用户名: 密码: 验证码:
机械压汽蒸馏技术的实验应用与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械压汽蒸馏海水淡化技术,利用压缩机压缩低温饱和蒸汽,使其变成高温过热蒸汽,过热蒸汽冷凝生成淡水,释放潜热加热饱和盐水,盐水部分蒸发生成饱和蒸汽。这种工艺,不仅能有效缓解盐水结垢和腐蚀问题,而且能充分回收冷凝潜热,因而具有比较高的热效率。
     本文设计建立的机械压汽蒸馏海水淡化实验系统,采用了离心压缩机,其构造生产能力为2m3d-1。实验研究了压缩比、蒸发温度和盐水浓度等主要参数对淡水产量和能耗的影响。蒸发温度介于89.1。C-97.6℃之间,离心压缩机的压缩比处在1.1-1.25之间。当盐水浓度质量比为2.0%到4.0%时,实验系统运行良好。实验结果表明,这个实验系统生产淡水的单位能耗,为59.4-86.4kJkg-1。
     用热力学第二定律,分析了机械压汽蒸馏海水淡化实验系统的(?)效率。把海水的初始状态作为参考状态,建立了数学模型,用来分析了压缩比、蒸发温度和盐水浓度等对实验系统(?)效率的影响。实验研究了系统构件在生产淡水过程中的(?)损。分析结果表明,实验系统的(?)效率为10.7%(如果考虑排泄损失则为3.3%);其中蒸发-冷凝器、离心压缩机和预热器(含水泵)的(?)损,分别占23.2%,37.5%和28.6%。
     研究了利用机械压汽蒸馏技术,浓缩工业废液-安赛蜜稀溶液,回收工业原料的可行性和经济性。实验采用循环蒸馏浓缩工艺,将溶液逐渐浓缩到设计的浓度。对水蒸汽的压缩过程进行了热力学分析,给出了压缩机合理的压缩参数。给出了蒸发冷凝器的详细设计方程,设计建造了循环蒸馏浓缩实验系统。实验测试了蒸发温度在73℃到100℃之间,实验系统从溶液中蒸发掉水分的能力。浓缩过程以蒸发水分计算,则利用该工艺,从溶液中蒸发出1吨水的成本大约为28元/吨;而传统工艺利用热力蒸汽蒸馏,成本大约为110元/吨。
     以TRNSYS为平台,依照实验系统参数,建立生产能力为2m3d-1的机械压汽蒸馏实验系统的仿真模型。对比研究了在实验条件下,仿真系统和实验系统淡水生产能耗。模拟数据表明仿真系统的结果与实验结果近似。
     为了进一步研究,机械压汽蒸馏系统中辅助热能的能耗。在TRNSYS系统内,机械压汽蒸馏仿真系统内的加热系统由电加热系统和太阳能加热系统构成,优先使用太阳能加热。太阳能集热器能力不足时,以电加热器补充。以合肥地区的气象参数为基础,模拟研究了辅助热源太阳能,在机械压汽蒸馏系统中发挥的作用。详细分析了真空管太阳能集热器的模拟原理,建立了集热面积为4m2的真空管集热系统作为辅助加热系统。集热器的出口温度控制为75℃。通过水泵流速的调节,控制真空管集热器的出口水温,用水箱来减缓太阳辐射变化,对蒸馏系统压缩机的性能的影响。在太阳辐射强度为600Wm-2以上,蒸发温度为70℃时,太阳能作为辅助热源,可节约的能耗大约为25%。
In a system of mechanical vapor compression desalination(MVCD), the low-temperature saturated steam is compressed into a high-temperature superheated state by a compressor, the high-temperature superheated steam is then condensed in a condenser. While the saturated salt water is heated by the latent release so that the salt water can be partially evaporated to saturated steam in an evaporator. This thermophysical process can effectively alleviate brine fouling and corrosion problems of salt water, and fully recover latent heat of condensation, therefore it can result in a higher thermal efficiency of the system.
     The designed and established experimental system of mechanical vapor compression desalination(MVCD) uses a centrifugal compressor. Its production capacity is2m3/d. The effects of the parameters of compression ratio, evaporation temperature and salt concentration on the production and energy consumption of freshwater were investigated. It was found that the MVCD system can operate well when the evaporating temperature is the range from89.1℃to97.6℃, the compression ratio in the range from1.1to1.25, and brine concentration in mass ratio varies from2.0%to4.0%. The energy consumption of fresh water of the MVCD system is59.4-86.4k.Jkg-1.
     The second law of thermodynamics was used to analyze the exergy efficiency of the MVCD system. A mathematical model was developed to analyze the effects of the compression ratio, evaporation temperature and salt concentration on the exergy efficiency of the system, when the initial state of seawater is assumed to be the reference state. The results of analysis indicate that the exergy efficiency of the system is10.7%, and the exergy losses of the evaporator-condenser, the centrifugal compressor, the water pump and the preheater respectively are respectively23.2%,37.5%, and28.6%.
     The feasibility and economy of the MVCD system for distilling acesulfame dilute solution to recover industrial raw materials was investigated. The solution was gradually concentrated to the concentration of the design by the cycle distillation process. The thermodynamic process of the compression of the vapor was analysed. The parameters of the compressor were designed. Based on the thermodynamic equation of the evaporator-condenser, the distillation experimental system was set up. The ability of the experimental system was tested when the evaporating temperature was the range from73℃to100℃. The economic cost of the MVCD technology is about28RMB/D, while the traditional process cost about110RMB/D, here RMB=Yuan,D=1000kg.
     The commercial software platform TRNSYS was used to establish a thermodynamical model to describe the operation of test MVCD system with the production capacity2m3d-1. The fresh water production and the temperature distributions at various location points were obtained under different experimental conditions. The energy consumption of fresh water production was also predicted. It was found that the simulation model can describe the operation performance of experimental MVCD system approximately.
     The effect solar energy as an auxiliary heat source on the MVCD system was studied with respect to the meteorological parameters in Hefei in the software TRNSYS. The heating system consists of a electric heating and a solar heating system. The solar heating system was a4m2vacuum tube solar collector,and the outlet temperature was controlled to75℃. Through adjusting the flow speed in water pump, the temperature of the outlet water of vacuum tube solar collector can be properly controlled, and the water tank can buffer the impact of solar radiation on the performance of the compressor of the MVCD system. When solar radiation intensity is over600Wm-2, the evaporation temperature is about70℃, using the auxiliary solar energy, the system can save about25%of the auxiliary energy consumption.
引文
[1]汪恕诚.中国水资源安全问题及对策[J].电网与清洁能源.26(9),2010.
    [2]叶雯,刘美南.我国城市污水再生利用的现状与对策[J].中国给水排水.2002,18(12):31-33
    [3]王强,郑宏飞,厉彦忠.横管降膜蒸发太阳能海水淡化装置的性能分析[J].太阳能学报,2003,124(13):302-306.
    [4]严俊杰,王金华,邵树峰等.多级闪蒸海水淡化系统的改进研究[J].西安交通大学学报,2005,39(11):1165-168.
    [5]周少祥,胡三高,宋之平.MSF多级闪蒸海水淡化系统的建模与仿真[J].热能动力工程2002,17(101):506-509.
    [6]刘振华,陈玉明.满液型海水淡化蒸发器的换热特性研究[J].太阳能学报,2002,123(14):450-454.
    [7]许莉,王世昌,王宇新等.水平管外壁液膜流动状态及其对传热的影响[J].化工学报,2002,53(6):555-559.
    [8]庞虹,姚征.大型海水淡化装置流场数值模拟及其优化[J].北京化工大学学报,2002,29(6):9-12.
    [9]贾海军,姜胜耀,吴少融等.双塔竖直蒸发管高温多效蒸发海水淡化实验系统[J].清华大学学报(自然科学版),2003,43(10):1336-1338.
    [10]李常建.海水淡化产业发展的机遇与挑战[J].海洋开发与管理,2006,23(3):74-77
    [11]Nafiz Kahraman, Yunus A. Cengel. Exergy analysis of a MSF distillation plant[J]. Energy Conversion and Management,2005,46(15-16):2625-2636.
    [12]Abdulnasser A. Mabrouk,A. S. Nafey,H. E. S. Fath.Thermoeconomic analysis of some existing desalination processes[J].Desalination 205 (2007) 354-373.
    [13]Majed, M.Alhazmy. Multi stage flash desalination plant with brine-feed mixing and cooling[J]. Energy,2011,36:5225-5232.
    [14]A.Piacentino, F.Cardona. Advanced energetics of a Multiple Effects Evaporation (MEE) desalination plant Part Ⅰ:2nd principle analysis by a zooming representation at single-effect Ievel[J]. Desalination,2010,264:84-91.
    [15]A.O. Bin Amer.Development and optimization of ME-TVC desalination system[J]. Desalination,2009,249:1315-1331.
    [16]Marian Marcovecchioa, Pio Aguirrea, Nicolas Scennaa, et al. Global Optimal Design of Mechanical Vapor Compression (MVC) Desalination Process[C].20th European Symposium on Computer Aided Process Engineering-ESCAPE20.1261-1266.
    [17]Fuad N. Alasfour, Hassan K. Abdulrahim. The effect of stage temperature drop on MVC thermal performance[J]. Desalination,2011,265():213-221.
    [18]A.A. Mabrouk,A.S. Nafey,H.E.S. Fath.Analysis of a new design of a multi-stage flash-mechanical vapor compression desalination process[J]. Desalination 204 (2007) 482-500
    [19]Mohammad Al-Sahali,Hisham Ettouney.Developments in thermal desalination processes:Design, energy, and costing aspectspJ]., Desalination,2007,214:227-240.
    [20]HISHAM ETTOUNEY, HISHAM EL-DESSOUKY, YOUSEF AL-ROUMI.ANALYSIS OF MECHANICAL VAPOUR COMPRESSION DESALINATION PROCESS[J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH,1999,23(5):431-451.
    [21]K.S. S piegler, Y.M. El-Sayed, The energetics of desalination processes[J]. Desalination, 2001,134:109-128.
    [22]Hisham T. E1-Dessouky, Hisham M. Ettouney[J]. Fundamentals of Salt Water Desalination, 2002:503-524.
    [23]Ioannis C. Karagiannis, Petros G. Soldatos. Water desalination cost literature:review and assessment[J].Desalination,2008,223:448-456.
    [24]Yehia M. E1-Sayed. On the feasibility of large vapor-compression distillation units[J]. Desalination,1996,107(1):13-27.
    [25]Hisham T.E1-Dessouky, Hisham M. Ettouney. Plastic/compact heat exchangers for single-effect desalination systems[J]. Desalination,1999,122(2-3):271-289.
    [26]Hikmet S. Aybar.Analysis of a mechanical vapor compression desalination system[J]. Desalination,2002,142(2):181-186.
    [27]Rubina Bahar, M.N.A. Hawlader, Liang Song Woei. Performance evaluation of a mechanical vapor compression desalination system[J]. Desalination,2004,166:123-127.
    [28]Narmine H. Aly, Adel K. El-Fiqi. Mechanical vapor compression desalination systems-A case study[J].Desalination,2003,158(1-2):143-150.
    [29]Jose M. Veza. Mechanical vapour compression desalination plants-A case study[J]. Desalination,1995,101(1):1-10.
    [30]Andrea Cipollina, Giorgio Micale, Lucio Rizzuti.A critical assessment of desalination operations in Sicily[J]. Desalination,2005,182(1-3):1-12.
    [31]Faisal A1-Juwayhel, Hisham El-Dessouky,Hisham Ettouney. Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps[J]. Desalination, 1997,114(3):253-275.
    [32]Samir E. Aly. Gas turbine total energy vapour compression desalination system[J]. Energy Conversion & Management,1999,40(7):729-741.
    [33]Robert L. Campbell,Taylor H. Emerson, A new water and power combination:Vacuum vapor compression seawater distillation and natural gas fuel cells[J]. Desalination, 1994,99(2-3):423-445.
    [34]K. Bourouni, M.T. Chaibi, L. Tadrist. Water desalination by humidification and dehumidification of air:state of the art[J]. Desalinationl,2001,137(1-3):167-176.
    [35]M. Vlachogiannis, V. Bontozoglou, C. Georgalas, et al. Desalination by mechanical compression of humid air[J]. Desalination,1999,122(1):35-42.
    [36]Aly Karameldin, A. Lot, S. Melchemar. The Red Sea area wind-driven mechanical vapor compression desalination system[J]. Desalination,2002,153(1-3):47-53.
    [37]Tomas Witte, Sonke Siegfriedsen, Magdy El-Allawy. WindDeSalter Technology Direct use of wind energy for seawater desalination by vapour compression or reverse osmosis[J]. Desalination,2003,156(1-3):275-279.
    [38]D. Zejli, R. Benchrifa, A. Bennouna, et al. Economic analysis of wind-powered desalination in the south of Morocco[J]. Desalination,2004,165:219-230.
    [39]A.M. Helal, S.A. Al-Malek. Design of a solar-assisted mechanical vapor compression (MVC) desalination unit for remote areas in the UAE[J]. Desalination,2006,197(1-3):273-300.
    [40]Yehia M. El-sayed. Thermoeconomics of some options of large mechanical vapor-compression units[J]. Desalination,1999,125(1-3):251-257.
    [41]Gustavo Kronenberg, Fredi Lokiec. Low-temperature distillation processes in single-and dual-purpose plants[J]. Desalination,2001,136(1-3):189-197.
    [42]A. Koren, N. Nadav. Mechanical vapour compression to treat oil field produced water[J]. Desalination,1994,98(1-3):41-48.
    [43]B. W. Tleimat, M.C. Tleimat. water recovery from and volume reduction of gray water using an energy efficient evaporator[J]. Desalination,1996,107(2):111-119.
    [44]J.G. Zaki, N.M. El Defrawy, S.R. Tewfik, et al. Assessment of vapour compression for the concentration of dilute urea solutions[J]. Desalination,2000,128(2);111-121.
    [45]S. Hayani Mounir, M. Feidt, C. Vasse.Thermoeconomic study of a system for pollutant concentration with mechanical vapour compression[J]. Applied Thermal Engineering, 2005,25(2-3):473-484.
    [46]J. P. Brouwer, M.M.C Alkemade, G. Bierman. Techno-economic comparison of technologies for the concentration of a mixed leachant bleed stream[J]. Desalination,1995,101(3):211-218.
    [47]K. Kalidasa Murugavel, Kn.K.S.K. Chockalingam, K. Srithar. An experimental study on single basin double slope simulation solar still with thin layer of water in the basin[J]. Desalination,2008,220:687-693
    [48]V. Velmurugan, M. Gopalakrishnan, R. Raghu, etc. Single basin solar still with fin for enhancing productivity[J]. Energy Conversion and Management,2008,49:2602-2608.
    [49]H. Boutebila. A theoretical model of a free flow solution over an inclined long flat plate solar still[J]. Desalination,2009,249:1249-1258.
    [50]M. Sakthivel, S. Shanmugasundaram, T. Alwarsamy.An experimental study on a regenerative solar still with energy storage medium -Jute cloth[J].Desalination,2010,264:24-31.
    [51]Rahul Dev, G.N. Tiwari. Characteristic equation of a passive solar still[J].Desalination, 2009,245:246-265.
    [52]Basel I. Ismail. Design and performance of a transportable hemispherical solar still[J]. Renewable Energy,2009,34:145-150.
    [53]Hiroshi Tanaka. Experimental study of a basin type solar still with internal and external reflectors in winter[J]. Desalination,2009,249:130-134.
    [54]Hiroshi Tanaka, Yasuhito Nakatake.Increase in distillate productivity by inclining the flat plate external reflector of a tilted-wick solar still in winter[J]. Solar Energy,2009,83:785-789.
    [55]Hiroshi Tanaka.Monthly optimum inclination of glass cover and external reflectorof a basin type solar still with internal and external reflector[J]. Solar Energy,2010,84:1959-1966.
    [56]Hiroshi Tanaka, Yasuhito Nakatake.One step azimuth tracking tilted-wick solar still with a vertical flat plate reflector[J]. Desalination,2009,235:1-8.
    [57]B.A. Jubran, M.I. Ahmed, A.F. Ismail, etc. Numerical modelling of a multi-stage solar still [J]. Energy Conversion & Management,2000,41:1107-1121.
    [58]Hilal A1-Hinai, MS. A1-Nassri, B.A. Jubran. Parametric investigation of a double-e-eGt solar still in comparison with a single-effect solar still[J]. Desalination,2002,150:75-83.
    [59]Shaobo Hou, Zhongjin Zhanga, Zhongzhou Huang,etc.Performance optimization of solar multi-stage flash desalination process using Pinch technology[J]. Desalination,2008,220:524-530.
    [60]Shaobo Hou, Hefei Zhang.A hybrid solar desalination process of the multi-effect humidification dehumidification and basin-type unit[J]. Desalination,2008,220:552-557.
    [61]Shaobo Hou.Two-stage solar multi-effect humidification dehumidification desalination process plotted from pinch analysis[J].Desalination,2008,222:572-578.
    [62]Fawzi Banat, Nesreen Jwaied, Matthias Rommel, etc.Performance evaluation of the "large SMADES" autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan[J]. Desalination,2007,217:17-28.
    [63]Franz Trie, Hans Muller-Steinhagen, Jurgen Kern,etc.Technologies for large scale seawater desalination using concentrated solar radiation[J]. Desalination,2009,235:33-43.
    [64]Franz Trieb, Hans Muller-Steinhagen. Concentrating solar power for seawater desalination in the Middle East and North Africa[J]. Desalination,2008,220:165-183.
    [65]Hisham M. Ettouney, Hisham El-Dessouky. A simulator for thermal desalination processes[J]. Desalination,1999,125:277-291.
    [66]Alessandro Franco, Nicola Giannini.A general method for the optimum design of heat recovery steam generators[J]. Energy,2006,31:3342-3361.
    [67]Hisham Ettouney. Visual basic computer package for thermal and membrane desalination processes[J].Desalination,2004,165:393-408.
    [68]Hisham Ettouney.Design of single-effect mechanical vapor compress ion[J].Desalination, 2006,190:1-15.
    [69]S.A. Klein, W.A. Beckman and J.W. Mitchell,etc. TRNSYS 17:A Transient System Simulation Program[M].USA:the Solar Energy Laboratory.University of Wisconsin-Madison, 2010.
    [70]K..M. E1-Khatib, A.S. Abd E1-Hamid and A.H. Eissa, M.A. Eissa. Transient model, simulation and control of a single-effectmechanical vapour compression (SEMVC) desalination system[J].Desalination,2004,166:157-165.
    [71]Hisham T. El-Dessouky, H.M. Ettouney. Multiple-effect evaporation desalination systems: thermal analysis. Desalination 1999,125 (1-3)259-276.
    [72]M. A. Darwish. New idea for co-generation power desalting plants due to abandoned MSF desalination process[J].Desalination,2001,134(1-3):221-230.
    [73]Walid El-Mudir, Mohamed E1-Bousiffi, Salah A1-Hengari. Performance evaluation of a small size TVC desalination plant[J]. Desalination,2004,165:269-279.
    [74]钱颂文主编.换热器设计手册[M].北京:化学工业出版社,2002.72.
    [75]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998,209-216
    [76][苏]B·Φ·里斯著,董孝强,朱报祯等译.离心压缩机[M].北京:中国工业出版社,1965.21.
    [77]呼朝.影响电机效率的因素及现实中提高电机效率的方法浅析[J].机械与电子,2008,28:429-430.
    [78]张立伟,胡广艳,温旭辉,郑琼林.异步电机效率优化算法设计[J].中国铁道科学,2008,29(1):82-88.
    [79]毛希澜主编,化工设备设计全书:换热器设计[M].北京:化学工业出版社,1988.342.
    [80]Hisham El-Dessouky a, Hisham Ettouney, Hala A1-Fulaij, Faisal Mandani. Multistage flash desalination combined with thermal vapor compression[J]. Chemical Engineering and Processing, 2000,39:343-356
    [81]J.P.Riley, R.Chester. Chemical oceanography.1[M].Beijing China Ocean Press,1982:632.
    [82]Nafiz Kahraman, Yunus A. Cengel, Byard Wood, Yunus Cerci. Exergy analysis of a combined RO, NF, and EDR desalination plant[J]. Desalination,2004,171:217-232.
    [83]Ali M. El-Nashar, Atef A. Al-Baghdadi, Exergy losses in a multiple-effect stack seawater desalination plant[J]. Desalination,1998,116:11-24.
    [84]F.N. Alasfour, M.A. Darwish, A.O. Bin Amer. Thermal analysis of ME-TVC+MEE desalination systems[J]. Desalination,2005,174:39-61.
    [85]O.A. Hamed, A. M. Zamamiri, S. Aly and Lior. Thermal performance and energy analysis of a thermal vapor compression desalination system[J]. Energy convers. Mgmt 1996,37(4):379-387.
    [86]Osman A. Hamed,Mohammad A.K. Al-Sofi, Monazir Imam, Ghulam M. Mustafa, Khalid Ba Mardouf, Hamad Al-Washmi. Thermal performance of multi-stage flash distillation plants in Saudi Arabia[J]. Desalination,2000,128:281-292
    [87]Ousmane Sow, Monica Siroux, Bernard Desmet Energetic and exergetic analysis of a triple-effect distiller driven by solar energy[J].Desalination,2005,174:277-286.
    [88]严家騄,余晓福,王永青.水和水蒸气热力性质图表(第2版)[M].北京,高等教育出版社,2004,1.
    [89]WILLEM VAN GOOL, THERMODYNAMICS OF CHEMICAL REFERENCES FOR EXERGY ANALYSIS[J]. Energy Convers. Mgmt,1998,39(16-18):1719-1728,.
    [90]王正烈,周亚平,李松林等.物理化学(下)第四版[M].北京:高等教育出版社,2001.16.
    [91]吕向红,陆恩锡.热耦蒸馏及其选用原则[J].化学工程,2005,33(2):9-12,29.
    [92]王如强,何小荣,陈丙珍.常减压蒸馏装置生产计划与过程操作的优化集成[J].清华大学学报(自然科学版),2008,48(3):401-404.
    [93]洪纯芬.苯乙烯精馏节能技术[J].化学工程,1999,27(4):56-61.
    [94]王云辉,刘敏和孙聿峰等.湿压缩对压缩系统失速后瞬态响应的影响分析[J].热能动力工程,2003,18(103):67-70.
    [95]王永青,刘铭,廉乐明等.湿压缩过程的热力学指标及湿压缩燃机循环性能分析[J].热能动力工程,2002,17(99):241-244.
    [96]张良,徐士鸣.湿蒸汽两相压缩过程工作特性理论研究[J].节能技术,2006,24(136):99-104.
    [97]Sharon E. Wight, Tsukasa Yoshinaka, Brenda A. Le Drew, etc. The Efficiency Limits of Water Vapor Compressors[M]. Final Report,ARTI-21CR/605-10010-01,2000.
    [98]Christopher E. Brennen. Fundamentals of multiphase flow[M]. Cambridge University Press,2005, USD.
    [99]林宗虎等编著,气液两相流和沸腾传热[M].西安交通大学出版社,西安,2003.
    [100]Alghoul MA, Poovanaesvaran P, Sopian K, et al. Review of brackish water reverse osmosis (BWRO) system designs[J],RENEWABLE & SUSTAINABLE ENERGY REVIEWS,2009,13(9): 2661-2667
    [101]El Saliby I, Okour Y, Shon HK, et al. Desalination plants in Australia, review and factsfJ]. DESALINATION,2009,247(1-3):1-14.
    [102]Charcosset C. A review of membrane processes and renewable energies for desalination[J]. DESALINATION,2009,245(1-3):214-231.
    [103]Al-bahou M, Al-Rakaf Z, Zaki H, et al.Desalination experience in Kuwait[J]. DESALINATION,2007,204(1-3):403-415.
    [104]Mathioulakis E, Belessiotis V, Delyannis E. Desalination by using alternative energy. Review and state-of-the-art. DESALINATION,2007,20(1-3):346-365.
    [105]G.N. Tiwari, H.N. Singh, Rajesh Tripathi, Present status of solar distillation[J].Solar Energy,2003,75:367-373.
    [106]Sampathkumar K, Arjunan TV, Pitchandi P, et al. Active solar distillation-A detailed review[J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS,2010,14(6):1503-1526.
    [107]Yoann Raffenel, Enrico Fabrizio, Joseph Virgone, Eric Blanco, Marco Filippi. Integrated solar heating systems:From initial sizing procedure to dynamic simulation[J]. Solar Energy, 2009,83:657-663.
    [108]K. Sampathkumar, T.V. Arjunan, P, Pitchandi,etc. Active solar distillation-A detailed review[J]. Renewable and Sustainable Energy Reviews,2010,14:1503-1526.
    [109]Hazim Mohameed Qiblawey, Fawzi Banat. Solar thermal desalination technologies[J]. Desalination,2008,220:633-644.
    [110]李业发,谢红,张有为.全玻真空管太阳能辐射量与其放置角度的关系[J],节能,2005,273:27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700