用户名: 密码: 验证码:
活性炭协同接地极雾化电晕放电特性及预处理采油废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接地极雾化电晕放电技术是一项环境友好型污水处理技术,它处理效率高、反应速度快、不造成二次污染,是值得关注的一项环境治理工艺。本文研究了接地极雾化电晕放电单独作用时和协同活性炭情况下放电特征和对采油废水的预处理效果。本课题涉及到的研究内容和获得的研究结论如下:
     1.将雾化放电和电晕放电有机结合在一起,设计了一种新型反应器。放电等离子体的活性物种的存在时间很短,以羟基自由基为例,仅为10-7s。而传统的放电方法并不能使等离子区和反应区相互分离,所以减少了活性物种与污染物的反应时间。该反应器放电等离子区与反应区同步,使放电过程所生成的活性物种能够更有效、充分地作用于水中污染物。同时,在强静电场力和表面张力的作用下,待处理水被雾化成小液滴,从放电反应空间通过,实现了能量的高效利用。
     2.为寻求出最佳放电条件提供依据,正负电晕放电、极间距离、流量对于接地极雾化电晕放电的影响进行了研究。研究表明,接地极雾化负电晕放电的放电电流大于接地极雾化正电晕放电的放电电流,更高于传统的电晕放电电流。主要原因是雾化电晕放电中线电极表面形成的泰勒锥缩短了两极之间的距离,另外,形成的泰勒锥的曲率半径也可能促进放电电流的增加。
     3.接地极雾化电晕放电放电机理表明:线电极和板电极之间形成了非匀强电场,线电极表面的电场强度最大,当电压超过起晕电压时将在线电极附近形成电晕区,发生放电。并且,覆盖在线电极表面上的水流在强电场力作用下,形成电流体效应,产生液体静电喷雾作用,小液滴会在放电极间发生雾化放电现象。较小的带电液滴在运动的过程中,形成的多锥射流在一定程度上有和较大液滴形成的多锥射流交叉的可能,所以这样的放电形式更有利于形成较为均匀的等离子区,提高其对废水的作用效果。
     4.以放电特性为依据,选择了适当的电极间距和电压对高浓度采油废水进行了预处理,并测量了反应前后的BOD、COD、浊度及pH值的变化。接地极雾化电晕放电对采油废水的预处理效果研究表明,接地极雾化电晕放电预处理采油废水可有效提高其可生化性。采油废水可生化性初始值0.079,经处理后上升到0.5以上。COD去除率可达79.64%。
     5.活性炭对于放电电流的影响研究表明:活性炭的应用并未使接地极雾化电晕放电电流发生变化,主要原因是活性炭被润湿后和板电极之间形成了良好的导通,从而保证了有无活性炭的情况下,两极之间的距离没有发生变化,所以放电强度没有变化。
     6.活性炭协同作用下对采油废水的预处理处理效果表明:活性炭层与接地极雾化电晕放电协同作用后,使采油废水的浊度明显低于无活性炭层时接地极雾化电晕放电处理后的采油废水。同时,活性炭协同作用时,整个处理过程BOD、COD的值均小于无活性炭层时接地极雾化电晕放电处理废水所对应的BOD、COD的值。分析原因活性炭能引发臭氧自由基型链反应,加速臭氧分解生成羟基自由基。而且活性炭层越厚,处理过程中对应的BOD、COD的值越小,说明活性炭越厚时,越有利于污染物的去除,与接地极雾化放电所形成的等离子体产生的协同作用越为明显。
     7.不同流量下对于处理结果的影响研究表明,无论是否存在活性炭层,整体来看,流量的增加对降低废水浊度、BOD、COD均产生不利影响。分析原因是流量的增加使放电电流减小,降低了活性物质的产生。故而,反应速率减慢。当电压为13kv,线电极和活性炭层之间的距离为2.5cm,在流量为50ml/min,活性炭厚度为5mm时,处理效果最为理想。
Earthed atomizing corona discharge is an environmental-friendly technology to treatwaste water. This environmental management technology is notable for its high treatmentefficiency, fast reaction and freedom from secondary pollution. This paper studies thecharacteristics of earthed atomizing corona discharge when it is used alone and when it issynergized with activated carbon, as well as their effects of pre-treating of oilfield producedwater. The research contents, results and conclusions are as follows:
     1. Corona discharges and atomizing discharges were combined effectively, and anew-style reactor was designed. Active species of discharge plasma exist for quite a short time.Take OH as an example, it only presents for10-7S. Traditional discharge methods are not ableto synchronise the plasma zone and reaction zone completely, so the reaction time betweenactive species and pollutants is cut down. Research indicates that earthed atomizing coronadischarge forms synchronised plasma zones and atomizing liquid drops, as well as theuniform plasma zones, and active species produced by the discharge are able to interact withwaste water from oil extraction directly. Simultaneously, the water to be treated, under theaction of strong electrostatic field force and surface tension, is atomized to small liquid dropsthat pass through the discharge reaction space. The atomizing effect enlarges the reaction areabetween the water and the plasma zone. Thus, compared with other discharge treatmentpatterns, this method can transform the waste water form oil extraction to be biochemicallytreatable with relatively lower energy and realise a higher utilisation rate of energy.
     2. To provide a basis for the best discharge conditions, the influences of positive/negativeatomizing corona, inter-electrode distance and flux on the earthed atomizing corona dischargeare researched. According to the research finding, on the condition of the same dischargesituation, the discharge current of a negative earthed atomizing corona is greater than that of apositive earthed atomizing corona and exceeds that of a traditional corona even more. Themain reason is that a Taylor Cone formed on the surface of a line electrode during theatomizing corona discharge shortened the inter-electrode distance. Also, there is a possibilitythat the curvature radius of the Taylor Cone will facilitate the aggrandising of the dischargecurrent.
     3. In the research, the discharge mechanism of earthed atomizing corona discharge isanalyzed. The research suggests that: a non-uniform electric field is formed between the lineelectrode and the plate electrodes. The highest electric field intensity exists on the surface ofthe line electrode. When the voltage exceeds the onset voltage, a corona zone is formedaround the line electrode and discharges. At the same time, the water flow that covers the surface of the line electrode produces an electric fluid effect under the action of strong electrostatic field force and further acts as a liquid electrostatic spray. The atomized small liquiddrops will discharge in the discharge electrodes. Multiple cone-shaped fluxes formed whensmall electric liquid drops move will, to some extent, be quite likely to make a crossover withthose created by large liquid drops, so this discharge form would be more beneficial forcreating relatively even plasma zone to enhance its effect on waste water.
     4. According to I-V characteristics of earthed atomizing corona discharge, appropriateinter-electrode distance and voltage are selected to carry out advanced oxidation treatment onhigh concentration waste water from oil extraction while BOD5, COD, turbidity and pHbefore and after reaction are measured. The study indicates that when consuming little energy,earthed atomizing corona discharge to turns out to be effective on augmenting thebiodegradability of waste water from oil extraction.
     The initial value of biodegradability of oilfield produced water was0.079and later roseto over0.5after the treatment. And COD removal rate reached79.64%.
     5. The research on activated carbon’s influence on the discharge current suggests that theinvolvement of activated carbon does not cause any change in the current of earthedatomizing corona discharge. The main reason is that a good conduction formed between theactivated carbon and the plate electrodes after the activated carbon is soaked ensures thatthere is no change in the inter-electrode distance with or without activated carbon. As a result,the discharge intensity is unchanged.
     6. The research on the effect of pre-treating oilfield produced water with the synergy ofearthed atomizing corona discharge and activated carbon suggests that after the earthedatomizing corona discharge and the activated carbon are synergized, the turbidity of theoilfield produced water is significantly lower than the turbidity of the oilfield produced watertreated by earthed atomizing corona discharge without activated carbon. At the same time,BOD and COD of the oilfield produced water during the pre-treating are both lower thanthose without activated carbon. The reason is that the activated carbon causes ozone freeradical chain reaction which further accelerates the decomposition of ozone into hydroxylradical. The thicker the activated carbon layer, the lower BOD and COD are. This indicatesthat a thicker activated carbon layer is more helpful in removing pollutants and shows moresignificant synergy with the plasma from the earthed atomizing corona discharge.
     7. The research on the influences of different water flux on the treatment effect suggeststhat with or without activated carbon, the increase in water flux has a negative influence onlowering the turbidity, BOD and COD of the oilfield produced water. The reason is that theincreased flux reduces the discharge current and thus reduces the generation of active species.As a result, the reaction rate is lowered. When the voltage is13kv, the distance between the line electrode and the activated carbon is2.5cm; when the flux is50ml/min and the thicknessof the activated carbon is5mm, the treatment effect is the best.
引文
[1]陈淦.发展三次采油的战略意义及政策要求[J].油气采收率技术,1997.4(004):1-6.
    [2] Gogarty W, Tosch W. Miscible-type waterflooding: oil recovery with micellar solutions[J]. Journal ofPetroleum Technology,1968.20(12):1407-1414.
    [3] Holm L. Use of soluble oils for oil recovery[J]. Journal of Petroleum Technology,1971.23(12):1475-1483.
    [4]陈铁龙.三次采油概论[M].2000:石油工业出版社.
    [5] Ali S, Darlington L, Occapinti J. New filtration process cuts contaminants from offshore producedwater[J]. Oil&Gas Journal.1998.96(44):73-78.
    [6]邹启贤,陆正禹.油田废水处理综述[J].工业水处理,2001.21(8):1-3.
    [7] Reis J. An overview of the environmental issues facing the upstream petroleum industry[J]. SPE AnnualTechnical Conference and Exhibition,1993.57-61.
    [8]马文臣,易绍金.石油开发中污水的环境危害[J].石油与天然气化工,1997.26(002):125-127.
    [9] Dal B, Smith M. Global onshore and offshore water production[J]. Exploration&production–oil&gasreview,2007.34-36.
    [10] Dalsiner A. Interagency Coordinating Committee on Oil Pollution Research[J]. Oil pollution researchand technology plan,1992.(4):255-266.
    [11]罗洪君,王绪远,赵骞等.石油污染土壤生物修复技术的研究进展[J].四川环境,2007.26(3):104-109.
    [12] Hudgins C. Chemical use in North Sea oil and gas E&P[J]. Journal of Petroleum Technology.1994.67-74.
    [13] Nicolotti G, Egli S. Soil contamination by crude oil: impact on the mycorrhizosphere and on therevegetation potential of forest trees[J]. Environmental Pollution,1998.99(1):37-43.
    [14]任磊,黄廷林.土壤的石油污染[J].农业环境保护,2000.19(006):360-363.
    [15]丁克强,郑昭佩,孙铁珩等.石油污染土壤的生物降解研究[J].生态学杂志,2001.20(4):16-18.
    [16]姚德明,许华夏.石油污染土壤生物修复过程中微生物生态研究[J].生态学杂志,2002.21(001):26-28.
    [17]刘文霞,孟祥远.中原油田耕地污染分析[J].农业环境保护,2002.21(001):56-59.
    [18]项雅玲,吴孔清.高矿化度油田废水污染农田现状调查与评价[J].生态农业研究,1999.7(004):44-47.
    [19]张学佳,纪巍,康志军等.水环境中石油类污染物的危害及其处理技术[J].石化技术与应用,2009.27(002):181-186.
    [20] OGP. Aromatics in produced water: occurrence, fate&effects, and treatment..2002.20/324.
    [21]徐婷,苏宏智,李友平.采油废水回注处理技术的现状及展望[J].污染防治技术,2010.23(001):70-73.
    [22] Koren A, Nadav N. Mechanical vapour compression to treat oil field produced water[J]. Desalination,1994.98(1-3):41-48.
    [23]国家技术监督局. GB8978-1996.污水综合排放标准[S].北京:中国环境科学出版社,1998.
    [24]周彤.污水回用决策与技术[M].2002:化学工业出版社.
    [25]彭忠勋,黄建中.稠油采出水回用蒸汽发生器的水质控制[J].石油规划设计,2001.12(004):18-20.
    [26] Palmer L, Beyer A, Stock J. Biological oxidation of dissolved compounds in oilfield produced waterby a field pilot biodisk[J]. Journal of Petroleum Technology,1981.33(6):1136-1140.
    [27]关卫省.石油烃废水处理技术及数值模拟[D].2001,西安建筑科技大学博士学位论文.
    [28] Yamamoto K, Hiasa M, Mahmood T, et al. Direct solid-liquid separation using hollow fibermembrane in an activated sludge aeration tank[J]. Water Science&Technology,1989.21(4-5):43-54.
    [29] Walling C, Weil T. The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acidsolution[J]. International Journal of Chemical Kinetics,1974.6(4):507-516.
    [30] Eisenhauer H. Chemical removal of ABS from wastewater effluents[J]. Journal (Water PollutionControl Federation),1965.37(11):1567-1577.
    [31] Lawrence A, Miller J, Miller D, et al. Regional assessment of produced water treatment and disposalpractices and research needs[J]. SPE/EPA Exploration and Production Environmental Conference,1995.373-392.
    [32] Ji, G., T. Sun, Q. Zhou, et al. Constructed subsurface flow wetland for treating heavy oil-producedwater of the Liaohe Oilfield in China[J]. Ecological Engineering,2002.18(4):459-465.
    [33] Murray C, Heatley J, Karanfil T, et al. Performance of a hybrid reverse osmosis-constructed wetlandtreatment system for brackish oil field produced water[J]. Water research,2003.37(3):705-713.
    [34] Caswell P, Gelb D, Marinello S, et al. A Component Performance Evaluation of Constructed SurfaceFlow and Wetlands Cells for Produced Water Treatment in the Pitchfork Field, Wyoming[J]. SPE AnnualTechnical Conference and Exhibition,1992.435-444.
    [35] Yrieix C, Gonzalez C, Deroux J, et al. Countercurrent liquid/liquid extraction for analysis of organicwater pollutants by GC/MS[J]. Water research,1996.30(8):1791-1800.
    [36] Deroux J, Gonzalez C, Le Cloirec P, et al. Analysis of extractable organic compounds in water by gaschromatography mass spectrometry: applications to surface water1[J]. Talanta,1996.43(3):365-380.
    [37]聂永平,邓正栋.膜生物膜反应器研究进展[J].环境污染治理技术与设备,2002.3(011):88-91.
    [38] Bertrand J, Almallah M, Acquaviva M, et al. Biodegradation of hydrocarbons by an extremelyhalophilic archaebacterium[J]. Letters in Applied Microbiology,1990.11(5):260-263.
    [39] Guathier M, Lafay B, Christen R. Marinobacter hydrocarbonoclasicus gen. nov., sp. nov., a newextremely halotolerant hydrocarbon degrading marine bacterium[J]. Inter. J. Syst. Bacteriol,1992.42:568.
    [40] Tellez G, Nirmalakhandan N, Gardea J. Performance evaluation of an activated sludge system forremoving petroleum hydrocarbons from oilfield produced water[J]. Advances in Environmental Research,2002.6(4):455-470.
    [41] Freire D, Cammarota M, Sant'Anna G. Biological treatment of oil field wastewater in a sequencingbatch reactor[J]. Environmental technology,2001.22(10):1125-1135.
    [42]赵天亮,秦芳玲.活性污泥法处理高含盐采油废水研究[J].西安石油大学学报:自然科学版,2008.23(002):63-66.
    [43]李顺成,刘振华,李哲等.SBR+高效菌种处理采油废水[J].城市环境与城市生态,2003.16(6):74-75.
    [44]李秀珍,李斌莲.高含氯采油废水生物治理技术研究[J].油气田环境保护,2002.12(2):17-18.
    [45] Walling C. Fenton's reagent revisited[J]. Accounts of Chemical Research,1975.8(4):125-131.
    [46] Legrini O, Oliveros E, Braun A. Photochemical processes for water treatment[J]. Chemical Reviews,1993.93(2):671-698.
    [47] Walling C, Kato S. Oxidation of alcohols by Fenton's reagent. Effect of copper ion[J]. Journal of theAmerican Chemical Society,1971.93(17):4275-4281.
    [48] Durham D. Advances in water clarifier chemistry for treatment of produced water on Gulf of Mexicoand North Sea offshore production facilities[J]. SPE/EPA Exploration and Production EnvironmentalConference,1993.615-622.
    [49] Taylor K, Burke R, Nasr H, et al. Development of a flow injection analysis method for thedetermination of acrylamide copolymers in brines[J]. Journal of Petroleum Science and engineering,1998.21(1-2):129-139.
    [50] Scoggins M, Miller J. Determination of water-soluble polymers containing primary amide groupsusing the starch-triiodide method[J]. Old SPE Journal,1979.19(3):151-154.
    [51] Lai Y, Lin J. New hybrid fuzzy controller for direct torque control induction motor drives[J]. PowerElectronics, IEEE Transactions on,2003.18(5):1211-1219.
    [52] Hagan M, Demuth H, Beale M, et al. Neural network design[M].1996: PWS Pub.
    [53] Madian E, Tarwanto M, Snavely E, et al. Treating of produced water for surface discharge at theArun gas condensate field.1995.
    [54] Campos J, Borges R, Oliveira A, et al. Oilfield wastewater treatment by combined microfiltrationand biological processes[J]. Water research,2002.36(1):95-104.
    [55] Dalmacija B, Tamas Z, Karlovic E, et al. Tertiary treatment of oil-field brine in a biosorption systemwith granulated activated carbon[J]. Water research,1996.30(5):1065-1068.
    [56]许谦.序批式生物膜法处理油田采油废水[J].油气田环境保护,2003.13(003):23-25.
    [57]邹克华,曹明伟.高温优势菌生物膜法处理采油废水[J].城市环境与城市生态,2002.15(005):32-33.
    [58]杨二辉,李大平,赵长洪等.高温优势菌生物膜法处理含油污水的中试[J].环境工程,2004.22(3):11-13.
    [59]崔俊华,蔡振宇,金文标等.高效原油降解菌和内循环3-PBFB处理油田采出水的研究[J].环境科学学报,2002.22(4):465-468.
    [60]苏德林,王建龙,刘凯文等. ABR-BAF工艺处理采油废水的中试研究[J].中国给水排水,2006.22(1):22-26.
    [61]张华,陈俊,刘宇明等.高盐高氯采油废水处理工程实践[J].中国给水排水,2006.22(024):71-73.
    [62]田慧颖,张兴文,张捍民等. MBR-BAF系统处理辽河油田采油污水的研究[J].膜科学与技术,2004.24(4):48-51.
    [63]赵昕,汪严明,叶正芳等.固定化曝气生物滤池处理采油废水[J].环境科学,2006.27(6):1155-1161.
    [64]黄廷林,杨利伟.采油废水回注处理技术[J].工业用水与废水,2000.31(4).
    [65]肖昌胜,王志强.利用氧化塘技术处理采油废水[J].工业水处理,2002.22(10):60-61.
    [66]李虞庚,冯世功.石油微生物学[M].1991:上海交通大学出版社.
    [67]王海峰.稠油污水回用于热采锅炉处理技术研究[D].2009,中国海洋大学博士学位论文.
    [68] Bessa E, Sant'AnnaJr G, Dezotti M. Photocatalytic/H2O2treatment of oil field produced waters[J].Applied Catalysis B: Environmental,2001.29(2):125-134.
    [69]陈进富,李忠涛.采油废水的有机构成及其COD的处理技术研究[J].石油与天然气化工,2001.30(1):47-49.
    [70]陈颖,王秀媛.光催化含油污水的可行性研究[J].大庆石油学院学报,2001.25(002):84-86.
    [71] Chunmei Z. Photochemical Treatment of Selected Organic Wastewater.[J]. Chinese Journal ofEnviromental Science,1997.6.
    [72]黎松强,吴馥萍.臭氧-生物炭深度处理炼油废水研究[J].中国给水排水,2008(z1):108-110.
    [73]陈国华,史春莲,齐春惠. Fenton试剂处理乳化含油废水[J].应用基础与工程科学学报,2007.15(2):156-163.
    [74]龚争辉,吕兴东.气浮—生物氧化技术在采油废水处理中的应用[J].黑龙江环境通报,2000.24(004):26-27.
    [75]沈志刚.一种先进的溶气气浮—除油装置[J].石油化工环境保护,2000.3.
    [76]邓皓,王蓉沙.钻井废水电絮凝浮选处理研究[J].水处理技术,1997.23(004):245-248.
    [77]韩洪军.含油废水电解气浮的理论和试验[J].环境工程,1993.11(006):7-10.
    [78]肖建军,蔡健.气浮除油在焦油车间废水处理中的应用[J].燃料与化工,2005.36(001):31-33.
    [79] Doyle D, Brown A. Field test of produced water treatment with polymer modified bentonite[C]. SPERocky Mountain Regional Meeting,1997.137-142.
    [80] Toyoda M, Aizawa J, Inagaki M.Sorption and recovery of heavy oil by using exfoliated graphite[J].Desalination,1998.115(2):199-201.
    [81] Kumagai S, Noguchi Y, Kurimoto Y, et al. Oil adsorbent produced by the carbonization of ricehusks[J]. Waste Management,2007.27(4):554-561.
    [82]侯士兵,王亚林,贾金平.用废阳离子树脂处理含油废水的研究[J].化工进展,2004.23(004):393-396.
    [83]郝志涛,吴静,陆正禹等.粉煤灰对采油废水中污染物质的吸附研究[J].化工环保,2004.24(z1):341-344.
    [84]闫毓霞,王志强.利用粉煤灰处理采油废水的研究[J].油气田环境保护,2002.12(1):17-19.
    [85]赵以万.粉煤灰资源特性及综合利用途径探讨[J].西南民族大学学报:自然科学版,2008(S1).
    [86]刘成宝,陈志刚,刘曦.应用膨胀石墨动态吸附处理油田污水[J].水处理技术,2007.33(5):58-60.
    [87]王勇,吴胜军,万涛.膨胀石墨-酚醛活性炭复合材料处理污油的研究[J].武汉理工大学学报,2004.26(1):15-18.
    [88] Glaze W, Kang J, Chapin D. The chemistry of water treatment processes involving ozone, hydrogenperoxide and ultraviolet radiation[J]. The Journal of the International Ozone Association,1987.335-352.
    [89]姚晓斌,马颖,姚建年.贵金属对TiO2悬浮液光照过程中H2O2形成的促进作用[J].感光科学与光化学,1999.17(2):159-163.
    [90] Zhang, X., Chen P, Wu F, et al. Degradation of17[alpha]-ethinylestradiol in aqueous solution byozonation[J]. Journal of hazardous materials,2006.133(1-3):291-298.
    [91] Richardson S, Thruston Jr A, Caughran T, et al. Identification of new ozone disinfection byproductsin drinking water[J]. Environmental science&technology,1999.33(19):3368-3377.
    [92] Xu P, Janex M, Savoye P, et al. Wastewater disinfection by ozone: main parameters for processdesign[J]. Water research,2002.36(4):1043-1055.
    [93] Cataldo F. Ozone degradation of ribonucleic acid (RNA)[J]. Polymer degradation and stability,2005.89(2):274-281.
    [94] Cataldo F. DNA degradation with ozone[J]. International journal of biological macromolecules,2006.38(3-5):248-254.
    [95] Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2process[J]. Dyes and pigments,2004.62(3):269-275.
    [96] Shu H, Huang C. Degradation of commercial azo dyes in water using ozonation and UV enhancedozonation process[J]. Chemosphere,1995.31(8):3813-3825.
    [97] Rathi A, Rajor H, Sharma R. Photodegradation of direct yellow-12using UV/H2O2/Fe2+[J]. Journalof hazardous materials,2003.102(2-3):231-241.
    [98] Zalazar C, Labas M, Brandi R, et al. Dichloroacetic acid degradation employing hydrogen peroxideand UV radiation[J]. Chemosphere,2007.66(5):808-815.
    [99] Irmak S, Erbatur O, Akgerman A. Degradation of17[beta]-estradiol and bisphenol A in aqueousmedium by using ozone and ozone/UV techniques[J]. Journal of hazardous materials,2005.126(1-3):54-62.
    [100] Mokrini A, Ousse D, Esplugas S. Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide[J]. Water Science and Technology,1997.35(4):95-102.
    [101] El-Morsi T, Emara M, Abd El Bary H M H, et al. Homogeneous degradation of1,2,9,10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light[J]. Chemosphere,2002.47(3):343-348.
    [102] Stefan M, Hoy A, Bolton J. Kinetics and mechanism of the degradation and mineralization of acetonein dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide[J]. Environmental science&technology,1996.30(7):2382-2390.
    [103] Bali U, atalkaya E, Sengül F. Photodegradation of Reactive Black5, Direct Red28and DirectYellow12using UV, UV/H2O2and UV/H2O2/Fe2+: a comparative study[J]. Journal of hazardous materials,2004.114(1-3):159-166.
    [104] De Laat J, Gallard H, Ancelin S, et al. Comparative study of the oxidation of atrazine and acetone byH2O2/UV, Fe (III)/UV, Fe (III)/H2O2/UV and Fe (II) or Fe (III)/H2O2[J]. Chemosphere,1999.39(15):2693-2706.
    [105] Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. nature,1972.238:37-38.
    [106] Kormann C, Bahnemann D, Hoffmann M R. Photolysis of chloroform and other organic molecules inaqueous titanium dioxide suspensions[J]. Environmental science&technology,1991.25(3):494-500.
    [107] Vinodgopal K, Stafford U, Gray K, et al. Electrochemically assisted photocatalysis.2. The role ofoxygen and reaction intermediates in the degradation of4-chlorophenol on immobilized TiO2particulatefilms[J]. The Journal of Physical Chemistry,1994.98(27):6797-6803.
    [108] Mills A, Morris S, Davies R. Photomineralisation of4-chlorophenol sensitised by titanium dioxide: astudy of the intermediates[J]. Journal of Photochemistry and Photobiology A: Chemistry,1993.70(2):183-191.
    [109] Fujishima A, Rao T, Tryk D. Titanium dioxide photocatalysis[J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2000.1(1):1-21.
    [110] Luck F. A review of industrial catalytic wet air oxidation processes[J]. Catalysis Today,1996.27(1-2):195-202.
    [111]雷乐成,汪大翚.环境科学.水处理高级氧化技术[M].2001:化学工业出版社.
    [112] Hoffmann M, Hua I, Hochemer R. Application of ultrasonic irradiation for the degradation ofchemical contaminants in water[J]. Ultrasonics Sonochemistry,1996.3(3): S163-S172.
    [113] Rehorek A, Tauber M, Gubitz G. Application of power ultrasound for azo dye degradation[J].Ultrasonics Sonochemistry,2004.11(3-4):177-182.
    [114] Tiehm A, Neis U. Ultrasonic dehalogenation and toxicity reduction of trichlorophenol[J]. UltrasonicsSonochemistry,2005.12(1-2):121-125.
    [115] Vlyssides A, Barampouti E, Mai S, et al. Degradation of methylparathion in aqueous solution byelectrochemical oxidation[J]. Environmental science&technology,2004.38(22):6125-6131.
    [116] Johnson D, Feng J, Houk L. Direct electrochemical degradation of organic wastes in aqueousmedia[J]. Electrochimica acta,2000.46(2-3):323-330.
    [117] Mohan N, Balasubramanian N, Basha C A. Electrochemical oxidation of textile wastewater and itsreuse[J]. Journal of hazardous materials,2007.147(1-2):644-651.
    [118] Miwa D, Malpass G, Machado S, et al. Electrochemical degradation of carbaryl on oxideelectrodes[J]. Water research,2006.40(17):3281-3289.
    [119] Weihua S, Zheng Z, Rami A, et al. Degradation and detoxification of aqueous nitrophenol solutionsby electron beam irradiation[J]. Radiation Physics and Chemistry,2002.65(4):559-563.
    [120] Cooper W, Nickelsen M, Green R, et al. The removal of naphthalene from aqueous solutions usinghigh-energy electron beam irradiation[J]. Radiation Physics and Chemistry,2002.65(4):571-577.
    [121] Nickelsen M, Cooper W, Lin K, et al. High energy electron beam generation of oxidants for thetreatment of benzene and toluene in the presence of radical scavengers[J]. Water research,1994.28(5):1227-1237.
    [122]张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(上)[J].上海化工,2000.25(20):4-5.
    [123]屈广周. DBD等离子体降解活性炭吸附的有机物及活性炭再生研究[D].2010,大连理工大学博士学位论文.
    [124]尤特金.液电效应[M].北京:科学出版社.1962.
    [125]杨彬.高压脉冲放电降解染料废水的研究[D].2004,浙江大学博士学位论文.
    [126]张灿.液中放电等离子体技术降解TNT废水的装置和试验研究[D].2008,重庆大学博士学位论文.
    [127] Clements J, Sato M, Davis R. Preliminary investigation of prebreakdown phenomena and chemicalreactions using a pulsed high-voltage discharge in water[J]. Industry Applications, IEEE Transactions on,1987(2):224-235.
    [128] Dwyer T, Greig J, Murphy D, et al. On the feasibility of using an atmospheric discharge plasma as anRF antenna[J]. Antennas and Propagation, IEEE Transactions on,1984.32(2):141-146.
    [129] Sato M, Ohgiyama T, Clements J. Formation of chemical species and their effects on microorganismsusing a pulsed high-voltage discharge in water[J]. Industry Applications, IEEE Transactions on,1996.32(1):106-112.
    [130] Sun B, Sato M, Harano A, et al. Non-uniform pulse discharge-induced radical production in distilledwater[J]. Journal of electrostatics,1998.43(2):115-126.
    [131] Lang P, Ching W, Willberg D, et al. Oxidative degradation of2,4,6-trinitrotoluene by ozone in anelectrohydraulic discharge reactor[J]. Environmental science&technology,1998.32(20):3142-3148.
    [132] Grymonpre D, Finney W, Locke B. Aqueous-phase pulsed streamer corona reactor using suspendedactivated carbon particles for phenol oxidation: model-data comparison[J]. Chemical Engineering Science,1999.54(15-16):3095-3105.
    [133] Wen Y, Jiang X. Pulsed corona discharge-induced reactions of acetophenone in water[J]. PlasmaChemistry and Plasma Processing,2001.21(3):345-354.
    [134] Chen Y, Zhang X, Dai Y, et al. Pulsed high-voltage discharge plasma for degradation of phenol inaqueous solution[J]. Separation and Purification Technology,2004.34(1-3):5-12.
    [135] Joshi A, Locke B, Arce P, et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueouselectrons by pulsed streamer corona discharge in aqueous solution[J]. Journal of hazardous materials,1995.41(1):3-30.
    [136] Miichi T, Ihara S, Satoh S, et al. Spectroscopic measurements of discharges inside bubbles in water[J].Vacuum,2000.59(1):236-243.
    [137] Sun B, Sato M, Sid Clements J. Optical study of active species produced by a pulsed streamer coronadischarge in water[J]. Journal of electrostatics,1997.39(3):189-202.
    [138] Piskarev I, Solovev G, Karelin V, et al. Formation of active species in spark corona discharge at aliquid electrode[J]. High Energy Chemistry,2005.39(3):189-191.
    [139] Anto T, Ohshima T, Sato M. Advanced oxidation processes using pulsed streamer corona discharge inwater[J]. Thin Solid Films,2002.407(1):174-178.
    [140] Sugiarto A, Ito S, Ohshima T, et al. Oxidative decoloration of dyes by pulsed discharge plasma inwater[J]. Journal of electrostatics,2003.58(1):135-145.
    [141] Gao J, Wang X., Hu Z, et al. Plasma degradation of dyes in water with contact glow dischargeelectrolysis[J]. Water research,2003.37(2):267-272.
    [142] Burlica R, Kirkpatrick M, Finney W, et al. Organic dye removal from aqueous solution by glidarcdischarges[J]. Journal of electrostatics,2004.62(4):309-321.
    [143] Yang B, Zhou M, Lei L. Synergistic effects of liquid and gas phase discharges using pulsed highvoltage for dyes degradation in the presence of oxygen[J]. Chemosphere,2005.60(3):405-411.
    [144] He Z, Liu J, Cai W. The important role of the hydroxy ion in phenol removal using pulsed coronadischarge[J]. Journal of electrostatics,2005.63(5):371-386.
    [145] Gao J, Yu J, Li Y, et al. Decoloration of aqueous Brilliant Green by using glow dischargeelectrolysis[J]. Journal of hazardous materials,2006.137(1):431-436.
    [146] Gao J, Yu J, Lu Q, et al. Decoloration of alizarin red S in aqueous solution by glow dischargeelectrolysis[J]. Dyes and pigments,2008.76(1):47-52.
    [147] Wang C, He X. Effect of atmospheric pressure dielectric barrier discharge air plasma on electrodesurface[J]. Applied Surface Science,2006.253(2):926-929.
    [148] Locke B, Sato M, Sunka P, et al. Electrohydraulic discharge and nonthermal plasma for watertreatment[J]. Industrial&engineering chemistry research,2006.45(3):882-905.
    [149] Wang H, Li J, Quan X. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsedcorona discharge system in water[J]. Journal of electrostatics,2006.64(6):416-421.
    [150] Zhang Y, Zhou M, Lei L. Degradation of4-chlorophenol in different gas-liquid electrical dischargereactors[J]. Chemical Engineering Journal,2007.132(1-3):325-333.
    [151] Li J, Sato M, Ohshima T. Degradation of phenol in water using a gas-liquid phase pulsed dischargeplasma reactor[J]. Thin Solid Films,2007.515(9):4283-4288.
    [152] Borra J, Tombette Y, Ehouarn P. Influence of electric field profile and polarity on the mode of EHDArelated to electric discharge regimes[J]. Journal of aerosol science,1999.30(7):913-925.
    [153] Manolache S, Shamamian V, Denes F. Dense medium plasma-plasma-enhanced decontamination ofwater of aromatic compounds[J]. Journal of environmental engineering,2004.130:17.
    [154] Sugimoto T, Asano K, Higashiyama Y. Negative corona discharge at a tip of water cone deformedunder dc field[J]. Journal of electrostatics,2001.53(1):25-38.
    [155] Bon K, Sang S. Electrospray characteristics of highly viscous liquids[J]. Journal of aerosol science,2002.33(10):1361-1378.
    [156] Li J. Formation and stabilization of an EHD jet from a nozzle with an inserted non-conductivefibre[J]. Journal of aerosol science,2005.36(3):373-386.
    [157] Abu-Ali J, Barringer S. Method for electrostatic atomization of emulsions in an EHD system[J].Journal of electrostatics,2005.63(5):361-369.
    [158] Jaworek A, Czech T, Rajch E, et al. Spectroscopic studies of electric discharges in electrospraying[J].Journal of electrostatics,2005.63(6):635-641.
    [159] Njatawidjaja E, Tri Sugiarto A, Ohshima T, et al. Decoloration of electrostatically atomized organicdye by the pulsed streamer corona discharge[J]. Journal of electrostatics,2005.63(5):353-359.
    [160]孙大伟,许德玄.电晕线雾化半湿式除尘技术的研究[J].环境科学学报,1996.3.
    [161]马祝阳,许德玄.雾化电晕放电除尘原理及其特性研究[J].东北师大学报:自然科学版,2003.35(002):35-40.
    [162] Xu D, Li J, Wu Y, et al. Discharge characteristics and applications for electrostatic precipitation ofdirect current: corona with spraying discharge electrodes[J]. Journal of electrostatics,2003.57(3):217-224.
    [163]葛自良,毛骏健,陆汝杰.液体静电雾化现象及其应用[J].自然杂志,2000.22(1):37-41.
    [164] Lord R.. XX.On the equilibrium of liquid conducting masses charged with electricity[J]. The London,Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1882.14(87):184-186.
    [165] Taylor G. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society ofLondon. Series A. Mathematical and Physical Sciences,1964.280(1382):383-397.
    [166] Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids: Main functioning modes[J]. Journal ofelectrostatics,1990.25(2):165-184.
    [167]王昊.针板间雾化电晕放电特性分析[D].2011,河北大学硕士学位论文.
    [168] Moore A D. Electrostatics and its Applications[M].1973: Wiley New York.
    [169]刘志刚,负载型TiO2光催化剂在脉冲放电水处理技术中的应用[D].2005,大连理工大学硕士学位论文.
    [170]颜军,非脉冲直流辉光放电等离子体降解有机染料及对苯二甲酸合成研究[D].2006,浙江大学博士学位论文.
    [171]朱承驻,董文博,潘循皙等.等离子体降解水相中有机污染物的机理研究[J].环境科学学报,2002.22(4):428-433.
    [172]张延宗,非平衡等离子体与多孔炭材料降解染料废水的协同效应[D].2008,中国石油大学博士学位论文.
    [173]米俊锋.磁场雾化共同作用下电晕放电机理及对微小颗粒荷电与捕集的研究[D].2010,东北师范大学博士学位论文.
    [174]米俊锋,杜胜男,袁广娇等.雾化电晕放电烟气净化器放电与荷电的研究[J].化学工程,2011.39(5):15-18.
    [175] Yu T, Bishop P. Stratification of microbial metabolic processes and redox potential change in anaerobic biofilm studied using microelectrodes[J]. Water Science and Technology,1998.37(4):195-198.
    [176] Beydilli M, Pavlostathis S, Tincher W. Biological decolorization of the azo dye Reactive Red2undervarious oxidation-reduction conditions[J]. Water environment research,2000:698-705.
    [177]刘颖,张朝辉,张焕胜等.污水可生化性及其影响因素研究[J].中国海洋大学学报:自然科学版,2005.35(006):1029-1032.
    [178]邓述波,陈忠喜.油田采出水的特性及处理技术[J].工业水处理,2000.20(007):10-12.
    [179]北京市环境技术与设备研究中心.三废处理工程技术手册(废水卷).2000,北京:化学工业出版社.
    [180] McCormack P, Jones P, Hetheridge M, et al. Analysis of oilfield produced waters and productionchemicals by electrospray ionisation multi-stage mass spectrometry (ESI-MSn)[J]. Water research,2001.35(15):3567-3578.
    [181] Higashi R, Cherr G, Bergens C, et al. An approach to toxicant isolation from a produced water sourcein the Santa Barbara Channel[J]. Enviromental Science Research,1993.46:223-223.
    [182] Woodall D, Gambrell R, Rabalais N, et al. Developing a method to track oil and gas produced waterdischarges in estuarine systems using salinity as a conservative tracer[J]. Marine pollution bulletin,2001.42(11):1118-1127.
    [183] Tibbetts P, Buchanan I, Gawel L, et al. A comprehensive determination of produced watercomposition[J]. Enviromental Science Research,1993.46:97-97.
    [184]国家环境保护总局. HJ/T399-2007.水质化学需氧量的测定快速消解分光光度法[S].北京:中国标准出版社.2007.
    [185]国家环境保护总局. HJ/T86-2002.水质生化需氧量(BOD)的测定微生物传感器快速测定法
    [S].北京:中国标准出版社.2002.
    [186]中国石油天然气总公司. SY/T0530-93.油田污水中含油量测定方法分光光度法[S].北京:石油工业出版社,2005.
    [187]国家环境保护局.GB11901-89.水质-悬浮物的测定-重量法[S].北京:中国标准出版社.2007.
    [188]国家环境保护总局《水和废水监测分析方法编委会》.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [189]徐美倩.废水可生化性评价技术探讨[J].工业水处理,2008.5:17-20.
    [190]张本兰,裴健,王海燕.瓦勃氏呼吸仪测定乐果合成废水的可生化性[J].环境污染治理技术与设备,1991.16-18.
    [191]吴俊奇.用瓦勃氏呼吸仪测定橡胶废水可生化性[J].北京建筑工程学院学报,1996.12(3):94-98.
    [192]郭文成,吴群河. BOD5/CODcr值评价污废水可生化性的可行性分析[J].环境科学与技术,1998(003):39-41.
    [193]王嘉麟,陈春茂,郭绍辉.采用高压脉冲放电技术降解采油污水[J].石油化工高等学校学报,2008.21(3):24-28.
    [194] Kirkpatrick M, Locke B. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phasepulsed corona electrical discharge[J]. Industrial&engineering chemistry research,2005.44(12):4243-4248.
    [195]赵泉林,鲁毅强,韩冬等.多相催化氧化法处理油田污水[J].北京科技大学学报,2006.28(004):335-337.
    [196]李源,雷中方,来松清.油田采出水的高温水解-好氧处理工艺研究[J].工业水处理,2003.23(007):22-25.
    [197] Wang X., Wang Z, Zhou Y, et al. Study of the contribution of the main pollutants in the oilfieldpolymer-flooding wastewater to the critical flux[J]. Desalination,2011.273:375-385.
    [198]庞娟娟.电解氧化法处理采油废水[J].石化技术与应用,2007.25(006):502-505.
    [199]侯士兵,玄雪梅,贾金平等.不溶性阳极电解气浮法处理含油废水的试验研究[J].工业用水与废水,2004.35(2):44-47.
    [200] Lu M, Zhang Z, Yu W, et al. Biological treatment of oilfield-produced water: A field pilot study[J].International biodeterioration&biodegradation,2009.63(3):316-321.
    [201] Ji G, Sun T, Ni J. Surface flow constructed wetland for heavy oil-produced water treatment[J].Bioresource technology,2007.98(2):436-441.
    [202] Li G, An T, Chen J, et al. Photoelectrocatalytic decontamination of oilfield produced wastewatercontaining refractory organic pollutants in the presence of high concentration of chloride ions[J]. Journal ofhazardous materials,2006.138(2):392-400.
    [203]傅敏.活性炭纤维改性及对焦化废水中有机物吸附作用的研究[D].2004,重庆大学博士学位论文.
    [204]孙璐,张继义.混凝-活性炭吸附对化工废水深度处理效果的研究[J].北方环境,2010(001):55-58.
    [205]曲险峰.活性炭纤维对水中酚类有机物的催化臭氧化[D].2007,中国石油大学工学博士学位论文.
    [206] Urashima K, Chang J, Ito T. Destruction of volatile organic compounds in air by a superimposedbarrier discharge plasma reactor and activated carbon filter hybrid system[C]. Conference Record of the1997IEEE,1997.1967-1974.
    [207] Faria P, órf o J, Pereira M. Catalytic ozonation of sulfonated aromatic compounds in the presence ofactivated carbon[J]. Applied Catalysis B: Environmental,2008.83(1):150-159.
    [208]牛秀明,傅春华.炭在脉冲放电过程中对污水中有机物的降解作用[J].山东大学学报(工学版),2008.38(1).
    [209] Grymonpré D, Finney W, Clark R, et al. Suspended activated carbon particles and ozone formation inaqueous-phase pulsed corona discharge reactors[J]. Industrial&engineering chemistry research,2003.42(21):5117-5134.
    [210] Rivera J, Sánchez M. Ozonation of1,3,6-naphthalenetrisulphonic acid catalysed by activated carbonin aqueous phase[J]. Applied Catalysis B: Environmental,2002.39(4):319-329.
    [211]孙亚兵,任兆杏.非平衡态等离子体技术在环境保护领域的应用[J].环境科学研究,1998.11(4):24-26.
    [212]曹志荣. DBD等离子体—活性炭联用降解碱性品红的实验研究[D].2011,南昌大学硕士学位论文.
    [213]张延宗,郑经堂,桑玉全等.活性炭纤维在脉冲放电水处理中的催化作用[J].高电压技术,2008.33(11):218-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700