用户名: 密码: 验证码:
离子束和高压电场诱变大肠杆菌K12的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在国际上,人们对转基因物种的担忧越来越严重,因而传统的物理因子生物效应,特别是诱变育种研究被更多学者重新关注起来。电场,离子束是比较常见的物理诱变因子,经过几十年的研究,取得了令人瞩目的成就,然而,一些诱变机理性的课题还需进一步深入研究。
     电场对生物体的效应是可遗传的,还是当代效应?或者说电场有没有诱变效应,一直以来科学界都不置可否,未有定论,本文以模式生物大肠杆菌K12为研究对象,首先考察了几种平板电场对野生大肠杆菌K12的诱变率。结果发现高压直流、交流、半波整流平板电场处理大肠杆菌K12,3种电场在低剂量处理时(1.5kV/cm时)都表现为对大肠杆菌K12的刺激效应,随着电场剂量增大,3种电场对大肠杆菌K12逐步变为抑制效应。其中直流平板电场的效应最为明显。交流和半波整流平板电场对大肠杆菌K12诱变率变化不大,均未达到对照组的2倍。直流平板电场在4.5kV/cm时,突变率达到极大值5.8×10-6,是对照组的2.32倍。所以,我们认为,高压直流、交流、半波整流平板电场对大肠杆菌具有一定的诱变效应,但是其诱变效应不明显。随后,我们用场强为1,2,3,4kV/cm的高压芒刺电场处理大肠杆菌10分钟,在场强为1kV/cm时,突变率为31.2×10-6,分别是自发突变(1.2×10-6)和对照(2.5×10-6)的26倍和12倍。此结果表明高压芒刺电场是一种损伤低、突变率高的很好的诱变剂。碱基置换是高压芒刺电场处理组的主要类型突变,30%碱基置换属于G:C→A:T转换,70%为A:T→T:A,G:C→T:A,A:T→C:G,G:C→C:G颠换。与自发突变相比,电场处理组中的碱基置换、碱基插入、碱基缺失的增加很明显。同时在突变热点处5'→TGGC-3'的缺失/增加从82%下降到26%。但此位点的绝对突变率有所增加。高压芒刺电场组还发现了自发突变组中没有发现的A:T→T:A的颠换和280bp的大片段缺失,同时还有G:C→A:T的增加。这表明高压芒刺静电场处理组的突变谱与SOS反应产生的突变谱有明显相似的地方,本文认为高压芒刺静电场对大肠杆菌的诱变效应是由于电场作用引起大肠杆菌SOS反应而导致的;高压芒刺静电场诱发lacI的突变谱中有一个长达280bp的大片段缺失突变,这在以前的研究中是没有报道过的,同时从单碱基插入缺失以及多碱基插入缺失的发生比例也可以看出,细菌基因组进化偏爱于删除。
     低能离子束生物技术是上世纪80年代我国科学家发现的,具有损伤轻、突变率高、突变谱宽的优点,被用于植物和微生物育种,然而通过这些年的研究,也发现离子束的生物效应在某些物种上在后代遗传中丢失,即遗传不稳定。同时其诱变机制还不太明确。本文用keV氮离子重复注入诱变大肠杆菌K12,发现离子束重复注入可以增加突变菌的遗传稳定性,同时离子束多次重复注入诱变与一次诱变相比产生的突变型可能更为广泛。从中筛选了离子注入多次诱变,基于lacI基因的稳定遗传大肠杆菌K12突变菌S55,运用lllumina全基因组测序技术对S55进行测序,得到S55的精细结构图谱,与参考序列进行比对发现共有18个SNP,2个Indel,9个大片段Deletion。18个SNP中11个是A,T,C等三种碱基变成G。碱基颠换占55.6%,碱基转换占44.4%。2个Indel中,+GCCA发生在突变筛选目标基因lacI基因上。4个SNP (3SNPs发生在rlpB基因上,1个发生在ygbN基因上)所在基因与生物膜及输运有关,这些基因的突变可能有助于增强大肠杆菌对离子注入刻蚀损伤的适应能力。S55中,所有的9个结构变异都属于碱基对删除类型,每个删除片段都大于1000bp,并且均包含插入序列。其中6个是属于插入序列插入引起的非功能化的假基因,1个为含插入序列的长度为23252bp的Rac噬菌体区。本实验结果说明,大肠杆菌基因组进化中的deletion bias现象皆与基因组中非功能区的丢失有关。这些插入序列也是基因组中的非稳定因素,离子重复注入引起这些片段的删除有利于大肠杆菌突变菌S55基因组的稳定性。
Accompanying the increasing worries about transgenic species the bioeffects of traditional physical factors, especially the mutational breeding of physical factors attract more and more attentions in the international circle of scientists. Electric field and low energy ion beam as two common mutagenic factors, after decades of research, have gained outstanding achievements; however, the biological mechanisms of such two mutagenic factors remain unclear.
     Can the bioeffects of electric field be hereditable? In other words, does electric field have mutagenic effects? There was a noncommittal answer on this question in scientists. This paper uses the model organism E.coli as a research object. Firstly, we studied the mutation rate of several plate electric field. Results indicated that both the high voltage DC, AC, and half-wave rectification electric fields all induced stimulative effects at low dosage, and with the dosage increasing these three plate electric fields induced inhibitory effects. Among three electric fields, the most evident effects were induced by DC plate electric field. At the field intensity of4.5kV/cm, the mutation rate reaches maximum.5.8×10-6, which is2.32times more than the controls. So, although these three plate electric field have mutagenic effects on E.coli, but the mutagenic effects seem not obvious. However, the case is different for prickle electrostatic field. Escherichia coli K12W3110was treated by high voltage prickle electrostatic field(HVPEF)10min with the field intensity of1,2,3and4kV/cm respectively. The mutant frequency reached31.2×10-6at field intensity of1kV/cm, which was about26-fold over the background (1.2×10-6) and12-fold over the controls (2.5×10-6). The result indicated that the HVPEF could act as an effective mutagen. It was observed that the base pair (bp) substitutions were the main type of HVPEF induced mutations. All types of base pair substitutions were observed,30%of the bp substitutions were G:C→A:T transitions, and70%of the bp substitutions were A:T→T:A, G:C→T:A, A:T→C:G, G:C→C:G transversions. As compared with the spontaneous group, the base-pair substitutions, deletions and additions of the HVPEF exposure group were significantly increased. Although the deletion/addition of a5'-TGGC-3'sequence at hot spot was decreased from82%to26%, the remarkable increase in absolute Mutation Frequency (MF) of the deletion or the addition of a5'-TGGC-3'sequence at hot spot in the HVPEF exposure group suggested that HVPEF did induce the mutations of this type. The spectra of our HVPEF exposure group with increasing G:C to A:T transitions and A:T to T:A transversions show their similarity with SOS response and indicate that the HVPEF exposure may induce SOS response. On the other hand, from the occurrence of large deletion fragment of of280bp and the high base pair deletion/insertion ratio, we find that the bacterial genome evolution is biased to deletion.
     Low-energy ion beam biotechnology was developed in the1980s by Chinese scientists. Low-energy ion beam can cause strong mutagenesis in microbes and plants seeds and has been introduced as a useful tool for microbial and plant breeding. However the specificity and mechanism on the biological effect of low-energy ion beam remains unclear. Wild type Escherichia coli K12strain W3110was irradiated by10keV nitrogen ions. It was found that the multiple ion irradiations can increase genetic stability of mutants and generate a wider mutational spectrum. Through irradiation by N+ions six times and selection of lac constitutive mutants after each time a stable mutant S55was obtained. By sequencing the whole genome the fine map of S55was completed. Compared with reference sequences, a total of eighteen single nucleotide polymorphisms (SNPs), two insertions and deletions (Indels) and nine structural variations (SVs) were found in S55genome. Among18SNPs,11are transversional from A, T, or C to G, accounted for55.6%of point mutations, and7transitional accounted for44.4%. GCCA insertion occurs in the target gene lacI. Four SNPs (three SNPs in rlpB and one in ygbN) are connected with cell envelope and transport. The mutation of these genes possibly makes Escherichia coli genome more adapted to the etch and damage caused by ion irradiation. All nine structural variations of S55are of deletion type. Each of the deleted regions is longer than1000bp and contains insertion sequence (IS) elements. Six deleted SVs contain IS disrupted, nonfunctional pseudogenes and another one of length23252bp is the Rac prophage region. The result shows that the deletion bias observed in the Escherichia coli K12genome evolution is generally related to the deletion of some non-functional regions. Furthermore, since ISs are instable factors in a genome, the multiple ion irradiation that causes these fragments deleted in S55is beneficial to the genome stability.
引文
[1]丘冠英,彭银祥.生物物理学[M]武汉:武汉大学出版社,2000.
    [2]MurrL.E. Mechanism of plant cell damage in an electrostatic field [J]. Nature 1964,201:1305-1306.
    [3]Li R N. Modern Electrostatics[M] Beijing:International Academic Publisher, 1989.
    [4]梁运章,于永芳.静电研究与进展[M].呼和浩特:内蒙古大学出版社1992.
    [5]杨体强,梁运章,郭维生,等.电场作用油葵种子后苗期生长抗干旱性的实验[J]内蒙古大学学报1998,29(2):286-287.
    [6]康敏,余登苑,柳学平,等.静电场对植物生长的生物效应研究[J].农业工程学报1998,(12):253-254.
    [7]Radu Cramariuca, Victor Donescub, Mona Popac,Bogdan Cramariuc. The biological effect of the electrical field treatment on the potato seed:agronomic evaluation[J]. Journal of Electrostatics,2005,63:837-846.
    [8]胡玉才,袁泉,陈奎孚.农业生物的电磁环境效应综述[J].农业工程学报1999,15(2):15-20.
    [9]甘平,胡国虎,陈宏.高压静电场影响小白鼠体重增长的研究[J].生物物理学报1997,13(4):705-707.
    [10]董振勇,张忠诚,周明.高压静电场对绵羊精子存活率的影响[J].生物物理学报1995,11(4):591-593.
    [11]李小玲,李秀敏,王清照,等.静电处理提高北京鸭种蛋孵化率试验[J].静电1991,6(4):37-39.
    [12]王全喜,布和.高压静电场对鸡精子受精率及其胚胎发育影响研究[J].内蒙古农业大学学报(自然科学版) 2000,21(2):24-27.
    [13]鲍重光.现代静电技术[M],万国学术出版社,1988,436.
    [14]Jai Hyuk Choia,_, Inho Han, Hong Koo Baik,_, Mi Hee Lee, Dong-Wook Han,Jong-Chul Park, In-Seob Leec, Kie Moon Song, Yong Sik Lim.Analysis of sterilization effect by pulsed dielectric barrier discharge[J].Journal of Electrostatics,2006,64:17-22.
    [15]Hee-Kyu Lee_, Jong-Geun Lee. Effect of electrostatic atomization on electrical sterilization[J]. Journal of Electrostatics,2005,63:329-336.
    [16]范青,田世平,王沂,等.高压静电场对柑桔青、绿霉病菌的抑制效果[J]生物物理学报2000,16(3):634-638.
    [17]贾健辉,于国萍.高压脉冲电场杀菌对牛乳理化性质影响的研究[J].中国乳品工业2006,34(4):29-31.
    [18]房俊龙,朴在林,张长利,等.脉冲电场部分参数对牛乳灭菌效率影响的试验分析[J].农机化研究2006,7:158-160.
    [19]丁如宁,王世和,陈慎宝,等.静电作用对大肠埃希菌生长速率的影响[J].南京医科大学学报2002,22(6):495-496.
    [20]鲍秀珍,梁运章,白爱枝.高压静电场诱变黑曲霉的实验研究[J].河北大学学报2007,S1:22.
    [21]Asakawa Y. Promotion and retardation of heat transfer by electric fields[J]. Nature,1976,261 (5):20.
    [22]Hashinaga F, Bajgai T R, Isobe S. Electrohydrodynamic drying of apple slices[J]. Drying Technology,1999,17(3):479-495.
    [23]Hashinaga F, Kharel G P, Shintani R. Effect of ordinary frequency high electric field on evaporation and drying[J].Food Sci Technol Int, 1995,1(2):77-81.
    [24]Chen Y, Barthakur N N. Electrohydrodynamic (EHD) drying of potato slabs[J]. J Food Eng,1994,23:107-119.
    [25]Bajgai T R, Hashinaga F. Drying of spinach with a high electric field[J]. Drying Technology,2001,19(9):2331-2341.
    [26]Bajgai T R, Hashinaga F. High electric field drying of Japanese radish [J]. Drying Technology,2001,19 (9):2291-2302.
    [27]Xue X, Barthakur N N, Alli I. Electrohydrodynamica-lly-dried whey protein: an electrophoretic and differential calorimetric analysis[J]. Drying Technology,1999,17(3):467-478.
    [28]Lai F C, Wong D S. EHD-enhanced drying with needle electrode[J]. Drying Technology,2003,21:1291-1306.
    [29]Lai F C, Lai K.-W. EHD-enhanced drying with wire electrode[J]. Drying Technology,2002,20(7):1393-1405.
    [30]郭军,田立杰,董贵成,等.高压静电干燥免疫初乳乳清的研究[J].中国乳品工业,2001,29(6):4-6.
    [31]翁明,耿艳霞.植物静电干燥的实验研究[J].西安交通大学学报,2001,35(3):316.
    [32]李里特,刘志会,李发德.高压静电场对琼脂凝胶干燥规律的试验研究[J].食品与机械,2000,(2):14.
    [33]梁运章,丁昌江.高压电场干燥技术及开发研究[J].科学技术与工程,2003,3(2):196.
    [34]曹瑞雪,那日,梁运章,等.高压静电场对葡萄糖酸钠溶液浓缩的动力学初步分析[J].化工进展(增刊),2000,19(11):53-56.
    [35]那日,杨体强,梁运章,等.静电干燥特性的研究[J].内蒙古大学学报(自然科学版),1 999,30(6):699-705.
    [36]Z.L.Yu. Introduction to Ion Beam Biotechnology, Springer, New York.2006.
    [37]白亚乡,胡玉才.高压静电场对农作物种子生物学效应原发机制的探讨[J].农业工程学报2003,19(2):49-51.
    [38]Badia Boudaiffa, Pierre Cloutier, Darel Hunting, etal.Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons [J] Science 2000,287(5458):1658-1660.
    [39]王莘,李肃华,阂伟红,等.高压静电场对月见草种子萌发期的生物学效应[J]生物物理学报1997,13:66.
    [40]谢菊芳,易伟松,熊钢,等.高压静电场对植物跨膜电位的影响及机理初探[J]武汉科技学院学报2002,15(13):16-18.
    [41]郭维生,杨性愉,杨体强等.高压电场对α-淀粉酶构象的影响[J].内蒙古大学学报2001,32(3):349-351.
    [42]许强,杨体强,敖东格日乐,等.应用圆二色谱研究了电场对辣根过氧化物酶二级结构的影响[J].光谱学与光谱分析2007,27(3):565-568.
    [43]邓一兵,杨体强.应用红外光谱研究了电场对超氧化物歧化酶二级结构的影响[J].光谱学与光谱分析2007,27(7):1312-1315.
    [44]郭维生,杨体强,丁辉,等.高压静电场对鲱鱼DNA X射线衍射谱的影响[J].内蒙古大学学报2001,32(3):258-260.
    [45]L. Hanley, S.B. Sinnott, The growth and modification of materials via ion-surface processing[J]. Surf. Sci.2002,500-522.
    [46]余增亮,王学栋,吴跃进等.离子注入水稻育种机理初探[J].安徽农业科学1989,1:12-16.
    [47]卫增泉,韩光武,周光明等.超低能离子注入作物育种的一种重要机制[J]生物物理学报1996,12(2):315-320.
    [48]陆挺,周宏宇,丁晓纪等.低能离子注入植物种子的深度分布及生物效应机理研究[J]物理学报2005,54(10)4822-05.
    [49]刘峰,王宇刚,薛建明等.低能离子在植物样品中长程穿透行为的研究[J]生物物理学报2002,18(1):117-121.
    [50]王卫东,王燕,王雪青等.氮离子注入后拟南芥表皮的扫描电镜观察[J]电子显微学报2004,23(2):148-151.
    [51]吕晓桂,罗辽复.低能离子束在植物种粒和微生物中的穿透深度[J]生物物理学报2006,22(1):57-61.
    [52]卫增泉.重离子束生物工程中的一些基本物理问题[J]激光生物学报2003,12(5):321-326.
    [53]余增亮,邱励俭,离子注入生物效应及育种研究进展[J]安徽农业大学学报1991,18(4):251-257.
    [54]Huang W D, Yu Z L, Zhang Y H. Reactions of solid glycine induced by keV ion irradiation [J] Chemical Physics 1998,237(1-2):223-231.
    [55]Wang X Q, Shao C L, Yao J M. Synthesis of amino acids from sodium carboxylic induced by KeV ions [J] Viva Origino 1998,26(3)109-115.
    [56]韩建伟,余增亮,低能离子对番茄果皮刻蚀与穿透作用的研究[J] 生物物理学报1998,14(4):757-761.
    [57]卞坡,霍裕平,秦广雍等.低能离子束刻蚀番茄果皮的α透射能谱研究[J]生物物理学报1999,15(3):551-555.
    [58]邵春林,许安,余增亮.离子注入生物分子的电荷交换效应[J]核技术1997,20(2):70-73.
    [59]宋道军,姚建明,邵春林等.离子注入微生物产生“马鞍型”存活曲线的可能作用机制[J]核技术1999,22(3):129-132.
    [60]曾宪贤,王燕飞等. 离子注入甜菜种子生物效应[J] 科学通报1999,44(4):382-384.
    [61]G.F.Zhang,K.Li,X.M.Shi,Y.L.Nie,J.Zhang,and H.Y.Zhou,T.Lu. Comparative Study on Effects of Low Energy N~+ Implantation and γ-ray Radiation on Heredity and Development of Arabidopsis Thaliana [J] Plasma Sci.& Technol.2005,7(3):2879-2884.
    [62]李玉峰,梁运章,余增亮.低能N+注入紫花苜蓿生物学效应初步研究[J].草业科学2006,23(1):13-17.
    [63]张志宏,杜立群,李银心等.离子注入烟草种子引起的M1代变异分析[J]生物物理学报1998,14:762-766.
    [64]梁前进,胡玉连,张根发.拟南芥(Arabidopsis thaliana)氮、碳离子注入诱变效应分析[J]生物物理学报2002,18:251-255.
    [65]陈若雷,宋道军,余增亮等.RAPD分析N+注入紫花苜蓿种子后幼苗基因组DNA变异[J]高技术通讯2001,11:12-19.
    [66]李金亭,朱命炜,魏明卉等.离子注入对萝卜过氧化物酶、淀粉酶和蛋白酶同工酶的影响[J]广西植物2000,20:172-176.
    [67]舒世珍,朱凤绥.离子注入甜菊种子效应初报[J]安徽农业大学学报1994,21(3):299-302.
    [68]林国平. 离子注入烟草种子效应研究[J] 安徽农学院学报1991,18(4):317.
    [69]罗茂春,沈明山,徐金森,等.低能碳离子对甜菊生长和叶绿体发育的影响[J]厦门大学学报2000,39:96-101(in Chinese)
    [70]Ren H.Y.,Z.L.Huang,Z.L.Chen,a M.Yuan,T.Lu. Effects of nitrogen ion implantation on lily pollen germination and the distribution of the actin cytoskeleton during pollen germination[J] Chinese Sci. Bull.2000, 45:1677-1680.
    [71]Huang Z.L., Jing Y.P., Zhu G.L. Lu,T., Zhou H.Y., Ren H.Y. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell [J] Chinese Sci.Bull.2001,46:1691-1693.
    [72]顾月华,程颖红,唐健杉,等.离子束注入对细胞有丝分裂微管骨架影响的研究[J]激光生物学报1997,6:1110-1113.
    [73]张怀渝,宋云,任正隆.低能N-+离子束诱导小麦农艺性状变异的细胞学基础[J]四川农业大学学报2005,23(2):147-151.
    [74]Atsushi Tanaka et al. Positional effect of cell inactivation on root gravitropism using heavy-ion microbeams[J] Journal of Experimental Botany 2002,369(53):683-687.
    [75]杨根.离子注入拟南芥的生物学效应研究[D]中国科学院等离子体物理研究所硕士学位论文2005.
    [76]郭高,钱坤.安徽省农科院离子束作物育种取得重大成果[J]安徽农业1998,5:4.
    [77]夏英武,谢嘉华.氮离子注入水稻机理与效应研究[J]安徽农业大学学报1994,21(3):241-245.
    [78]郑冬官,方其英.离子注入在棉花育种中诱变功效[J]安徽农业大学学报1994,21(3):315-317.
    [79]江昌俊,李卓民.利用N+离子诱变选育茶树良种初报[J]安徽农业大学学报2000,27(1):48-50.
    [80]尹国香,邬振祥,李素梅,等.早熟番茄新品种鲁番7号选育[J]北方园艺1 999,1:54.
    [81]殷凤生,林国平,孙学永,阮龙.离子注入诱变法选育烟草新品系研究[J]安徽农业技术师范学院学报.1999,1 3(1):49-54.
    [82]程汝宏,杜瑞恒.谷子氮离子注入诱变育种初步研究[J].安徽农业大学学报1994,21(3):310-314.
    [83]陈浩,梁运章.离子束生物技术及其在药用植物育种中的应用[J]中草药.2005,36(5):641-643,768.
    [84]宋智青,梁运章,李玉峰,等.药用植物的多倍体育种[J]生物学通报.2006,41(7):13-14.
    [85]杨剑波,吴李君,吴家道,等.应用低能离子束介导法获得水稻转基因植株[J]科学通报,1994,39(16):1530-1534.
    [86]杨剑波,吴跃进,吴李君,等.低能离子束介导外源基因进入水稻细胞的研 究[J]安徽农业大学学报,1994,21(3):330-335.
    [87]吴丽芳,李红,冯慧云,等.用低能氩离子束介导将水稻几丁质酶基因导入小麦[J]科学通报,2000,45(21):2316-2321.
    [88]HasedY, InoueM, KikuchiM,et al. Review,1997,21-23.
    [89]TodaY, NishimuraH, InoueM, et al. Breeding science(JP),1998,48(2):139.
    [90]WatanabeH, TanakaA, InoueM, et al. Application,1997, No:09-331708 (JP97331708)
    [91]吴敬德,汪秀峰,吴跃进,等.玉米稻的光合效率分析[J],安徽农业科学1997,25(2):112-113.
    [92]李红,吴丽芳,宋道军,等.离子注入对耐辐射微球菌存活及生物量的影响[J]激光生物学报,1 999,8(4):261-265.
    [93]宋道军,陈若雷,汪岑等.离子束介导植物分子超远缘杂交研究[J],自然科学进展,200 1,11(3):327-33 0
    [94]卞坡谈重芳秦广雍等,离子束介导外源全DNA转化拟南芥菜的诱变效应[J],华中农业大学学报,2003,22(3):205-208
    [95]李玉峰那日梁运章等,低能N+介导大豆全DNA转入紫花苜蓿的初步研究[J],中国草地,2004,26(4):41-45
    [96]宋道军,余汛.离子束介导转基因提高Ecoli UV敏感菌株的DNA损伤修复能力[J].科学通报,1999,44(18):1968-1972.
    [97]虞龙,余增亮低能离子注入介导Vc前体(2-KLG)产生菌DNA的转导[J].核技术,2004,27(4)264-268.
    [98]张明,杨晓志,苏珍等,低能氮离子注入大肠杆菌诱发的生物效应研究[J].生物学杂志,2004,21(3):23-26.
    [99]Vialithong T, Yu LD, Alisi C,et al. A study of low energy ion beam effect on outer plant cell structure for exogenous macro-molecule transferring[J].Surface and Coatings Technology,2000,128-129:133-138.
    [100]Anuntalabhochai, S., Chandej, R., Phanchaisri, B., Yu, L.D.,Vilaithong, T., Brown, I.G. Ion-beam-induced deoxyribose nucleic acid transfer[J]. Appl. Phys. Lett.2001,78:2393-2395.
    [101]Phanchaistri B, Yu LD, Anuntalabhochai S,et al.Characteristic of heavy ion beam bombarded bacteria E.coli and induced direct DNA transfer[J].Surface and Coatings Technology,2002,158-159:624-629.
    [102]毛培宏,马向东,金湘,杨红梅,娄恺。氩离子注入介导麻黄基因组DNA转化获得产麻黄碱重组酵母菌[J].微生物学报.2007,47(5):905-909
    [103]Yang, J. B., Wu, L. J., Li, L., Wu, J. D., Yu, Z. L., Xu, Z. H. Sequence analysis of lacZ(-) mutations induced by ion beam irradiation in double-stranded M13mp18DNA[J]. Sci China C Life Sci.1997,40(1): 107-112.
    [104]宋道军, 姚建铭, 吴丽芳, 王纪, 涂友斌, 余增亮. 离子注入对微生物细胞的刻蚀与对DNA的损伤及修复[J]. 遗传.1999,21(4):37-40.
    [105]Xie CX Yao JM Pan RR Wu LJ Yu ZL. Mutagenesis of Ion Beam Implantation and Identification of Two New Rifampicin Resistance Determining Sites in rpoB Gene in Escherichia coli[J], Acta Microbio Sin 2003,43(6)732-739
    [106]Tang, M. L., Wang, S. C., Wang, T., Zhao, S. G., Wu, Y. J., Wu, L. J., Yu, Z. L. Mutational spectrum of the lacI gene in Escherichia coli K12 induced by low-energy ion beam[J]. Mutat Res.2006,602(1-2):163-169.
    [107]张黎明.电磁辐射中低能电子诱导DNA直接损伤的理论研究[D].山东大学博士学位论文,2010.
    [108]Schlatholter T, Alvarado F, Hoekstra R. Ion-biomolecule interactions and radiation damage [J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2005,233:62-9.
    [109]Alvarado F, Bari S, Hoekstra R, Schlatholter T. Quantification of ion-induced molecular fragmentation of isolated 2-deoxy-D-ribose molecules[J]. Physical Chemistry Chemical Physics 2006,8:1922-8.
    [110]Manil B, Lebius H, Huber BA, Cormier D, Pesnelle A. Fragmentation of thymidine and deoxyadenosine induced by slow multiply charged ions[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2003,205:666-70.
    [111]Zhao Y, Tan Z, Du YH, Qiu GY. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2003,211:211-8.
    [112]Deng Z, Bald I, Illenberger E, Huels MA. Beyond the Bragg peak: hyperthermal heavy ion damage to DNA components[J]. Phys Rev Lett 2005, 95:153201.
    [113]Deng ZW, Imhoff M, Huels MA. Fragmentation dynamics of condensed phase thymine by low-energy (10-200 eV) heavy-ion impact[J]. Journal of Chemical Physics 2005,123:144509-144509-9.
    [114]Alvarado F, Bari S, Hoekstra R, Schlatholter T. Interactions of neutral and singly charged keV atomic particles with gas-phase adenine molecules[J]. Journal of Chemical Physics 2007,127:034301-034301-7.
    [115]Tanaka, A., Kobayashi, Y., Hase, Y., Watanabe, H. Positional effect of cell inactivation on root gravitropism using heavy-ion microbeams[J]. J Exp Bot. 2002,53(369):683-687.
    [116]Yang, G., Wu, L., Chen, L., Pei, B., Wang, Y., Zhan, F., Wu, Y., Yu, Z. Targeted irradiation of shoot apical meristem of Arabidopsis embryos induces long-distance bystander/abscopal effects[J]. Radiat Res.2007, 167(3):298-305.
    [117]Yang, G., Mei, T., Yuan, H., Zhang, W., Chen, L., Xue, J., Wu, L., Wang, Y. Bystander/Abscopal Effects Induced by Low-energy Heavy Ion Irradiation on Intact Arabidopsis seeds[J]. Radiat Res.2008,170(3):372-380.
    [118]Hao CHEN, Fanghua LI, Hang YUAN, Xiang XIAO, Gen YANG, Lijun WU. Abscopal Signals Mediated Bio-effects in Low-Energy Ion Irradiated Medicago truncatula Seeds[J]. Journal of Radiation Research.2010,51, 651-656.
    [119]Miller JH Experiments in Molecular Genetics[M]. Cold Spring Harbor Laboratory, New York.1972.
    [120]Miller JH. A Short Course in Bacteria Genetics[M]. Cold Spring Harbor Laboratory, New York.1992.
    [121]Ono T, Negishi K and Hayatsu H. Spectra of superoxide-induced mutations in the lacI gene of a wild-type and a mutM strain of Escherichia coli K-12[J]. Mutat Res 1995,326:175-183.
    [122]Murata-Kamiya N, Kamiya H, Kaji H, Kasai H. Mutational specificity of glyoxal, a product of DNA oxidation, in the lacI gene of wild type Escherichia coli W3110[J], Mutation Res,1997,377:255-262.
    [123]N. Murata-Kamiya, H. Kamiya, N. Iwamoto, H. Kasai. Formation of a mutagen, glyoxal from DNA treated with oxygen free-radicals[J], Carcinogenesis 1995,162:251-253.
    [124]Sargentini NJ, Smith KC. DNA sequence analysis of spontaneous and γ-Radiation (anoxic)-induced lacld mutations in Escherichia coli umuC122::Tn5 differential requirement for umuC at G..C vs A.T sites and for the production of transversions vs. transitions [J], Mutation Res, 1994,311:175-189.
    [125]Glickman BW, Rietveld K, and Aaron CS. γ-ray induced mutational spectrum in the lacI gene of Escherichia coli, comparison of induced and spontaneous spectra at molecular level[J], Mutation Res,1980,69:1-12.
    [126]C.A. Wijker, N.M. Wientjes, M.V.M. Lafleur. Mutation spectrum in the lacI gene, induced by y-radiation in aqueous solution under oxic conditions [J], Mutat. Res.1998,403:137.
    [127]C.A. Wijker, M.V.M. Lafleur, H.V. Steeg, G.R. Mohn, J. Retel. y-Radiation-induced mutation spectrum in the episomal lacI gene of Escherichia coli under oxic conditions[J], Mutat. Res.1996,349:229-239.
    [128]C.A. Wijker, M.V.M. Lafleur. Influence of the UV-activated SOS response on the γ-radiation-induced mutation spectrum in the lacI gene[J], Mutat. Res. 1998,408:195-201.
    [129]Yoshinori Tanaka, et al. Induction of mutation in Escherichia coli by freeze-drying[J], Appl. Environ. Microbiol.1979,37(3):369-372.
    [130]Shoji Asada, et al. Mutation induced by drying of Escherichia coli on a hydrophobic filter membrane[J], Appl. Environ. Microbiol.1980,40: 274-281.
    [131]J.H. Miller, K.B. Low. Specificity of mutagenesis resulting from the induction of the SOS system in the absence of mutagenic treatment[J], Cell 1984,37:675-682.
    [132]F. Yatagai, J. Michael, H. Low, B.W. Glickman. Specificity of SOS mutagenesis in native M131acI phage[J], J. Bacteriol.1991,7996-7999.
    [133]Feng H-Y, Yu Z-L and Chu PK. Ion implantation of organisms[J]. Mat Sci Eng R 2006,54:49-120.
    [134]Song Z-Q, et al. Biological effects of low energy ion beam implantation on plant[J]. Curr Top Plant Biol 2006,7:75-84.
    [135]Murata-Kamiya N, Kaji H and Kasai H. Deficient nucleotide excision repair increases base-pair substitutions but decreases TGGC frameshifts induced by methylglyoxal in Escherichia coli[J]. Mutat Res 1999,442:19-28.
    [136]Michael BD and O'Neill P. Molecular biology-A sting in the tail of electron track[J]s. Science 2000,287:1603-1604.
    [137]Boudaiffa B, P. Cloutier, D. Hunting et al. Cross Sections for Low-Energy (10-50 eV) Electron Damage to DNA [J]. Radiation Research 2002,157: 227-234.
    [138]Zhang L-M and Tan Z-Y. A new calculation on spectrum of direct DNA damage induced by low-energy electrons[J]. Radiat Environ Bioph 2010,49: 15-26.
    [139]Woods R, et al. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli[J]. Proc Natl Acad Sci USA 2006,103: 9107-9112.
    [140]Barrick JE, et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli[J]. Nature 2009,461:1243-U1274.
    [141]Wu T, et al. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli[J]. Proc Natl Acad Sci USA 2006,103:11754-11759.
    [142]Yu LD, et al. Some investigations of ion bombardment effects on plant cell wall surfaces[J]. Surf Coat Tech 2002,158:146-150.
    [143]Yu LD, et al. Effects of low-energy ion beam bombardment on biological cell envelopes[J]. Surf Coat Tech 2007,201:8055-8061.
    [144]Pelosi L, et al. Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli[J]. Genetics 2006, 173:1851-1869.
    [145]Hayashi K, et al. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110[J]. Mol Syst Biol 2006,2.
    [146]Lawrence JG, Hendrix RW and Casjens S. Where are the pseudogenes in bacterial genomes? [J] Trends Microbiol 2001,9:535-540.
    [147]Mira A, Ochman H and Moran NA. Deletional bias and the evolution of bacterial genomes[J]. Trends Genet 2001,17:589-596
    [148]Kuo CH and Ochman H. Deletional Bias across the Three Domains of Life[J]. Genome Biol Evol 2009,1:145-152.
    [149]Luo L-F. Law of genome evolution direction:Coding information quantity grows[J]. Front Phys China 2009,4:241-251.
    [150]Chalmers R and Blot M. Insertion sequences and transposons. In Organization of the prokaryotic genome [M] (Charlebois RL, ed, pp.151-169. ASM Press, Washington, DC.1999.
    [151]Treangen TJ, et al. Genesis, eiects and fates of repeats in prokaryoticgenomes[J]. FEMS Microbiol Rev 2009,33:539-571.
    [152]Posfai G, et al. Emergent properties of reduced-genome Escherichia coli[J]. Science 2006,312:1044-1046.
    [153]Pelosi L, et al. Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli[J]. Genetics 2006 173:1851-1869.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700