用户名: 密码: 验证码:
木质纤维素水热预处理及连续效膜蒸馏的过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在木质纤维素生化转化为乙醇的过程中,预处理单元作为该过程的核心反应单元,对后续酶解发酵步骤的效率起着决定性作用。浓缩单元作为过程的分离单元,可用于预水解液、酶解液和过程废水等含不挥发性溶质水溶液的浓缩,其性能指标也对整个过程能量的高效利用和公用工程中纯水的循环使用起到决定性作用。本文围绕预处理和浓缩这两个关键单元操作,旨在建立从木质纤维素到乙醇的高效转化路线和平台,研究内容主要分为两部分:1)研究植物细胞壁化学组成和超微结构在预处理过程中的变化规律以及这些变化如何对后续生化转化过程产生影响;2)研究相关高效浓缩过程的开发以达到整个流程较高的热量利用率和浓缩效率。
     水热预处理过程作用于生物质本身,会造成葡聚糖、木聚糖和木质素三者之间的分离和改变。针对不对称反应温度曲线,建立修改过的处理强度因子,统一表征不同条件的反应进程。借助于物料衡算和多维表征手段,研究过程输入参数包括处理强度、固液比和pH,对各组分水热反应化学行为的关联及其对后续酶解发酵的影响,研究结果发现对于热水/蒸汽处理后酶解整个糖化过程,葡萄糖和木糖得率存在权衡取舍问题,但通过引入第三个独立参数pH,可以同时达到较高的葡萄糖(>90%)和木糖得率(>85%)。木聚糖所涉及到的水解、降解和沉积反应和木质素的水解反应同pH密切相关。预水解液中的可溶性寡糖和某些降解产物会在酶解时表现出不同的抑制作用,而呋喃类物质和一些芳香醛/酮/酸则被认为是酿酒酵母发酵的主要抑制剂。控制水热过程的pH在中性范围,其过程总体指标要优于未控制过程。综合定量和定性实验数据,清晰且系统的水热过程作用机制被呈现出来。
     连续效膜蒸馏过程通过将严格平行的气隙式膜蒸馏中空纤维组件同内换热功能耦连一起,使得过程造水比在实验研究的范围内最高达到了13.8。应用面心式中心复合实验设计方法,研究过程操作参数,包括冷的进管温度、热的进膜温度和流量对过程性能指标(通量、造水比和蒸发效率)的影响规律。通过借助一系列控制传递方程组用于解释并预测过程性能,发现所建立的数学模型可以很好的描述实验数据。因此获得了可借助于模型进一步提高造水比的方法。成功采用连续效膜蒸馏技术高效浓缩稀糖溶液12倍至最终浓度20%wt,最终造水比为8.2,实现了连续效膜蒸馏过程的较高能量利用率。
In biochemical conversion process from lignocellulose to ethanol, thepretreatment step, as the core reaction unit in the whole process, plays a decisive rolein the efficiency of subsequent enzymatic hydrolysis and fermentation steps. Theseparation unit for concentrating prehydrolyzate, enzymatic hydrolyzate and processwastewater containing non-volatile solutes generated in the whole process, whoseperformance also plays a vital role in the efficiency of energy utilization and recycleof utility water. Focusing on the above two key unit operations, in this dissertation,how the chemical composition and ultrastructure of plant cell wall change withdifferent pretreatment conditions, and how these changes impact the subsequentbiochemical conversion were studied. Research related to development ofenergy-efficient concentration process in order to achieve high performance ratio wasalso conducted. The objective of this dissertation was aimed at establishing a highlyefficient route and platform that could convert lignocellulose to ethanol.
     Hydrothermal processing of corn stover, as a pretreatment step, caused a varietyof effects including fractionation of glucan, xylan and lignin from whole biomassmatrix and modification of physicochemical properties in both solid and liquidfractions. A modified severity factor for non-isothermal pretreatment with asymmetrictemperature curve was successfully applied as a reaction ordinate to evaluate differentpretreatment conditions. In light of material balance and multiple characterizationmethods, the influence of process parameters including severity facor, solid loadingand pH on the kinetic behaviors of major components in lignocellulose duringhydrothermal pretreatment and these influences on the subsequent bioconversion werestudied. It was found that a trade-off between glucose and xylose yield existed aftereither aqueous/steam pretreatment followed by enzymatic hydrolysis, but this couldbe eliminated by introduction of the third parameter, pH. High yields in glucose(>90%) and xylose (>85%) were simultaneously obtained. Hydrolysis, degradationand condensation reaction involved in xylan chemistry and hydrolysis of lignin werestrongly pH-dependent. Soluble xylo-oligmers in the prehydrolyzate and somedegradation products were verified as the inhibitory compounds to enzymatichydrolysis but behaved in a different way. Furan derivatives and some aromatic aldehydes/ketones/acids were assumed to be key potential fermentation inhibitors.Aqueous pretreatment controlling its pH at a near neutral value showed advantagesover that without pH control. Based upon the quantitative and qualitative informationon destruction of plant cell wall, a clear and systematic picture of mechanisims ofhydrothermal pretreatment was finally provided.
     A continuous-effect membrane distillation (CEMD) process was developed byequipping air gap membrane distillation (AGMD)-based and strictly-parallel hollowfiber module with internal heat recovery. Within the studied experimental range, themaximum PR of13.8was obtained. A face-centered central composite experimentaldesign was conducted to investigate the influences of operating variables includingcold-feed temperature, hot-feed temperature, and feed-in flow rate on the performancewhich was indicated by flux, performance ratio and evaporation efficiency. Atheoretical model based on governing transport equations was established to predictthe process performance and the model described the experimental data fairly well. Inlight of model, possible ways to further increase PR were predicted. The diluteaqueous sugar solution was successfully concentrated12-fold to a final concentrationof about20%wt by using CEMD process with a final PR of8.2, and the goal toestablish the high energy-efficiency concentration process was achieved.
引文
[1] Ragauskas AJ, Williams CK, Davison BH, et al., The path forward for biofuelsand biomaterials, Science,2006,311:484–489.
    [2] Stephanopoulos G, Challenges in engineering microbes for biofuels production,Science,2007,315:801–804.
    [3] Lynd LR, Laser MS, Bransby D, et al., How biotech can transform biofuels, Nat.Biotechnol.,2008,26:169–172.
    [4] Dale BE, The times they are a-changin’: the end of cheap oil and how it ischanging our world, Biofuels Bioprod. Biorefin.,2013,7:1-4.
    [5]农业部科技教育司,全国农作物秸秆资源调查与评价报告,2010.12.
    [6]石元春,我国的能源忧思,陕西电力,2012,40:1-6.
    [7] Himmel ME, Biomass recalcitrance deconstructing the plant cell wall forbioenergy, Wiley-Blackwell,2009.
    [8] Menon V, Rao M, Trends in bioconversion of lignocellulose: biofuels, platformchemicals and biorefinery concept, Prog. Energy Combust. Sci.,2012,38:522–550.
    [9] Himmel ME, Ding S, Johnson DK, et al., Biomass recalcitrance: engineeringplants and enzymes for biofuels production, Science,2007,315:804–807.
    [10]陈洪章,王岚,生物质生化转化技术,北京:冶金工业出版社,2012.
    [11]Costa Sousa L da, Chundawat SP, Balan V, et al.,“Cradle-to-grave” assessment ofexisting lignocellulose pretreatment technologies, Curr. Opin. Biotechnol.,2009,20:339–347.
    [12]Chundawat SPS, Donohoe BS, Costa Sousa L da, et al., Multi-scale visualizationand characterization of lignocellulosic plant cell wall deconstruction duringthermochemical pretreatment, Energy Environ. Sci.,2011,4:973–984.
    [13]Ding SY, Liu YS, Zeng Y, et al., How does plant cell wall nanoscale architecturecorrelate with enzymatic digestibility, Science,2012,338:1055-1060.
    [14]Festucci-Buselli RA, Otoni WC, Joshi CP, Structure, organization, and functionsof cellulose synthase complexes in higher plants, Braz. J. Plant Physiol.,2007,19:1-13.
    [15]H vel K, Shallom D, Niefind K, et al., Crystal structure and snapshots along thereaction pathway of a family51α-L-arabinofuranosidase, EMBO J.,2003,22:4922-4932.
    [16]Vanholme R, Demedts B, Morreel K, et al., Lignin biosynthesis and structure,Plant Physiol.,2010,153:895-905.
    [17]Wyman CE, Dale BE, Elander RT, et al., Coordinated development of leadingbiomass pretreatment technologies, Bioresour. Technol.,2005,96:1959–1966.
    [18]Wyman CE, Dale BE, Elander RT, et al., Comparative sugar recovery data fromlaboratory scale application of leading pretreatment technologies to corn stover,Bioresour. Technol.,2005,96:2026–2032.
    [19]Chundawata SPS, Vismeh R, Sharma LN, et al., Multifaceted characterization ofcell wall decomposition products formed during ammonia fiber expansion (AFEX)and dilute acid based pretreatments, Bioresour. Technol.,2010,101:8429–8438.
    [20]Garrote G, Domínguez H, Parajó JC, Hydrothermal processing of lignocellulosicmaterials, Eur. J. Wood Wood Prod.,1999,57:191–202.
    [21]M ller M, Nilges P, Harnisch F, et al., Subcritical water as reaction environment:fundamentals of hydrothermal biomass transformation, ChemSusChem,2011,4:566–579.
    [22]Bobleter O, Hydrothermal degradation of polymers derived from plants, Prog.Polym. Sci.,1994,19:797–841.
    [23]Funke A, Ziegler F, Hydrothermal carbonization of biomass: a summary anddiscussion of chemical mechanisms for process engineering, Biofuels Bioprod.Biorefin.,2010,4:160–177.
    [24]Mosier N, Wyman C, Dale B, et al., Features of promising technologies forpretreatment of lignocellulosic biomass, Bioresour. Technol.,2005,96:673–686.
    [25]Hu F, Ragauskas A, Pretreatment and Lignocellulosic Chemistry, BioEnergy Res.,2012,5:1043–1066.
    [26]Peterson AA, Vogel F, Lachance RP, et al., Thermochemical biofuel production inhydrothermal media: a review of sub-and supercritical water technologies,Energy Environ. Sci.,2008,1:32–65.
    [27]Martínez JM, Reguant J, Montero M, et al., Hydrolytic pretreatment of softwoodand almond shells. Degree of polymerization and enzymatic digestibility of thecellulose fraction, Ind. Eng. Chem. Res.,1997,36:688–696.
    [28]Kumar R, Mago G, Balan V, et al., Physical and chemical characterizations ofcorn stover and poplar solids resulting from leading pretreatment technologies,Bioresour. Technol.,2009,100:3948–3962.
    [29]Liu S, A kinetic model on autocatalytic reactions in woody biomass hydrolysis, J.Biobased Mater. Bioenergy,2008,2:135–147.
    [30]Palmqvist E, Hahn-H gerdal B, Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification, Bioresour. Technol.,2000,74:17–24.
    [31]Palmqvist E, Hahn-H gerdal B, Fermentation of lignocellulosic hydrolysates. II:inhibitors and mechanisms of inhibition, Bioresour. Technol.,2000,74:25–33.
    [32]Li J, Henriksson G, Gellerstedt G, Lignin depolymerization/repolymerization andits critical role for delignification of aspen wood by steam explosion, Bioresour.Technol.,2007,98:3061–3068.
    [33]Sannigrahi P, Kim D, Jung S, et al., Pseudo-lignin and pretreatment chemistry,Energy Environ. Sci.,2011,4:1306–1310.
    [34]Hu F, Jung S, Ragauskas A, pseudo-lignin formation and its impact on enzymatichydrolysis, Bioresour. Technol.,2012,117:7–12.
    [35]Kumar R, Hu F, Sannigrahi P, et al., Carbohydrate derived-pseudo-lignin canretard cellulose biological conversion, Biotechnol. Bioeng.,2013,110:737–753.
    [36]Hu F, Jung S, Ragauskas A, Impact of pseudolignin versus dilute acid-pretreatedlignin on enzymatic hydrolysis of cellulose, ACS Sustainable Chem. Eng.,2013,1:62–65.
    [37]Mok WSL, Antal Jr MJ, Uncatalyzed solvolysis of whole biomass hemicelluloseby hot compressed liquid water, Ind. Eng. Chem. Res.,1992,31:1157–1161.
    [38]Kumar S, Kothari U, Kong L, et al., Hydrothermal pretreatment of switchgrassand corn stover for production of ethanol and carbon microspheres, BiomassBioenergy,2011,35:956–968.
    [39]Mosier N, Hendrickson R, Ho N, et al., Optimization of pH controlled liquid hotwater pretreatment of corn stover, Bioresour. Technol.,2005,96:1986–1993.
    [40]S derstr m J, Pilcher L, Galbe M, et al., Two-step steam pretreatment ofsoftwood by dilute H2SO4impregnation for ethanol production, BiomassBioenergy,2003,24:475-486.
    [41]Yu Q, Zhuang X, Yuan Z, et al., Two-step liquid hot water pretreatment ofEucalyptus grandis to enhance sugar recovery and enzymatic digestibility ofcellulose, Bioresour. Technol.,2010,101:4895-4899.
    [42]Allen SG, Schulman D, Lichwa J, et al., A comparison between hot liquid waterand steam fractionation of corn fiber, Ind. Eng. Chem. Res.,2001,40:2934–2941.
    [43]Lloyd T, Wyman CE, Application of a depolymerization model for predictingthermochemical hydrolysis of hemicellulose, Appl. Biochem. Biotechnol.,2003,105:53–67.
    [44]Yang B, Wyman CE, Effect of xylan and lignin removal by batch andflowthrough pretreatment on the enzymatic digestibility of corn stover cellulose,Biotechnol. Bioeng.,2004,86:88–98.
    [45]Mosier NS, Hendrickson R, Brewer M, et al., Industrial scale-up of pH-controlledliquid hot water pretreatment of corn fiber for fuel ethanol production, Appl.Biochem. Biotechnol.,2005,125:77–97.
    [46]Shi J, Pu Y, Yang B, et al., Comparison of microwaves to fluidized sand baths forheating tubular reactors for hydrothermal and dilute acid batch pretreatment ofcorn stover, Bioresour. Technol.,2011,102:5952–5961.
    [47]Torget RW, Kim JS, Lee YY, Fundamental aspects of dilute acidhydrolysis/fractionation kinetics of hardwood carbohydrates1.cellulose hydrolysis,Ind. Eng. Chem. Res.,2000,39:2817–2825.
    [48]Liu C, Wyman CE, The effect of flow rate of compressed hot water on xylan,lignin, and total mass removal from corn stover, Ind. Eng. Chem. Res.,2003,42:5409–5416.
    [49] hgren K, Rudolf A, Galbe M, et al., Fuel ethanol production fromsteam-pretreated corn stover using SSF at higher dry matter content, BiomassBioenergy,2006,30:863-869.
    [50]Lawson KW, Lloyd DR, Membrane distillation, J. Membr. Sci.,1997,124:1-25.
    [51]Curcio E, Drioli E, Membrane distillation and related operations-a review, Sep.Purif. Rev.,2005,34:35-86.
    [52]El-Bourawi MS, Ding Z, Ma R, et al., A Framework for better understandingmembrane distillation separation process, J. Membr. Sci.,2006,285:4-29.
    [53]Ettouney HM, El-Dessouky HT, Faibish RS, et al., Evaluating the economics ofdesalination, Chem. Eng. Prog.,2002,98:32-39.
    [54]Qtaishat M, Matsuura T, Kruczek B, et al., Heat and mass transfer analysis indirect contact membrane distillation, Desalination,2008,219:272-292.
    [55]Al-Obaidani S, Crucio E, Macedonio F, et al., Potential of membrane distillationin seawater desalination: thermal efficiency, sensitivity study and cost estimation,J. Membr. Sci.,2008,323:85-98.
    [56]Li B, Sirkar KK, Novel membrane and device for direct contact membranedistillation-based desalination process, Ind. Eng. Chem. Res.,2004,43:5300-5309.
    [57]Li B, Sirkar KK. Novel membrane and device for vacuum membranedistillation-based desalination process, J. Membr. Sci.,2005,257:60-75.
    [58]Banat FW, Simandl J, Desalination by membrane distillation: a parametric study,Sep. Sci. Technol.,1998,33:201-226.
    [59]Liu GL, Zhu C, Cheung CS, et al., Theoretical and experimental studies on airgap membrane distillation, Heat Mass Transfer,1998,34:329-335.
    [60]Alklaibi AM, Lior N, Comparative study of direct-contact and air-gap membranedistillation processes, Ind. Eng. Chem. Res.,2007,46:584-590.
    [61]Cheng LH, Wu PC, Chen JH, Numerical simulation and optimal design ofAGMD-based hollow fiber modules for desalination, Ind. Eng. Chem. Res.,2009,48:4948-4959.
    [62]Hanbury WT, Hodgkiess T, Membrane distillation-an assessment. Desalination,1985,56:287-297.
    [63]Shoji Kimura, Shin-ichi Nakao, Transport phenomena in membrane distillation, J.Membr. Sci.,1987,33:285-298.
    [64]Fane AG, Schfiled RW, Fell CJD, The efficient use of energy in membranedistillation, Desalination,1987,64:231-243.
    [65]Kurokawa H, Sawa T, Heat recovery characteristics of membrane distillation,Heat Transfer-Japanese Research,1996,25:135-150.
    [66]Gilron J, Song LM, Sirkar KK, Design for cascade of crossflow direct contactmembrane distillation, Ind. Eng. Chem. Res.,2007,46:2324-2334.
    [67]Lee HY, He F, Song LM, et al., Desalination with a cascade of cross-flow hollowfiber membrane distillation devices integrated with a heat exchanger, AIChE J.,2011,54:1780-1795.
    [68]董为毅,王洪涛,一种减压膜蒸馏组件装置及方法,中国专利,200810053906.4,2010-01-27.
    [69]Zhao K, Heinzl W, Wenzel M, et al., Experimental study of the memsysvacuum-multi-effect-membrane-distillation (V-MEMD) module, Desalination,2013.
    [70]Henderyckx Y, inventor. Evaporation-condensation recovery of a solutioncomponent using vapor-permeable wall spaced from a cold wall, US Patent3,563,860. February16,1971.
    [71]Gore WL, Gore RW, Gore DW, inventors; W.L. Gore&Associates, Inc., assignee.Desalination device and process, US Patent4,545,862. October8,1985.
    [72]Koschikowski J, Wieghaus M, Rommel M, Solar thermal-driven desalinationplants based on membrane distillation, Desalination,2003,156:295-304.
    [73]Guijt CM, Racz IG, Van Heuven JW, et al., Modelling of a transmembraneevaporation module for desalination of seawater, Desalination,1999,126:119-125.
    [74]Guijt CM, Meindersma GW, Reith T, et al., Air gap membrane distillation2.Model validation and hollow fibre module performance analysis, Sep. Purif.Technol.,2005,43:245-255.
    [75]Hanemaaijer JH, Van Heuven JW, inventors; TNO, assignee. Method for thepurification of a liquid by membrane distillation, in particular for the productionof desalinated water from seawater or brackish water or process water, US Patent6,716,355B1. April6,2004.
    [76]Meindersmaa GW, Guijt CM, de Haan AB, Desalination and water recycling byair gap membrane distillation, Desalination,2006,187:291-301.
    [77]Selig M, Weiss N, Ji Y, in Laboratory Analytical Procedure No.NREL/TP-510-42629, National Renewable Energy Laboratory, Golden, CO,2008.
    [78]Persson P, Larsson S, J nsson LJ, et al., Supercritical fluid extraction of alignocellulosic hydrolysate of spruce for detoxification and to facilitate analysisof inhibitors, Biotechnol. Bioeng.,2002,79:694–700.
    [79]Sluiter J, Sluite A, in Laboratory Analytical Procedure No. NREL/TP-510-48087,National Renewable Energy Laboratory, Golden, CO,2011.
    [80]Sluiter A, Hames B, Ruiz R, et al., in Laboratory Analytical Procedure No.NREL/TP-510-42618, National Renewable Energy Laboratory, Golden, CO,2012.
    [81]Sluiter A, Ruiz R, Scarlata C, et al., in Laboratory Analytical Procedure No.NREL/TP-510-42619, National Renewable Energy Laboratory, Golden, CO,2008.
    [82]Hames B, Ruiz R, Scarlata C, et al., in Laboratory Analytical Procedure No.NREL/TP-510-42620, National Renewable Energy Laboratory, Golden, CO,2008.
    [83]Sluiter A, Hames B, Ruiz R, et al., in Laboratory Analytical Procedure No.NREL/TP-510-42622, National Renewable Energy Laboratory, Golden, CO,2008.
    [84]Sluiter J, Sluite A, in Laboratory Analytical Procedure No. NREL/TP-510-48825,National Renewable Energy Laboratory, Golden, CO,2011.
    [85]Sluiter A, Hames B, Ruiz R, et al., in Laboratory Analytical Procedure No.NREL/TP-510-42623, National Renewable Energy Laboratory, Golden, CO,2008.
    [86]Fenske JJ, Griffin DA, Penner MH, Comparison of aromatic monomers inlignocellulosic biomass prehydrolyzates, J. Ind. Microbiol. Biotechnol.,199820:364–368.
    [87]Ding MZ, Cheng JS, Xiao WH, et al., Comparative metabolomic analysis onindustrial continuous and batch ethanol fermentation processes by GC-TOF-MS,Metabolomics,2009,5:229-238.
    [88]Bandini S, Saavedra A, Sarti GC, Vacuum membrane distillation: Experimentsand modeling, AIChE J.,1997,43:l398-408.
    [89]Chum HL, Johnson DK, Black SK, et al., Pretreatment-Catalyst effects and thecombined severity parameter, Appl. Biochem. Biotechnol.,1990,24:1-14.
    [90]Abatzoglou N, Chornet E, Belkacemi K, et al., Phenomenological kinetics ofcomplex systems: the development of a generalized severity parameter and itsapplication to lignocellulosics fractionation, Chem. Eng. Sci.,1992,47:1109–1122.
    [91]Sidiras D, Batzias F, Ranjan R, et al., Simulation and optimization of batchautohydrolysis of wheat straw to monosaccharides and oligosaccharides,Bioresour. Technol.,2011,102:10486–10492.
    [92]Pérez JA, González A, Oliva JM, et al., Effect of process variables on liquid hotwater pretreatment of wheat straw for bioconversion to fuel-ethanol in a batchreactor, J. Chem. Technol. Biotechnol.,2007,82:929–938.
    [93]Chen SF, Mowery RA, Chambliss CK, et al., Pseudo reaction kinetics of organicdegradation products in dilute-acid-catalyzed corn stover pretreatmenthydrolysates, Biotechnol. Bioeng.,2007,98:1135-1145.
    [94]Hatzis C, Riley C, Philippidis GP, Detailed material balance and ethanol yieldcalculations for the biomass-to-ethanol conversion process, Appl. Biochem.Biotechnol.,1996,57:443–459.
    [95]Wyman CE, Dale BE, Elander RT, et al., Comparative sugar recovery andfermentation data following pretreatment of poplar wood by leading technologies,Biotechnol. Prog.,2009,25:333–339.
    [96]Jae J, Tompsett GA, Lin Y, et al., Depolymerization of lignocellulosic biomass tofuel precursors: maximizing carbon efficiency by combining hydrolysis withpyrolysis, Energy Environ. Sci.,2010,3:358-365.
    [97]Hoekman SK, Broch A, Robbins C, Hydrothermal Carbonization (HTC) ofLignocellulosic Biomass, Energy Fuels,2011,25:1802–1810.
    [98]Fellinger TP, Hydrothermal and Ionothermal Carbon Structures: from CarbonNegative Materials to Energy Applications, Ph.D. Thesis, Max Planck Institute ofColloids and Interfaces, Potsdam-Golm, Germany,2011.
    [99]Guo G, Chen W, Chen W, et al., Characterization of dilute acid pretreatment ofsilvergrass for ethanol production, Bioresour. Technol.,2008,99:6046–6053.
    [100] Donohoe BS, Decker SR, Tucker MP, et al., Visualizing lignin coalescence andmigration through maize cell walls following thermochemical pretreatment,Biotechnol. Bioeng.,2008,101:913–925.
    [101] Hage REl, Brosse N, Sannigrahi P, et al., Effects of process severity on thechemical structure of Miscanthus ethanol organosolv lignin, Polym. Degrad.Stab.,2010,95:997–1003.
    [102] Xiao L, Sun Z, Shi Z, et al., Impact of hot compressed water pretreatment on thestructural changes of woody biomass for bioethanol production, BioResources,2011,6:1576–1598.
    [103] Hashaikeh R, Fang Z, Butler IS, et al., Hydrothermal dissolution of willow inhot compressed water as a model for biomass conversion, Fuel,2007,86:1614–1622.
    [104]吕秉峰,纤维素蒸汽闪爆改性的表征及化学反应性能研究:[硕士学位论文],太原;华北工学院,2002.
    [105] Huang R, Su R, Qi W, et al., Understanding the key factors for enzymaticconversion of pretreated lignocellulose by partial least square analysis,Biotechnol. Prog.,2010,26:384–392.
    [106]陈洪章,李佐虎,麦草蒸汽爆破处理的研究,纤维素科学与技术,1999,7:14-22.
    [107] Nitsos CK, Matis KA, Triantafyllidis KS, Optimization of hydrothermalpretreatment of lignocellulosic biomass in the bioethanol production process,ChemSusChem,2013,6:110–122.
    [108] Sevilla M, Maciá-Agulló JA, Fuertes AB, Hydrothermal carbonization ofbiomass as a route for the sequestration of CO2: Chemical and structuralproperties of the carbonized products, Biomass Bioenergy,2011,35:3152–3159.
    [109] Chundawat SPS, Venkatesh B, Dale BE. Effect of particle size based separationof milled corn stover on AFEX pretreatment and enzymatic digestibility,Biotechnol. Bioeng,2007,96:219-231.
    [110] Brunecky R, Vinzant TB, Porter SE, et al., Redistribution of xylan in maize cellwalls during dilute acid pretreatment, Biotechnol. Bioeng.,2009,102:1537–1543.
    [111] Luijkx GC, Horst W van der, Koskinen SO, et al., Hydrothermal formation ofhydroxylated benzenes from furan derivatives, J. Anal. Appl. Pyrolysis,1994,28:245–254.
    [112] Sevilla M, Fuertes AB, The production of carbon materials by hydrothermalcarbonization of cellulose, Carbon,2009,47:2281–2289.
    [113] Katona ZF, Sass P, Molnár-Perl I, Simultaneous determination of sugars, sugaralcohols, acids and amino acids in apricots by gas chromatography–massspectrometry, J. Chromatogr. A,1999,847:91–102.
    [114] Takada D, Ehara K, Saka S, Gas chromatographic and mass spectrometric(GC-MS) analysis of lignin-derived products from Cryptomeria japonica treatedin supercritical water, J. Wood Sci.,2004,50:253–259.
    [115] Molnár-Perl I, Horváth K, Bartha R, GC-MS quantitation of benzoic and aralkylcarboxylic acids as their trimethylsilyl derivatives: In model solution I,Chromatographia,1998,48:101–110.
    [116] Qing Q, Yang B, Wyman CE, Xylooligomers are strong inhibitors of cellulosehydrolysis by enzymes, Bioresour. Technol.,2010,101:9624–9630.
    [117] Qing Q, Wyman CE, Supplementation with xylanase and β-xylosidase to reducexylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose andpretreated corn stover, Biotechnol. Biofuels,2011,4:18.
    [118] Jing X, Zhang X, Bao J, Inhibition Performance of lignocellulose degradationproducts on industrial cellulase enzymes during cellulose hydrolysis, Appl.Biochem. Biotechnol.,2009,159:696–707.
    [119] Ximenes E, Kim Y, Mosier N, et al., Inhibition of cellulases by phenols,Enzyme Microb. Technol.,2010,46:170–176.
    [120] Taherzadeh MJ, Niklasson C, Lidén G, Acetic acid-friend or foe in anaerobicbatch conversion of glucose to ethanol by Saccharomyces cerevisiae, Chem.Eng. Sci.,1997,52:2653–2659.
    [121] Palmqvist E, Hahn-H gerdal B, Galbe M, et al., The effect of water-solubleinhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanolfermentation, Enzyme Microb. Technol.,1996,19:470–476.
    [122] Heer D, Sauer U, Identification of furfural as a key toxin in lignocellulosichydrolysates and evolution of a tolerant yeast strain, Microb. Biotechnol.,2008,1:497–506.
    [123] Klinke HB, Thomsen AB, Ahring BK, Inhibition of ethanol-producing yeast andbacteria by degradation products produced during pre-treatment of biomass,Appl. Microbiol. Biotechnol.,2004,66:10–26.
    [124] Larsson S, Quintana-Sainz A, Reimann A, et al., Influence oflignocellulose-derived aromatic compounds on oxygen-limited growth andethanolic fermentation by Saccharomyces cerevisiae, Appl. Biochem.Biotechnol.,2000,84:617–632.
    [125] Palmqvist E, Grage H, Meinander NQ, et al., Main and interaction effects ofacetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanolproductivity of yeasts, Biotechnol. Bioeng.,2000,63:46–55.
    [126] Almeida JR, Modig T, Petersson A, et al., Increased tolerance and conversion ofinhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae, J. Chem.Technol. Biotechnol.,2007,82:340–349.
    [127] Luo C, Brink DL, Blanch HW, Identification of potential fermentation inhibitorsin conversion of hybrid poplar hydrolyzate to ethanol, Biomass Bioenergy,2002,22:125–138.
    [128] Li DF, Wang R, Chung TS, Fabrication of lab-scale hollow fiber membranemodules with high packing density, Sep. Purif. Technol.,2004,40:15-30.
    [129] Izquierdo-Gil MA, Garc a-Payo MC, Fernández-Pineda C, Air gap membranedistillation of sucrose aqueous solutions, J. Membr. Sci.,1999,155:291-307.
    [130] Guijt CM. Influence of membrane properties and air gap on the performance ofa membrane distillation module, Ph.D. Thesis. University of Twente, Enschede,Netherland,2003.
    [131] Guijt CM, Meindersma GW, Reith T, et al., Air gap membrane distillation1.Modelling and mass transport properties for hollow fibre membranes, Sep. Purif.Technol.,2005,43:233-244.
    [132] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena (2nd edition). NewYork: John Wiley&Sons, Inc.,2002,446-448.
    [133] Alklaibi AM, Lior N, Transport analysis of air-gap membrane distillation, J.Membr. Sci.,2005,255:239-253.
    [134] Martínez-Díez L, Vázquez-Gonzàlez MI, Temperature polarization in masstransport through hydrophobic porous membranes, AIChE J.,1996,42:1844-1852.
    [135] Bandini S, Saavedra A, Sarti GC, Vacuum membrane distillation: Experimentsand modeling, AIChE J.,1997,43:l398-408.
    [136] Qin YJ, Cabral J, Wang SC, Hollow-fiber gas-membrane process for removal ofNH3from solution of NH3and CO2, AIChE J.,1996,42:1945-1956.
    [137] Qin YJ, Cabral J, Lumen mass transfer in hollow-fiber membrane processeswith constant external resistances, AIChE J.,1997,42:1975-1988.
    [138] Majumdar S, Guha AK, Sirkar KK, A new liquid membrane technique for gasseparation, AIChE J.,1988,34:1135-1145.
    [139] Sengupta A, Basu R, Sirkar KK, Separation of solutes from aqueous solutionsby contained liquid membranes, AIChE J.,1988,34:1698-1708.
    [140] Basu R, Sirkar KK, Hollow fiber contained liquid membrane separation of citricacid, AIChE J.,1991,37:383-393.
    [141] Alves VD, Koroknai B, Bélafi-Bakó K, et al., Using membrane contactors forfruit juice concentration, Desalination,2004,162:263-270.
    [142] Song LM, Li B, Sirkar KK, et al., Direct contact membrane distillation-baseddesalination: novel membranes, devices, larger-scale studies, and a model, Ind.Eng. Chem. Res.,2007,46:2307-2323.
    [143] Song LM, Li B, Zarkadas D, et al., Polymeric hollow-fiber heat exchangers forthermal desalination processes, Ind. Eng. Chem. Res.,2010,49:11961-11977.
    [144] Laganà F, Barbieri G, Drioli E. Direct contact membrane distillation: modelingand concentration experiments, J. Membr. Sci.,2000,166:1-11.
    [145] Cerdeiri a CA, Carballo E, Tovar CA, et al., Thermodynamic properties ofaqueous carbohydrate solutions, J. Chem. Eng.. Data.,1997,42:124-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700