.; Nishinari, K., Dynamic Viscoelastic Gelation of 7S Globulin from Soybeans Journal of agricultural and food chemistry 1992,40, 941-944.
    90. Stading, M.; Hermansson, A. M., Viscoelastic behavior of b-lactoglobulin gel structures. Food Hydrocolloids 1990,4, (2), 121-135.
    91. Mohanty, A. K.; Tummala, P.; Liu, W.; Misra, M.; Mulukutla, P. V.; Drzal, L. T., Injection molded biocomposites from soy protein based bioplastic and short industrial Hemp fiber. Journal of Polymers and the Environment 2005, 13, (3), 279-285.
    92. Mungara, P.; Chang, T.; Zhu, J.; Jane, J., Processing and physical properties of plastics made from soy protein polyester blends. Journal of Polymers and the Environment 2002,10, (1/2), 31-37.
    93. Chen, P.; Zhang, L.; Peng, S.; Liao, B., Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. Journal of Applied Polymer Science 2006,101, (1), 334-341.
    94. Huang, J.; Zhang, L.; Chen, P., Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. Journal of Applied Polymer Science 2003, 88, (14), 3291-3297.
    95. Liang, C. Y.; Krimm, S., Infrared spectra of high polymers. VII. Polyacrylonitrile. Journal of Polymer Science 1958,31, 513-522.
    96. Schneier, B., Polymer compatibility. Journal of Applied Polymer Science 1973, 17, (10), 3173-83.
    97. Thakore, I. M; Desai, S.; Sarwade, B. D.; Devi, S., Evaluation of compatibility of poly(vinyl chloride)/starch acetate blends using simple techniques. Journal of Applied Polymer Science 1999, 71, (11), 1851-1861.
    98. Singh, Y. P.; Singh, R. P., Compatibility studies on solutions of polymer blends by viscometric and ultrasonic techniques. European Polymer Journal 1983,19, (6), 535-41.
    99. Okieimen, F. E.; Urhoghide, I. N., Studies on miscibility of poly(vinyl chloride) with natural rubber-graft-polyacrylonitrile and natural rubber-graft-poly(methyl methacrylate). Journal of Applied Polymer Science 1996,59, (11), 1803-8.
    100. Krigbaum, W. R.; Wall, F. T., Viscosities of Binary Polymeric Mixtures. Journal of Polymer Science 1950,5, (4), 505-514.
    101. Cragg, L. H.; Bigelow, C. C., The Viscosity Slope Constant K'-Ternary Systems:Polymer-Polymer-Solvent. Journal of Polymer Science 1955,16,177-191.
    102. Chee, K. K., Determination of polymer-polymer miscibility by viscometry. European Polymer Journal 1990,26, (4), 423-6.
    103. Aroguz, A. Z.; Baysal, B. M., Miscibility studies on blends of poly(phenylene oxide)/brominated polystyrene by viscometry. European Polymer Journal 2006,42, (2), 311 -315.
    104. Gomez, C. M.; Porcar, I.; Recalde, I.; Campos, A., Polymer-polymer interaction, in the presence of a solvent as measured by viscometry. Polymer International 2002, 51, (1), 62-68.
    105. Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Kennedy, C. J.; Wess, T. J., Molecular interactions in collagen and chitosan blends. Biomaterials 2003, 25, (5), 795-801.
    106. Lewandowska, K., The miscibility of poly(vinyl alcohol)/poly(N-vinylpyrrolidone) blends investigated in dilute solutions and solids. European Polymer Journal 2005,41, (1), 55-64.
    107. Zhu, P., A new criterion of polymer-polymer miscibility detected by viscometry. European Polymer Journal 1997, 33, (3), 411-413.
    108. Jiang, W. H.; Han, S. J., An improved criterion of polymer-polymer miscibility determined by viscometry. European Polymer Journal 1998, 34, (11), 1579-1584.
    109.Sun,Z.;Wang,W.;Feng,Z.,Criterion of polymer-polymer miscibility determined by viscometry.European Polymer Journal 1992,28,(10),1259-61.
    110.Cragg,L.H.;Bigelow,C.C.,The viscosity slope constant k';ternary systems:polymer-polymer-solvent.Journal of Polymer Science 1955,16,177-91.
    111.Wang,S.;Bao,G.;Wu,P.;Han,Z.,Viscometric study on the interactions of polymers of the poly(benzazole)family with nylon 66.European Polymer Journal 2000,36,(9),1843-1852.
    112.Pan,Y;Cheng,R.;Xue,F.;Fu,W.,A new viscometric criterion for polymer-polymer interaction.European Polymer Journal 2002,38,(8),1703-1708.
    113.Sun,Y.;Shao,Z.;Zhou,L.;Yu,T.,Compatibilization of acrylic polymer-silk fibroin blend fibers.1.Graft copolymerization of acrylonitrile onto silk fibroin.Journal of Applied Polymer Science 1998,69,(6),1089-1097.
    114.Berli,C.L.A.;Deiber,J.A.;Anon,M.C.,Connection between rheological parameters and colloidal interactions of a soy protein suspension.Food Hydrocolloids 1999,13,(6),507-515.
    115.Puppo,M.C.;Sorgentini,D.A.;Anon,M.C.,Rheological properties of emulsions containing modified soy protein isolates.Journal of the American Oil Chemists'Society 2003,80,(6),605-611.
    116.Martin,A.H.;Bos,M.A.;Vail Vliet,T.,Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface.Food Hydrocolloids 2001,16,(1),63-71.
    117.Sabato,S.F.;Lacroix,M.,Radiation effects on viscosimetry of protein based solutions.Radiation Physics and Chemistry 2002,63,(3-6),357-359.
    118.Renkema,J.M.S.,Relations between rheological properties and network structure of soy protein gels.Food Hydrocolloids 2003,18,(1),39-47.
    119.Apichartsrangkoon,A.,Effects of high pressure on rheological properties of soy protein gels.Food Chemistry 2002,80,(1),55-60.
    120.Apichartsrangkoon,A.;Ledward,D.A.,Dynamic viscoelastic behaviour of high pressure treated gluten-soy mixtures.Food Chemistry 2002,77,(3),317-323.
    121.王洪武,马榴强,周建国等.大豆蛋白质流变性能的研究.高分子材料科学与工程,2002,18,(2),112-114.
    122.高阔,沈新元.大豆蛋白/聚丙烯腈纤维的研制Ⅲ.大豆蛋白/聚丙烯腈溶液的流变性能,合成纤维,2005,34,(7),8-11.
    123.韩玉洁,张亚丽,徐忠.变性豆粕中蛋白质的酶水解特性的研究,中国粮油学报,1999,14,(6),33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700