用户名: 密码: 验证码:
镁法烟气脱硫副产物资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫是最常见的大气污染物,燃煤锅炉烟气排放是大气中二氧化硫的主要来源,烟气脱硫是减少二氧化硫排放的的有效途径。
     烟气脱硫的方法很多,湿式氧化镁法因其投资低、流程短、占地省、效率高和运行可靠而被广泛使用。近年来,回收型氧化镁法越来越受到业界的关注,其中以脱硫副产物热解回收二氧化硫和氧化镁法备受青睐,回收的二氧化硫用于氧化制酸,氧化镁作为脱硫剂循环使用。本课题在研究脱硫副产物的主要化学物质亚硫酸镁和硫酸镁热解条件的基础上,对工业装置的实际脱硫副产物进行了热解研究,以期获得较高的氧化镁回收率和活性。
     本研究考察的热解条件包括热解温度、升温速率、恒温时间、样品含水率等,对热解效果的评价包括样品分解率、二氧化硫产率、氧化镁含量、氧化镁的活性等。氧化镁的活性分别采用简易水化法和柠檬酸法,并采用X-衍射(XRD)分析考察氧化镁的晶格结构变化。
     本研究证实,亚硫酸镁在400℃左右开始热解,当温度达到550℃时,二氧化硫产率达到92.0%。氧化镁产物X-衍射(XRD)分析表明选择550℃作为亚硫酸镁的热解温度是合适的,温度再升高时氧化镁晶粒的嵌镶块的尺寸逐渐增大,晶体的结晶程度提高,活性受影响而降低。在550℃热解温度下对亚硫酸镁热解产物氧化镁活性的分析证实,其活性要优于工业级氧化镁的活性,说明550℃作为亚硫酸镁的热解温度是合适的。在此过程中,研究热解温度达到550℃后,在0.5小时至2.0小时的恒温时间范围内,证实恒温时间为2小时时对二氧化硫和氧化镁的产率最大。另外,研究也发现,亚硫酸镁含水率的增加不利于其热解反应,也会影响热解产物氧化镁的活性。添加活性炭作为还原剂对亚硫酸镁热解基本不起作用,故在亚硫酸镁热解过程中无需添加还原剂进行热解反应。较低的热解升温速率有利于获得较高活性的氧化镁。
     对硫酸镁热解研究证实,在添加活性炭作为还原剂的条件下,硫酸镁在650℃左右开始热解,当温度达到850℃时,二氧化硫产率达到98.7%,认为热解过程基本结束。在850℃热解温度下,测得的热解产物氧化镁的活性接近试剂级氧化镁的活性,说明850℃作为硫酸镁的热解温度是合适的。对氧化镁产物X-衍射(XRD)分析表明选择850℃作为硫酸镁的热解温度是合适的,继续升高硫酸镁的热解温度,使氧化镁晶格完善,降低氧化镁的活性。同时证实,硫酸镁热解温度到达850℃后采用2小时的恒温,对获得较高的氧化镁活性是必要的。另外也发现,较低的热解升温速率有利获得较高活性的氧化镁。
     工业装置脱硫副产物干渣在35℃下相对比较稳定。在550℃时热失重为31%,650℃时热失重到达62%。在600-700℃热解温度时,其热解产物氧化镁的结晶程度低、活性好,选择热解恒温时间为2小时较合适。热解温度到800℃以上,甚至900℃时,部分氧化镁被烧结,活性降低。
     脱硫副产物采用热解方法对其进行热分解与回收的技术路线是可行的,此基础理论研究可为工业化装置的实施提供理论基础与实践依据。
SO2 is a most common air pollutant and the flue gas emission from coal-fired boiler is a main source of SO2 in the air. The flue gas desulphurization is an effective way to reduce SO2 emission.
     There exist many ways for flue gas desulphurization and the Wet MgO Process is widely used owing to its low investment, short process flow, less area occupied, high efficiency and reliable running. In recent years, the MgO Process of recovery type has more and more been concerned by the industry, of which the process of desulfurized by-product pyrolysis to recover SO2 and MgO is much acclaimed, the recovered SO2 is oxidized to produce acid and MgO used as a sorbent for cycling. This article, based upon the study on pyrolysis conditions for magnesium sulfite and magnesium sulfate---main chemicals of desulfurized by-product, has carried out a study on pyrolysis of actual desulfurized by-product from industrial plant to obtain a higher recovery rate and activity of MgO.
     In the study, the pyrolysis conditions being investigated cover pyrolysis temperature, temperature-rise rate, holding time of constant temperature and moisture content of sample. The evaluation on pyrolysis effect includes sample decomposition rate, SO2 yield, MgO content and MgO activity which is respectively by means of simple hydration method and citric acid method, further, the analysis and investigation of change of lattice structure of MgO by X-ray diffraction (XRD).
     This study has verified that the pyrolysis of magnesium sulfite starts at about 400℃and as the temperature reaches 550℃the yield of SO2 to 92.0%. XRD analysis of MgO product shows that the choice of 550℃as pyrolysis temperature for magnesium sulfite is appropriate, and when the temperature raises higher the size of mosaic block of MgO grains may gradually increase and the crystallization level of crystal increase whereas the activity is affected and lowered. At 550℃pyrolysis temperature the analysis of activity of MgO---pyrolysis product of magnesium sulfite---has verified that its activity is better than that of MgO of industrial grade. In the course of analysis, as the pyrolysis temperature reaches 550℃and the holding time range of constant temperature in between 0.5---2.0 hours the study so carried out also verified that the yield of both SO2 and MgO is maximized when the holding time of constant temperature is 2.0 hours. In addition, the study also discovers that the increase of moisture content of magnesium sulfite is not conducive to its pyrolysis reaction, but has an effect on the activity of pyrolysis product---MgO. The addition of activated carbon as a reducer basically does not work in the pyrolysis of magnesium sulfite; hence, during the magnesium sulfite pyrolysis there is no need to add any reducer. The lower pyrolysis temperature-rise rate is beneficial to obtain a higher activity of MgO.
     The study on pyrolysis of magnesium sulfate has verified that under the condition that activated carbon as reducer is added, the pyrolysis of magnesium sulfate starts at about 650℃and when the temperature reaches 850℃the yield of SO2 is 98.7%, this represents a basic completion of pyrolysis process. At the pyrolysis temperature 850℃the measured activity of MgO---pyrolysis product---is close to that of MgO of reagent grade, this manifests that this 850℃taken as a pyrolysis temperature for magnesium sulfate is appropriate. The XRD analysis of MgO product also shows that the 850℃taken as a pyrolysis temperature for magnesium sulfate is appropriate; a continuous rise of pyrolysis temperature for magnesium sulfate may make the lattice of MgO perfect, but reduce the MgO activity. Meanwhile, it is confirmed that a two-hour holding time of constant temperature is used after the 850℃pyrolysis temperature for magnesium sulfate reached is necessary for obtaining a higher MgO activity. In addition, it is also discovered that a lower pyrolysis temperature-rise rate is beneficial to obtain a higher activity of MgO.
     The dry residues of desulfurized by-product from industrial plant are relatively stable at 35℃. However, its heat weightlessness is 31% at 550℃and 62% at 650℃. Under 600--700℃the crystallization level of MgO---pyrolysis product---is lower but activity higher, to choose two hours as the pyrolysis constant temperature holding time is appropriate. When the pyrolysis temperature is up to over 800℃, even to 900℃, then a part of MgO is caked and a reduction of activity resulted in.
     The technological process for thermal decomposition and recovery of desulfurized by-product by a pyrolysis process is feasible and this basic theoretical study may provide theoretical and practical basis to the implementation of commercialized plant.
引文
[1]郝吉明,马广大.大气污染控制工程.第二版[M].北京:高等教育出版社,2002.304-502.
    [2]马勇.二氧化硫现状与控制分析[J].中国电力教育,2010,(z1):5-6,9.
    [3]周琴.大气中二氧化硫的污染及防治对策[J].内蒙古环境保护,2002,14(3):3.
    [4]国家环境保护总局.2002年中国环境状况公报[R].国家环境保护总局,2002.
    [5]国家环境保护总局.2006年中国环境状况公报[R].国家环境保护总局,2006.
    [6]中华人民共和国环境保护部.2009年中国环境状况公报[R].中华人民共和国环境保护部,2010.
    [7]王胜.工业毒物及其防治(3)[J].现代职业安全,2010,(106):100-101.
    [8]孟紫强,桑楠,张波,等.二氧化硫体内衍生物诱发小鼠骨髓嗜多染红细胞微核的效应[J].环境科学学报,2000,20(2):239-243.
    [9]Ziqiang Meng, Bo Zhang. Polymerase chain reaction-based deletion screening of bisulfite (sulfur dioxide)-enhanced gpt-mutants in CHO-AS52 cells[J]. Mutation Research,1999, 425(81-85)
    [10]党卫红,任平国.亚硫酸盐生殖毒性研究[J].现代食品科技,2009,25(4):373-375.
    [11]牛玉璐,曹永胜.大气主要污染物对植物叶形态结构的影响[J].生物学教学,2010,35(12):7-8.
    [12]张琼.二氧化硫和氯气对植物的危害及其验证[J].生物学教学,2001,26(10):22.
    [13]丁宁.二氧化硫污染对植物影响的研究进展[J].城市建设,2010,(69):91-92.
    [14]郑淑颖.二氧化硫污染对植物影响的研究进展[J].生态科学,2000,19(1):59-64.
    [15]邓努波.火电厂二氧化硫污染现状及治理措施[J].重庆电力高等专科学校学报,2001,6(2):16-20.
    [16]博闻网.世界著名酸雨烟雾事件[J].科技传播,2010,(16)
    [17]陈明艳,姜显政,黄汝红.浅析酸雨的形成、危害及防治措施[J].广东微量元素科学,2009,16(1):15-20.
    [18]E. B. Cowling. Acid precipitation in historical perspective[J]. Environmental Science & Technology,1982,16(2):110-123.
    [19]周昌云,陈爱玉,张鹏,等.酸雨的成因、危害与防治[J].农技服务,2009,26(10):104-105.
    [20]田贺忠,陆永祺,郝吉明,等.我国酸雨和二氧化硫污染控制历程及进展[J].中国电力,2001,34(3):51-56.
    [21]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,23(4):110-116.
    [22]张华,李娟英,张雁秋.我国酸雨污染现状、成因分析及防治措施[J].煤矿环境保护,2000,14(5):24-26.
    [23]阿布力克·阿布力孜,唐努尔·吾甫尔,热米拉·吾斯曼.环境中S02的利弊谈[J].新疆环境保护,2000,22(4):255-258.
    [24]张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究,2010,23(5):527-532.
    [25]秦广辉.浅谈酸雨对生态系统的影响[J].工会博览·理论研究,2010,(5):267.
    [26]K. Ikuta, Y.Suzuki, S. Kitamura. Effects of low pH on the reproductive behavior of salmonid fishes[J]. Fish Physiology and Biochemistry,2003,28:407-410.
    [27]张俊平,张新明,曾纯军,等.酸雨对生态系统酸化影响的研究进展[J].农业环境科学学报,2010,29(增刊):245-249.
    [28]郭大本.酸雨及其危害[J].黑龙江水专学报,2006,33(2):1-5.
    [29]S. Sand(?)y, R.M. Langaker. Atlantic Salmon and Acidification in Southern Norway:A Disaster in the 20th Century, but a Hope for the Future? [J]. Water, Air,& Soil Pollution, 2001,130:1340.
    [30]刘晓华.酸雨的形成及对环境的危害[J].赤峰学院学报(自然科学版),2010,26(5):96-97.
    [31]荆继红,孙继朝,韩双平,等.珠江三角洲地区酸雨及酸化地下水分布特征[J].上海地质,2010,(2):8-12.
    [32]K. Myllynen, E. Ojutkangas, M. Nikinmaa. River Water with High Iron Concentration and Low pH Causes Mortality of Lamprey Roe and Newly Hatched Larvae [J]. Ecotoxicology and Environmental Safety,1997,36(1):43-48.
    [33]K. E. Rehfuess. Acidic deposition——Extent and impact on forest soils, nutrition, growth and disease phenomena in Central Europe:A review[J]. Water, Air,& Soil Pollution, 1989,48:1-20.
    [34]崔兴国.小麦、玉米种子萌发对酸雨胁迫的响应[J].安徽农业科学,2010,38(14):7677-7678.
    [35]金清,江洪,余树全,等.酸雨胁迫对亚热带典型树种幼苗生长与光合作用的影响[J].生态学报,2009,29(6):3322-3327.
    [36]孟赐福,姜培坤,曹志洪,等.酸雨对植物的危害机理及其防治对策研究进展[J].浙江农业学报,2008,20(3):208-212.
    [37]贾果,玉玲.酸雨的形成、危害及防治措施[J].魅力中国,2010,(20):52.
    [38]李雪梅,黄海英,吕岩.亚硫酸对玉米和高粱苗的伤害及磷酸缓冲液的防护作用[J].生态学杂志,2000,19(3):16-19.
    [39]Misako Kato, Seki Shimizu. Chlorophyll Metabolism in Higher Plants VI. Involvement of Peroxidase in Chlorophyll Degradation[J]. Plant Cell Physiol,1985,26(7):1291-1301.
    [40]Huang Xiao-Hua, Zhou Qing, Ye Ya-Xin, et al. Effect of Cerium on Seed Germination under Acid Rain Stress[J]. JOURNAL OF RARE EARTHS,2000,18(4):298-301.
    [41]Neil W Macdonald, Brandon J Ducsay. Growth and Survival of Jack Pine Exposed to Simulated Acid Rain as Seedlings[J]. Soil Science Society of America Journal,1997,61(1): 295-297.
    [42]韦革宁.酸雨对石漠化的影响分析及防治对策[A].中国气象学会2008年会论文集[C].2008.219-224.
    [43]李芳.酸雨对建筑材料的影响及防治研究综述[J].污染防治技术,2010,23(1):67-69.
    [44]张强,许世森,郭振锁,等.湿法氧化镁烟气脱硫技术在我国的发展前景[J].热力发电,2005,34(8):9-11.
    [45]Xuchang Xu, Changhe Chen, Haiyin Qi, et al. Development of coal combustion pollution control for SO2 and NOx in China[J]. Fuel Processing Technology,2000,62(2-3):153-160.
    [46]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.245.
    [47]T. Y. Yan, J. R. White. Economics of electric power generation options and sulfur oxide emission control [J]. Energy,1987,12(7):579-588.
    [48]R. Ibanez. Fly ash binders in stabilization of FGD wastes[J]. Energy,1998,124(1): 43-50.
    [49]T.Y. Yan, C.S. Yan. Meeting emission standards with high-sulfur coals[J]. Energy, 1986,11(11-12):1325-1335.
    [50]William L. Stout, Andrew N. Sharpley, William J. Gburek, et al. Reducing phosphorus export from croplands with FBC fly ash and FGD gypsum [J]. Fuel,1999,78(2):175-178.
    [51]J. J. Sloan, R. H. Dowdy, M. S. Dolan, et al. Plant and soil responses to field-applied flue gas desulfurization residue[J]. Fuel,1999,78(2):169-174.
    [52]L. Chen, W. A. Dick, S. Nelson. Flue gas desulfurization by-products additions to acid soil:alfalfa productivity and environmental quality[J]. Environmental Pollution,2001, 114(2):161-168.
    [53]S.J. Wang, C.H. Chen, X.C. Xu, et al. Amelioration of alkali soil using flue gas desulfurization byproducts:Productivity and environmental quality[J]. Environmental Pollution,2008,151(1):200-204.
    [54]Liming Chen, Cliff Ramsier, Jerry Bigham, et al. Oxidation of FGD-CaSO3 and effect on soil chemical properties when applied to the soil surface[J]. Fuel,2009,88(7):1167-1172.
    [55]C.C. Truman, R.C. Nuti, L.R. Truman, et al. Feasibility of using FGD gypsum to conserve water and reduce erosion from an agricultural soil in Georgia[J]. CATENA,2010, 81(3):234-239.
    [56]Dennis W. Weeter. Hazardous waste fixation using dry flue gas desulfurization waste[J]. Resources and Conservation,1982,9:143-148.
    [57]Tarunjit S. Butalia, William E. Wolfe. Evaluation of permeability characteristics of FGD materials[J]. Fuel,1999,78(2):149-152.
    [58]Mingjie Hua, Baotian Wang, Liming Chen, et al. Verification of lime and water glass stabilized FGD gypsum as road sub-base[J]. Fuel,2010,89(8):1812-1817.
    [59]Renee M. Payette, William E. Wolfe, Joel Beeghly. Use of clean coal combustion by-products in highway repairs[J]. Fuel,1997,76(8):749-753.
    [60]Changwoo Ahn, William J. Mitsch, William E. Wolfe. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands:A mesocosm experiment[J]. Water Research,2001,35(3):633-642.
    [61]M. T. Rudisell, B.J.Stuart, G. Novak, et al. Use of flue gas desulfurization by-product for mine sealing and abatement of acid mine drainage[J]. Fuel,2001,80(6):837-843.
    [62]G. Tzouvalas, G. Rantis, S. Tsimas. Alternative calcium-sulfate-bearing materials as cement retarders:Part Ⅱ. FGD gypsum[J]. Cement and Concrete Research,2004,34(11): 2119-2125.
    [63]Xiao Lu Guo, Hui Sheng Shi. Thermal treatment and utilization of flue gas desulphurization gypsum as an admixture in cement and concrete [J]. Construction and Building Materials,2008,22(7):1471-1476.
    [64]C. Leiva, C. Garcia Arenas, L.F. Vilches, et al. Use of FGD gypsum in fire resistant panels[J]. Waste Management,2010,30(6):1123-1129.
    [65]D. Tao, S. Chen, B. K. Parekh, et al. An investigation of a thermochemical process for conversion of gypsum and pyrite wastes into useful products[J]. Advances in Environmental Research,2001,5(3):277-284.
    [66]谭鑫,钟儒刚,甄岩,等.钙法烟气脱硫技术研究进展[J].化工环保,2003,23(6):322-328.
    [67]许红,刘尧祥.燃煤电厂烟气脱硫现状及其工艺[J].中国煤炭,2006,32(11):48-50.
    [68]张慧明,林小妍.二氧化硫污染控制工程讲座第五讲(二氧化硫污染控制概况)[J].环境保护科学,1994,20(3):68-73.
    [69]张杨帆,李定龙,王晋.我国烟气脱硫技术的发展现状与趋势[J].环境科学与管理,2006,31(4):124-128.
    [70]陈振峰.燃煤电厂烟气脱硫技术综述[J].西北电力技术,2005,33(3):50-52.
    [71]关多娇,徐有宁.适合我国国情的烟气脱硫技术探讨[J].环境保护,2005,(8):53-56.
    [72]魏刚,王晓梅,张媛.我国燃煤电厂烟气脱硫技术应用与展望[J].天津化工,2005,19(1):16-18.
    [73]Yoshitaka Doi, Ikuo Nakanishi, Yoshihide Konno. Operational experience of a commercial scale plant of electron beam purification of flue gas[J]. Radiation Physics and Chemistry,2000,57(3-6):495-499.
    [74]牛治国,张勇,陈鸿伟.我国燃煤电厂烟气脱硫技术进展[J].河北化工,2006,(1):43-45.
    [75]Jan B. W. Frandsen, S(?)ren Kiil, Jan Erik Johnsson. Optimisation of a wet FGD pilot plant using fine limestone and organic acids[J]. Chemical Engineering Science,2001,56(10): 3275-3287.
    [76]Hongliang Gao, Caiting Li, Guangming Zeng, et al. Flue gas desulphurization based on limestone-gypsum with a novel wet-type PCF device[J]. Separation and Purification Technology,2011,76(3):253-260.
    [77]Hongliang Gao, Caiting Li, Guangming Zeng, et al. Experimental study of wet flue gas desulphurization with a novel type PCF device[J]. Chemical Engineering and Processing: Process Intensification,2011,50(2):189-195.
    [78]魏巍.烟气氧化镁法脱硫技术研究[J].山西能源与节能,2004,(3):20-21.
    [79]Xueyan Sun, Fangang Meng, Fenglin Yang. Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor[J]. Journal of Membrane Science,2008,312(1-2):6-14.
    [80]Ghazi Al-Enezi, Hisham Ettouney, Hisham El-Dessouky, et al. Solubility of Sulfur Dioxide in Seawater[J]. Industrial & Engineering Chemistry Research,2001,40(5): 1434-1441.
    [81]Juan Rodriguez-Sevilla, Manuel lvarez, Maria C.Diaz, et al. Absorption Equilibria of Dilute SO2 in Seawater[J]. Journal of Chemical & Engineering Data,2004,49(6): 1710-1716.
    [82]李乐丰.氨法烟气脱硫工艺及应用时要注意的问题[J].山东电力技术,1999,(6):45-48,57.
    [83]龙辉,石金兴,王泓.引进的湿法烟气脱硫技术介绍及性能比较[J].水利电力机械,2002,24(5):1-6,10.
    [84]Guangwen Xu, Qimin Guo, Takao Kaneko, et al. A new semi-dry desulfurization process using a powder-particle spouted bed[J]. Advances in Environmental Research,2000,4(1): 9-18.
    [85]Xiaoxun Ma, Takao Kaneko, Tsutomu Tashimo, et al. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science,2000,55(20):4643-4652.
    [86]X. Ma, T. Kaneko, G. Xu, et al. Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Fuel,2001, 80(5):673-680.
    [87]Qi Zhang, Keting Gui. A novel semidry flue gas desulfurization process with the magnetically fluidized bed reactor[J]. Journal of Hazardous Materials,2009,168(2-3): 1341-1345.
    [88]杨柳春.半干法烟气脱硫技术在我国的应用[J].江西能源,2005,(3):24-26.
    [89]F. F. Hill, J. Zank. Flue gas desulphurization by spray dry absorption[J]. Chemical Engineering and Processing,2000,39(1):45-52.
    [90]Fabrizio Scala, Michele D'ascenzo. Absorption with instantaneous reaction in a droplet with sparingly soluble fines[J]. AIChE Journal,2002,48(8):1719-1726.
    [91]黎在时,刘卫平.德国WULFF公司的干法脱硫技术[J].中国环保产业,2002,(1):74-76.
    [92]吴必科,李云峰,曹宇飞.内回流循环流化床烟气脱硫运行特性分析[J].中国电力,2003,36(8):55-58.
    [93]Karsten Felsvang, Peter Bo Olsen, Flemming Jensen, et al. The GSA dry scrubbing technology for retrofit applications[J]. Environmental Progress,1999,18(2):75-79.
    [94]涂霞.烟气循环流化床——悬浮吸收脱硫工艺[J].云南环境科学,2003,22(增刊):155-157.
    [95]葛介龙,王新龙,李文勇.NID工艺在国内的应用与研究[J].环境工程,2002,20(1):37-39.
    [96]F. J. Gutierrez, P. Ollero, A. Cabanillas, et al. A technical pilot plant assessment of flue gas desulfurisation in a circulating fluidised bed[J]. Advances in Environmental Research, 2002,7(1):73-85.
    [97]Jadwiga Wieckowska. Catalytic and adsorptive desulphurization of gases [J]. Catalysis Today,1995,24(4):405-465.
    [98]Karl Knoblauch, Ekkehard Richter, Harald Juntgen. Application of active coke in processes of SO2- and NOx-removal from flue gases[J]. Fuel,1981,60(9):832-838.
    [99]Kazuhiko Tsuji, Ikuo Shiraishi. Combined desulfurization, denitrification and reduction of air toxics using activated coke:1. Activity of activated coke[J]. Fuel,1997,76(6): 549-553.
    [100]Kazuhiko Tsuji, Ikuo Shiraishi. Combined desulfurization, denitrification and reduction of air toxics using activated coke:2. Process applications and performance of activated coke[J]. Fuel,1997,76(6):555-560.
    [101]David G. Olson, K. Tsuji, I. Shiraishi. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. Fuel Processing Technology,2000,65-66:393-405.
    [102]张文辉,刘静,孙淑君.活性焦烟气脱硫技术研究[J].洁净煤技术,2004,10(4): 55-59.
    [103]史红云,翟尚鹏.可资源化活性焦烟气脱硫技术与贵州经济可持续发展[J].贵州环保科技,2006,12(2):5-9.
    [104]翟尚鹏,刘静,辛昌霞,等.移动床活性焦烟气脱硫与除尘中试研究[J].环境科学,2006,27(5):850-854.
    [105]Hua Li, Dazhuang Liu, Fu'an Wang. Solubility of Dilute SO2 in Dimethyl Sulfoxide[J]. Journal of Chemical Engineering Date,2002,47(4):112-115.
    [106]李华,陈万仁,张世华.有机溶剂吸收法脱除烟气中二氧化硫的研究[J].煤炭转化,2005,28(4):40-42,49.
    [107]Hua Li, Wanren Chen, Dazhuang Liu. Desulfurizing Absorbent for Flue Gas and its Absorption Mechanism[J]. Journal of Environmental Sciences,2003,15(1):92-96.
    [108]郁青春,张世超,王新东,等.CeO2/γ-Al2O3脱硫剂的制备及脱硫动力学研究[J].煤矿环保,2007,13(3):74-77.
    [109]冯治宇,胡筱敏,孙铁珩,等.FeSO4/Ac脱硫剂脱硫性能的研究[J].环境污染与防治,2005,27(1):47-49.
    [110]K A Halhouli, A M Ashour. Flue gas desulfurization using methanol as a solvent and bromine or iodine as an oxidant[J]. Chemosphere,1999,38(13):3181-3192.
    [111]M. H. H. Van Dam, A. S. Lamine, D. Roizard, et al. Selective Sulfur Dioxide Removal Using Organic Solvents[J]. Industrial & Engineering Chemistry Research,1997,36(11): 4628-4637.
    [112]Elisabeth Potteau, Eric Levillain, Jean-Pierre Lelieur. Mechanism of the electrochemical reduction of sulfur dioxide in non-aqueous solvents[J]. Journal of Electroanalytical Chemistry,1999,476(1):15-25.
    [113]Richard De Kermadec, Francois Lapicque, Denis Roizard, et al. Characterization of the SO2-N-Formylmorpholine Complex:Application to a Regenerative Process for Waste Gas Scrubbing[J]. Industrial & Engineering Chemistry Research,2002,41(2):153-163.
    [114]Dominik Nagel, Richard De Kermadec, Hans-Gunther Lintz, et al. Absorption of sulfur dioxide in N-formylmorpholine:investigations of the kinetics of the liquid phase reaction[J]. Chemical Engineering Science,57(22-23):4883-4893.
    [115]汤志刚,周长城,陈成.乙二胺/磷酸溶液化学吸收法烟气脱硫的研究[J].高校化学工程学报,2005,19(3):285-291.
    [116]Yuegang Zuo, Jiirg Hoigne. Evidence for Photochemical Formation of H2O2 and Oxidation of SO2 in Authentic Fog Water [J]. Science,1993,260(5104):71-73.
    [117]S. Colle, J. Vanderschuren, D. Thomas. Simulation of SO2 absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes[J]. Chemical Engineering Science,2005,60(22):6472-6479.
    [118]李伟,肖文德.磷酸钠缓冲溶液浓缩废气中的SO2[J].华东理工大学学报:自然科学版,1999,25(5):433-437.
    [119]袁孝况,李围潮,盛在行,等.高效填料塔中用柠檬酸/柠檬酸钠溶液进行烟气脱硫的研究[J].化学工程,2001,29(2):46-50.
    [120]薛娟琴,范瑞江,王召启,等.声化学反应器在脱除SO2过程中的应用[J].化学通报(印刷版),2006,69(1):52-56.
    [121]Shih Ger Chang, David Littlejohn, Scott Lynn. Effects of metal chelates on wet flue gas scrubbing chemistry[J]. Environmental Science & Technology,1983,17(11):649-653.
    [122]Shih Ger Chang, David Littlejohn, David K. Liu. Use of ferrous chelates of SH-containing amino acids and peptides for the removal of nitrogen oxides (NOx) and sulfur dioxide from flue gas[J]. Industrial & Engineering Chemistry Research,1988,27(11): 2156-2161.
    [123]Tomasz T. Suchecki, Barbara Mathews, Hidehiro Kumazawa. Kinetic Study of Ambient-Temperature Reduction of Fellledta by Na2S2O4[J]. Industrial & Engineering Chemistry Research,2005,44(12):4249-4253.
    [124]王健,姜开明.我国烟气脱硫技术现状综述[J].粉煤灰,2004,16(6):41,44.
    [125]徐凤刚.脱硫产业的发展机遇和面临的挑战[J].电力环境保护,2005,21(1):1-4.
    [126]薛菲,石劲松.烟气脱硫技术现状与发展建议[J].江苏化工,2001,29(2):32-35.
    [127]韩成年.燃煤二氧化硫污染及其治理技术的现状分析[J].中国铸造装备与技术,2001,(2):5-8.
    [128]Jacek A. Michalski. The Influence of Aerodynamic Characteristics on Mass Exchange Efficiency in FGD Scrubbers[J]. Chemical Engineering & Technology,1999,22(4):343-351.
    [129]赵健,曾德勇.氧化镁-亚硫酸镁湿法脱硫工艺初探[J].热力发电,2006,35(1):54-56.
    [130]Keping Yan, Ruinian Li, Tianle Zhu, et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale[J]. Chemical Engineering Journal,2006,116(2):139-147.
    [131]Suhao He, Guangming Xiang, Dingkai Li, et al. Commercial test of a slurry jet FGD system[J]. Environmental Progress,2002,21(2):131-136.
    [132]A. Bandyopadhyaya, M. N. Biswasa. Prediction of the Removal Efficiency of a Novel Two-Stage Hybrid Scrubber for Flue Gas Desulfurization[J]. Chemical Engineering & Technology,2006,29(1):130-145.
    [133]郭如新.镁法烟气脱硫研究进展[J].硫磷设计与粉体工程,2009,(3):10-14.
    [134]曹霞,陈秀萍.浅谈氢氧化镁法脱硫技术[J].有色冶金设计与研究,2000,21(1):47-51.
    [135]Eric N. Kaufman, Mark H. Little, Punjai T. Selvaraj. Recycling of FGD gypsum to calcium carbonate and elemental sulfur using mixed sulfate-reducing bacteria with sewage digest as a carbon source[J]. Journal of Chemical Technology & Biotechnology,1996, 66(4): 365-374.
    [136]郭如新.氢氧化镁生产应用现状及研发动向[J].化工科技市场,2001,24(11):4-7,25.
    [137]郭如新.氧化镁、氢氧化镁在环保领域中的应用[J].江苏化工,2004,32(2):1-4.
    [138]Torii Masahiro, Shimazaki Hiroaki, Endo Takumi, et al. Operation Results of IHI Flue Gas Desulfurization System for Coal-Fired Boiler of IPP[J]. Ishikawajima Harima Engineering Review,2001,41(3):128-131.
    [139]G R Koehler. Alkaline scrubbing removes sulfur dioxide[J]. Chemical Engineering Progress,1974,70(6):63-65.
    [140]Bishop P, Wu Qingzhong. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewaters treatment[A].16th Proceedings Annual InternationalPittsburgh Coal Conference[C].1999.477-486.
    [141]Beeghly J H. Product development of FGD recovered magnesium hydroxide[A].16th Proceedings Annual International Pittsburgh Coal Conference[C].1999.462-467.
    [142]M Hartman, K Svoboda. Chemical and engineering aspects of the regeneration of MgO in a wet magnesite process of desulfrizing flue gases[J]. Chemicky Prumsyl,1984,34(1): 33-39.
    [143]J Hubena, J Vejvoda. Evaluation of potential raw materials for FGD by magnesite process in combination with production of sintered magnesia[P]. Czechoslovakia: 103-22-182949,1985.
    [144]S Najmer. Processing MgSO3 from flue gas desulfurizing traps[P]. Czechoslovakia: 106-14-104741,1987.
    [145]J Vejvoda, J Hubena. Utilization of the magnesite process for desulfurization of combustion gases in Czechoslovakia:Further alter natives of the process[J]. Chemicky Prumsyl,1986,36(8):396-400.
    [146]M Krysik. Studies of absorption in the magnesite method for desulfurization of flue gases[J]. Prace Naukowe Politechniki Szczecinskiej,1988, (362):43-51.
    [147]A Urbanek, K Kunanowski. Desulfurization of gases by the wet magnesia method of Warsaw Technica 1U niversity[P]. Czechoslovakia:137-8-113391,2002.
    [148]Hirofumi Kikkawa, Takanori Nakamoto, Masanori Morishita, et al. New Wet FGD Process Using Granular Limestone[J]. Industrial & Engineering Chemistry Research,2002, 41(12):3028-3036.
    [149]Matsui Hideo, Iiraura Hiroaki. Treatment of incinerator flue gases with magnesium hydroxide[P]. Japan:06246130A2,1994.
    [150]Kita Yoshihiro, Uejima Naoyuki. Wet-process desulfurization of flue gas by using calcined magnesia slurry[P]. Japan:07232029,1995.
    [151]USA Chemical Construction Corp.. Removal of sulfur dioxide and solid particles from flue gas[P]. Japan:52002865,1977.
    [152]R Bitsko, R W Helt. Progress and problems with magnesium oxide regenerable scrubbers [J]. Proceedings of the American Power Conference,1991,53(1):701-705.
    [153]Y. Berman, A. Tanklevsky, Y. Oren, et al. Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams:part Ⅱ[J]. Chemical Engineering Science,2000,55(5):1023-1028.
    [154]Akiyoshi Tetsuo. Waste gas desulfurization using magnesium hydroxide with improved utilization factor of treatment agent[P]. Japan:2001179048 A2,2001.
    [155]Hayakawa Yurni, Yamashita Masatada. Removal of sulfur oxides from boiler flue gases[P]. Japan:2001179048A2,2001.
    [156]Koyama Hisaji. Apparatus for desulfurization of flue gases with recycling magnesium oxide and recoverying sulfuric acid[P]. Japan:10109013,1998.
    [157]G. R. Koehler. SO2 processing em dash alkaline scrubbing removes sulfur dioxide[J]. Chemical Engineering Progress,1974, (6):63-65.
    [158]Turcaniova, Udmila, Tkacova. Selective reaction of sulfur dioxide with magnesium oxide in an aqueous suspension of caustic magnesite[J]. Chemicky Prumsyl,1988,38(8): 398-402.
    [159]Chemical Construction Corporation. Removal of sulfur dioxide from waste gases[P]. USA:794200,1969.
    [160]Ishikawajima Harima Heavy Ind.. Exhaust gas desulfurization method involves adding calcium hydroxide to waste material slurry resulting from treatment of exhaust gas with magnesium oxide or hydroxide and recovering magnesium hydroxide and gypsum[P]. Japan: 2000288338A,1999.
    [161]D. K. Jones, Allegheny Energy Inc.. Recovery of gypsum product and magnesium hydroxide product from flue gas containing sulfur dioxide involves treating flue gas with magnesium hydroxide slurry[P]. USA:2006251556A1,2005.
    [162]郭如新.镁法烟气脱硫技术国内应用与研发近况[J].硫磷设计与粉体工程,2010,(3):16-20.
    [163]茆令文.玻璃熔窑烟气脱硫除尘技术研究[J].中国玻璃,2002,27(5):2-6.
    [164]郭如新.镁剂烟气脱硫联产硫镁肥料初探[J].化工科技市场,2002,25(8):24-27.
    [165]六合天融(北京)环保科技有限公司.用锅炉烟气制取七水硫酸镁肥料的方法[P].中国:1733656,2006.
    [166]六合天融(北京)环保科技有限公司.利用锅炉烟气制取亚硫酸镁的方法[P].中 国:1775682,2006.
    [167]六合天融(北京)环保科技有限公司.利用镁法脱硫副产物亚硫酸镁制取脱硫剂氧化镁和二氧化硫的方法[P].中国:1775681,2006.
    [168]崔可,柴明,徐康富,等.回收法氧化镁湿法烟气脱硫机理和工艺基础研究[J].环境科学,2006,27(5):846-849.
    [169]张战朝,尚占黎,贾继元.氧化镁脱硫回收副产品提浓试验研究[J].中国环保产业,2006,(11):28-30.
    [170]北京融通丰源系统技术有限公司.低浓度二氧化硫烟气脱硫制硫酸的方法及烟气脱硫系统[P].中国:1887696,2007.
    [171]熊天渝.循环使用氧化镁除去废气中二氧化硫使其成为产品的方法[P].中国:1891330,2007.
    [172]徐辉,梁燕,童翠香.大型烟气脱硫除尘系统[P].中国:101507895,2009.
    [173]郭如新.中国镁质资源概况与镁法烟气脱硫[J].硫磷设计与粉体工程,2009,(6):24-29.
    [174]山乐胜.应用氧化镁法烟气脱硫工艺的可行性分析[A].2004中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集[C].2004.32-35.
    [175]马丽萍,宁平.一种脱硫石膏回收硫联产碳酸钙的方法[P].中国:101337684,2009.
    [176]周建安,党君祥,吴贤甫,等.一种烧结球团烟气脱硫副产物的回收处理方法[P].中国:101703873A,2010.
    [177]仝明,唐志永,陈听,等.镁法脱硫副产物亚硫酸镁煅烧回用技术[P].中国:101624197,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700