用户名: 密码: 验证码:
我国典型城市和高山地区碳质气溶胶及单颗粒混合状态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶广泛存在于大气中,而碳质气溶胶是大气气溶胶的主要成分之一。研究表明碳质气溶胶对人体健康、大气能见度、全球气候变化、以及地球辐射平衡等有着重要的影响。本研究通过在我国典型城市和高山地区开展大气气溶胶强化观测,利用多种监测手段和数据分析方法如在线连续观测、透射电镜技术、后向气流轨迹和聚类分析等对大气气溶胶进行了系统的研究,获得了我国典型地区大气气溶胶特别是碳质气溶胶的污染特征和理化性质,并着重研究了大气有机气溶胶来源、形成机制及单颗粒混合状态。
     通过在济南和香港进行大气气溶胶进行强化观测,获得了济南和香港碳质气溶胶的浓度水平和季节变化特征。为研究短时间内对污染物排放进行大规模控制措施对空气质量的改善作用,我们对比了北京2007年奥运会同期(2007年8月)、2008年奥运会期间(2008年8月)和2009年奥运会同期(2009年8月)的大气气溶胶及其组分的质量浓度,结果表明短时间大规模的污染减排措施有利于北京空气质量的改善,并且减排措施带来的效果具有一定的持续性;对比了2010年广州亚运会前、中、后期香港和广州的大气气溶胶和碳质气溶胶质量浓度,结果表明对广州及其周边地区的污染物排放的控制,不仅降低了广州地区气溶胶的浓度水平,同时对区域空气质量的改善也有促进作用。通过对比我国南方和北方城市的碳质气溶胶的污染特征表明,北方城市较南方城市有比较高的碳质气溶胶浓度及OC/EC比值,尤其在冬季,可能跟燃煤排放有关系;南方城市通常具有较低的碳质气溶胶浓度及OC/EC比值,说明机动车排放是南方城市碳质气溶胶的重要来源。
     为了解我国南方高山地区碳质气溶胶的来源和转化过程,于我国湖南衡山高山站开展了现场观测。研究证实了有机气溶胶的液相以及颗粒相表面的非均相生成过程。利用后向气流轨迹方法分析了衡山采样期间的长距离输送规律,结果表明衡山春季观测期间的气流主要来自珠三角、华北及华东地区,衡山地区空气质量受到了来自这些地区高浓度污染物的跨界输送的影响。另外,结合碳质气溶胶和钾离子浓度、后向气流轨迹分析及卫星火点图证实了衡山春季受到来自东南亚的生物质燃烧排放的影响。
     为研究香港地区有机气溶胶光化学老化生成过程和生成速率,对香港夏季和秋季的碳质气溶胶污染特征进行了分析。结果发现香港东涌夏季和秋季SOC和奇氧化合物(OX=O3+NO2)的相关性良好,说明大气光化学反应过程对SOC生成有重要贡献。定量地研究了夏季和秋季不同城市烟羽中大气光化学反应生成的SOC速率,结果表明夏季来自珠三角城市烟羽的SOC生成速率为3.86μg m-3ppmv-1h-1,秋季来自珠三角和香港混合烟羽的SOC生成速率变化范围为1.31-1.46μg m-3ppmv-1h-1,以及秋季来自香港本地烟羽的SOC生成速率为1.82μg m-3ppmv-1h-1。通过与全球其他城市及其下风向的观测比较,如墨西哥城、加州地区、美国东部和南部城市圈等,香港夏季的SOA生成速率处于这些观测的生成速率上限,而秋季的SOA生成速率大体处于这些观测的生成速率下限。
     为研究我国典型地区典型天气条件下气溶胶单颗粒的混合状态,利用透射电镜对济南霾过程和香港光化学老化过程中气溶胶样品进行了形貌和混合状态的分析。通过对济南灰霾天,雾天和清洁天的气溶胶单颗粒分析得出分别有91%、97%和86%的颗粒物中含有硫酸铵(AS),并且分别有71.0%、56%和58%的颗粒物是内部混合的。灰霾天的AS-soot (20%)和AS-soot/OM/fly ash (20%)的所占比例比清洁天AS-soot (13%)和AS-soot/OM/fly ash (12%)的比例高,说明在灰霾天高浓度气溶胶的条件下,碰并是一个重要混合机制。雾天、清洁天和灰霾天单颗粒样品的TEM结果对比显示,雾天收集的单颗粒外围在采样膜上都留有清晰可见的“印记”。电镜的能谱分析显示这些“印记”部位含有碳元素,这是由于气溶胶颗粒在雾天吸湿潮解时吸附了大量的有机物;相比于雾天的颗粒,清洁天仅有少量的该类型颗粒。灰霾天收集的部分颗粒的形貌特征类似于雾天的颗粒,而灰霾天的相对湿度较低,通常在50-60%之间,引起这个现象的可能原因是由于硫酸铵颗粒表面混合一定量的可溶性有机组分,在低湿度条件下便可吸附大气中水。TEM分析结果表明香港大气中的有机物几乎都与硫酸盐内部混合在一起。光化学污染事件期间比清洁天的有机外壳厚,说明光化学老化过程生成了大量的二次有机气溶胶,并且发现大气光化学反应促进了气溶胶粒径的增长。
     通过对济南城区和工业区大气气溶胶中的微量金属分析,发现工业区站点的微量金属质量浓度是城市站点的1.7倍,表明工业排放对微量金属的浓度水平有显著的贡献。相关性分析和主成分分析结果表明,Cu、Fe、Mn、Pb和Zn主要来自机动车和钢铁冶炼排放;As、Pb和Cr主要来源于燃煤排放;Ba、Al和Ti主要来自于土壤源和道路扬尘;Ni和Sr具有自然源和人为源的混合来源。膜采样和透射电镜分析结果表明,济南大气气溶胶中具有较高浓度微量金属,并且这些微量金属绝大部分与硫酸盐和有机物内部混合在一起,因此,当评估微量金属对人体健康影响时,不仅要考虑其质量浓度水平还要考虑其混合状态。
Atmospheric aerosols are ubiquitous in the Earth's atmosphere. Carbonaceous aerosols, one of the major components of atmospheric aerosols, have received increasing attention in recent years owing to their impacts on global radiation balance, climate change, public health and visibility degradation. In order to better understand the sources, transport processes, formation mechanisms and mixing states of atmospheric aerosols and carbonaceous aerosols, we conducted several intensive field campaigns in urban (Beijing, Ji'nan and Hong Kong), suburban (Tung Chung in Hong Kong) and mountainous (Mt. Heng) sites in China.
     Atmospheric carbonaceous aerosols measurements were carried out in Beijing, Ji'nan and Hong Kong. We obtained the concentration levels and seasonal variations of carbonaceous aerosols in Ji'nan and Hong Kong sites. In order to investigate the effects of massive short-term emission control measures adopted around2008on the air quality in Beijing, we conducted intensive field studies in three consecutive Augusts from2007,2008and2009. The three-year comparison of data indicated that the emission control measures improved the air quality during the2008Beijing Olympic Games as well as leaving long-term impact on the air quality in Beijing. Through comparing the characteristics of carbonaceous aerosols in northern and southern China, we found that the concentrations of carbonaceous aerosols and OC/EC ratios were higher in northern China than those in southern China, especially in winter, which were possibly due to the coal combustions.
     To understand the sources and formation processes of atmospheric carbonaceous aerosols in rural and mountainous areas of the southern China, an intensive measurement campaign was conducted at the summit of Mt. Heng during the spring of2009. The mean concentrations of OC, EC and PM2.5were3.01,0.54,40.7μg m-3, respectively. The estimated average SOC concentration was1.85μg m-3(1.52μg m-3for non-biomass burning period), accounting for more than half of the OC mass at Mt. Heng. We observed a good correlation between droplet-mode sulfate and SOC, indicating the occurrence of in-cloud SOA formation at Mt. Heng. The positive relationship between aerosol acidity and SOC suggests the enhancement of SOC by acid-catalyzed heterogeneous reactions. During the observation period, the air masses were mostly from the PRD and the eastern coast regions, demonstrating the impact of the long-range transport of pollutants from these developed regions to the rural areas in southern China. High concentrarions of carbonaceous aerosols and potasium were observed at the early stage of the observation, which were found to be related with the biomass burning events in Southeast Asia.
     To study the production and aging of organic aerosols in a subtropical environment, we measured hourly resolved organic carbon (OC) and element carbon (EC) in PM2.5at a receptor site (Tung Chung, TC) in Hong Kong from August2011to May2012. We found that the SOC and odd oxygen (Ox) were highly correlated during the summer and autumn seasons, suggesting that photochemical processing contributed to the formation of organic aerosols. Therefore, we quantitatively studied the photochemical aging of organic aerosol during the smog episodes in summer and autumn. The results showed that the PRD cities and Hong Kong were the source regions and that aerosol particles became more aged as they were advected toward the receptor TC site. The SOC production rates were estimated to be in the range of1.31-1.82μg m-3ppmv-1h-1in autumn and3.86μg m"3ppmv-1h-1in summer, with the summer rate in the upper end of the range observed in the U.S. and Mexico City. The reduced rates in the autumn episodes may be due to decreased level of photochemistry. The results of this study can help improve modeling the formation of organic aerosols in polluted sub-tropical environments.
     To evaluate the wintertime regional brown haze in northern China, trace gases and aerosols were measured at an urban site in Ji'nan from9-20November,2009. Transmission electron microscope (TEM) was applied to analyze the individual particle aerosols. We found that over90%of particles contained ammoniated sulfate (AS) in foggy, clear and haze days. Based on their mixing states, aerosol particles were further grouped into eight classes:AS-soot, AS-OM, AS-fly ash, AS-CaSO4, AS-soot/OM/fly ash, AS, AS-mineral, and others. Based on the estimations from TEM analysis, relative number fractions of both AS-soot (20%) and AS-soot/OM/fly ash (20%) from hazy days exceeded those from clear days (13%and12%), implying that coagulation is an important mixing mechanism in polluted air. Comparisons of TEM images of individual particles collected in foggy, clear and haze days, we found that many ambient AS particles from foggy and hazy days retained considerable water on their surfaces.
     We investigated the microscopic characteristics of individual particle aerosols collected in one photochemical pollution episode in Hong Kong. The results revealed large contrasts of aerosol physico-chemical properties on clean and smoggy days, with thick organic coatings internally mixed with inorganic sulfate for all particle sizes in the aged plumes from the PRD region.
     Trace metals in PM2.5were measured at one industrial site and one urban site in Ji'nan during September,2010. Individual particle aerosols and PM2.5samples were collected concurrently at both sites. The results show that mass concentrations of PM2.5(130μg m-3) and trace metals (4.03μgm-3) at the industrial site were1.3times and1.7times higher than those at the urban site, respectively, indicating that industrial activities nearby the city can emit trace metals into the surrounding atmosphere. Correlation coefficient analysis and principal component analysis revealed that Cu, Fe, Mn, Pb, and Zn were originated from vehicular traffic and industrial emissions at both sites; As, Cr, and part of Pb from coal-fired power plant; Ba and Ti from natural soil. Based on the TEM analysis, we found that most of the trace metals were internally mixed with secondary sulfate/organic particles. These internally mixed trace metals in the urban air may have different toxic abilities compared with externally mixed trace metals.
引文
[1]Seinfeld J. H., Pandis S. N. Atmospheric Chemistry and Physics:From air pollution to climate change [J]. John Wiley & Sons, New York,2006.
    [2]Ramanathan V., Carmichael G. Global and regional climate changes due to black carbon [J]. Nature Geoscience,2008,1(4):221-227.
    [3]Stocker T. F., Qin D, Plattner G. K., Tignor M., Allen S. K., Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. IPCC,2013:Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge Univ Press, Cambridge, United Kingdom and New York, NY, USA.2013.
    [4]Dockery D. W., Pope C.A. Acute respiratory effects of particulate air pollution [J]. Annual review of public health,1994,15(1):107-132.
    [5]Samet J. M., Dominici F., Curriero F.C., Coursac I., Zeger S.L. Fine particulate air pollution and mortality in 20 US cities,1987-1994 [J]. New England journal of medicine,2000,343(24):1742-1749.
    [6]Huang W., Cao J. J., Tao Y, Dai L., Lu S. E., Hou B., Wang Z., Zhu T. Seasonal Variation of Chemical Species Associated With Short-Term Mortality Effects of PM2.5 in Xi'an, a Central City in China [J]. American Journal of Epidemiology,2012,175(6): 556-566.
    [7]Adachi K., Buseck P. R. Hosted and Free-Floating Metal-Bearing Atmospheric Nanoparticles in Mexico City [J]. Environmental Science & Technology,2010,44(7): 2299-2304.
    [8]Ohara T., Akimoto H., Kurokawa J., Horii N., Yamaji K., Yan X., Hayasaka T. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020 [J]. Atmospheric Chemistry and Physics,2007,7(3):6843-6902.
    [9]Van Donkelaar A., Martin R. V., Brauer M., Kahn R., Levy R., Verduzco C., Villeneuve P. J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:development and application [J]. Environmental Health Perspectives,2010,118(6):847-855.
    [10]Zhang X. Y, Wang Y. Q., Niu T., Zhang X. C., Gong S. L., Zhang Y. M., Sun J. Y. Atmospheric aerosol compositions in China:spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols [J]. Atmospheric Chemistry and Physics,2012,12(2):779-799.
    [11]张小曳,孙俊英,王亚强,李卫军,张蔷,王炜罡,权建农,曹国良,王继志,杨元琴.我国雾-霾成因及其治理的思考[J].科学通报,2013,58(13):1178-1187.
    [12]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006.
    [13]Fung K. Particulate Carbon Speciation by MnO2 Oxidation [J]. Aerosol Science and Technology,1990,12(1):122-127.
    [14]Birch M. E., Cary R. A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust [J]. Aerosol Science and Technology,1996,25(3): 221-241.
    [15]Chow J. C., Watson J. G. PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites [J]. Journal of Geophysical Research-Atmospheres,2002,107:1-6.
    [16]Jang M., Czoschke N. M., Lee S., Kamens R. M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions [J]. Science,2002,298(5594): 814-817.
    [17]Ervens B., Turpin B. J., Weber R. J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA):a review of laboratory, field and model studies [J]. Atmospheric Chemistry and Physics,2011,11:11069-11102.
    [18]Turpin B. J., Lim H. J. Species contributions to PM2.5 mass concentrations:Revisiting common assumptions for estimating organic mass [J]. Aerosol Science and Technology, 2001,35(1):602-610.
    [19]Zheng M., Hagler G.S.W., Ke L., Bergin M. H., Wang F., Louie P.K.K., Salmon L., Sin D.W.M., Yu J. Z., Schauer J. J. Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong [J]. Journal of Geophysical Research-Atmospheres, 2006,111:1-16.
    [20]Rogge W. F., Hildemann L. M., Mazurek M. A., Cass G. R., Simoneit B.R.T. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations [J]. Journal of Geophysical Research-Atmospheres,1996,101: 19379-19394.
    [21]Bond T. C., Streets D. G., Yarber K. F., Nelson S. M., Woo J. H., Klimont Z. A technology-based global inventory of black and organic carbon emissions from combustion [J]. Journal of Geophysical Research-Atmospheres,2004,109:1-43.
    [22]Zhang Q., Jimenez J. L., Canagaratna M. R., Allan J. D., Coe H., Ulbrich I., Alfarra M. R., Takami A., Middlebrook A. M., Sun Y. L. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes [J]. Geophysical Reseach Letters,2007,34:1-6.
    [23]Hallquist M., Wenger J.C., Baltensperger U., Rudich Y, Simpson D., Claeys M., Dommen J., Donahue N.M., George C., Goldstein A. H. The formation, properties and impact of secondary organic aerosol:current and emerging issues [J]. Atmospheric Chemistry and Physics,2009,9(14):5155-5236.
    [24]Kanakidou M., Seinfeld J. H., Pandis S. N., Barnes I., Dentener F. J., Facchini M. C., Van Dingenen R., Ervens B., Nenes A., Nielsen C. J. Organic aerosol and global climate modelling:a review [J]. Atmospheric Chemistry and Physics,2005,5(4):1053-1123.
    [25]Kroll J. H., Seinfeld J. H. Chemistry of secondary organic aerosol:Formation and evolution of low-volatility organics in the atmosphere [J]. Atmospheric Environment, 2008,42(16):3593-3624.
    [26]Blando J. D., Turpin B. J. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility [J]. Atmospheric Environment,2000,34(10): 1623-1632.
    [27]Odum J. R., Hoffmann T., Bowman F., Collins D., Flagan R. C., Seinfeld J. H. Gas/particle partitioning and secondary organic aerosol yields [J]. Environmental Science & Technology,1996,30(8):2580-2585.
    [28]Pankow J. F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere [J]. Atmospheric Environment,1994,28(2):185-188.
    [29]Atkinson R., Arey J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews,2003,103(12):4605-4638.
    [30]Guenther A., Hewitt C. N, Erickson D., Fall R., Geron C., Graedel T., Harley P., Lee K., Lerdau M., McKay W. A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., Taylor J., Zimmerman Pat. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research-Atmospheres,1995,100:8873-8892.
    [31]Atkinson R., Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:a review [J]. Atmospheric Environment,2003,37:197-219.
    [32]Kroll J. H., Seinfeld J. H. Chemistry of secondary organic aerosol:Formation and evolution of low-volatility organics in the atmosphere [J]. Atmospheric Environment, 2008,42(16):3593-3624.
    [33]Pankow J. F., Asher W. E. SIMPOL.1:a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds [J]. Atmospheric Chemistry and Physics,2008,8(10):2773-2796.
    [34]Bonn B., von Kuhlmann R., Lawrence M. G. High contribution of biogenic hydroperoxides to secondary organic aerosol formation [J]. Geophysical Research Letters,2004,31(10):1-4.
    [35]Camredon M., Aumont B., Lee-Taylor J., Madronich S. The SOA/VOC/NOx system:an explicit model of secondary organic aerosol formation [J]. Atmospheric Chemistry and Physics,2007,7(21):5599-5610.
    [36]Atkinson R.. Rate constants for the atmospheric reactions of alkoxy radicals:An updated estimation method [J]. Atmospheric Environment,2007,41(38):8468-8485.
    [37]Ng N. L., Chhabra P. S., Chan A. W. H., Surratt J. D., Kroll J. H., Kwan A. J., McCabe D. C., Wennberg P. O., Sorooshian A., Murphy S. M., Dalleska N. F., Flagan R. C., Seinfeld J. H. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes [J]. Atmospheric Chemistry and Physics,2007,7(19): 5159-5174.
    [38]Atkinson R.. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000,34(12-14):2063-2101.
    [39]Osthoff H. D., Roberts J. M., Ravishankara A. R., Williams E. J., Lerner B. M., Sommariva R., Bates T. S., Coffman D., Quinn P. K., Dibb J. E. High levels of nitryl chloride in the polluted subtropical marine boundary layer [J]. Nature Geoscience,2008, 1(5):324-328.
    [40]Ofher J., Balzer N., Buxmann J., Grothe H., Schmitt-Kopplin Ph, Platt U., Zetzsch C. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms [J]. Atmospheric Chemistry and Physics,2012,12(13):5787-5806.
    [41]Jang M., Kamens R. M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene [J]. Environmental Science & Technology,2001,35(18):3626-3639.
    [42]Limbeck A., Kulmala M., Puxbaum H. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles [J]. Geophysical Research Letters,1996,30(19):1-4.
    [43]Gao S., Ng N. L., Keywood M., Varutbangkul V., Bahreini R., Nenes A., He J., Yoo K. Y., Beauchamp JL, Hodyss R.P. Particle phase acidity and oligomer formation in secondary organic aerosol [J]. Environmental Science & Technology,2004,38(24): 6582-6589.
    [44]Kalberer M., Paulsen D., Sax M., Steinbacher M., Dommen J., Prevot ASH, Fisseha R., Weingartner E., Frankevich V., Zenobi R. Identification of polymers as major components of atmospheric organic aerosols [J]. Science,2004,303(5664):1659-1662.
    [45]Surratt J. D., Kroll J. H., Kleindienst T. E., Edney E.O., Claeys M., Sorooshian A., Ng N. L., Offenberg J. H., Lewandowski M., Jaoui M. Evidence for organosulfates in secondary organic aerosol [J]. Environmental Science & Technology,2007,41(2): 517-527.
    [46]Offenberg J. H., Lewandowski M., Edney E. O., Kleindienst T. E., Jaoui M. Influence of aerosol acidity on the formation of secondary organic aerosol from biogenic precursor hydrocarbons [J]. Environmental Science & Technology,2009,43(20):7742-7747.
    [47]Peltier R. E., Sullivan A. P., Weber R. J., Wollny A. G., Holloway J. S., Brock C. A., de Gouw J. A., Atlas E. L.. No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia [J]. Geophysical Research Letters,2007,34(6):1-5.
    [48]Tanner R. L., Olszyna K. J., Edgerton E. S., Knipping E., Shaw S. L. Searching for evidence of acid-catalyzed enhancement of secondary organic aerosol formation using ambient aerosol data [J]. Atmospheric Environment,2009,43(21):3440-3444.
    [49]Feng J. L., Guo Z. G., Zhang T. R., Yao X. H., Chan C. K., Fang M. Source and formation of secondary particulate matter in PM2.5 in Asian continental outflow [J]. Journal of Geophysical Research-Atmospheres,2012,117:1-11.
    [50]Zhou Y., Xue L., Wang T., Gao X., Wang Z., Wang X., Zhang J., Zhang Q., Wang W. Characterization of aerosol acidity at a high mountain site in central eastern China [J]. Atmospheric Environment,2012,51:11-20.
    [51]Rengarajan R., Sudheer A. K., Sarin M. M. Aerosol acidity and secondary organic aerosol formation during wintertime over urban environment in western India [J]. Atmospheric Environment,2011,45(11):1940-1945.
    [52]Surratt J. D., Lewandowski M., Offenberg J. H., Jaoui M., Kleindienst T. E., Edney E. O., Seinfeld J. H. Effect of acidity on secondary organic aerosol formation from isoprene [J]. Environmental Science & Technology,2007,41(15):5363-5369.
    [53]Iinuma Y, Muller C., Boge O., Gnauk T., Herrmann H.. The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions [J]. Atmospheric Environment,2007,41(27):5571-5583.
    [54]Chen J., Griffin R. J., Grini A., Tulet P. Modeling secondary organic aerosol formation through cloud processing of organic compounds [J]. Atmospheric Chemistry and Physics,2007,7:5343-5355.
    [55]Fu T. M., Jacob D. J., Wittrock F., Burrows J. P., Vrekoussis M., Henze D. K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols [J]. Journal of Geophysical Research-Atmospheres,2008, 113:1-17.
    [56]Lim H. J., Carlton A. G., Turpin B. J. Isoprene forms secondary organic aerosol through cloud processing:Model simulations [J]. Environmental Science & Technology,2005, 39(12):4441-4446.
    [57]Bowman Frank M., Odum Jay F., Seinfeld John H., Pandis Spyros N. Mathematical model for gas-particle partitioning of secondary organic aerosols [J]. Atmospheric Environment,1997,31(23):3921-3931.
    [58]Ng N. L., Kroll J. H., Keywood M. D., Bahreini R., Varutbangkul V., Flagan R. C., Seinfeld J. H., Lee A., Goldstein A. H. Contribution of First-versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons [J]. Environmental Science & Technology,2006,40(7):2283-2297.
    [59]George I. J., Vlasenko A., Slowik J. G., Broekhuizen K., Abbatt J. P. D. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals:uptake kinetics, condensed-phase products, and particle size change [J]. Atmospheric Chemistry and Physics,2007,7(16):4187-4201.
    [60]Rudich Y., Donahue N. M., Mentel T. F. Aging of organic aerosol:Bridging the gap between laboratory and field studies [J]. Annu Rev Phys Chem,2007,58:321-352.
    [61]Rudich Y. Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles [J]. Chemical Reviews,2003,103(12):5097-5124.
    [62]Bond T. C., Doherty S. J., Fahey D. W., Forster P. M., Berntsen T., DeAngelo B. J., Flanner M. G., Ghan S., Karcher B., Koch D., Kinne S., Kondo Y., Quinn P. K., Sarofim M. C., Schultz M. G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S. K., Hopke P. K., Jacobson M. Z., Kaiser J. W., Klimont Z., Lohmann U., Schwarz J. P., Shindell D., Storelvmo T., Warren S. G., Zender C. S. Bounding the role of black carbon in the climate system:A scientific assessment [J]. Journal of Geophysical Research-Atmospheres,2013,118:5380-5552.
    [63]Penner J. E., Novakov T. Carbonaceous particles in the atmosphere:A historical perspective to the Fifth International Conference on Carbonaceous Particles in the Atmosphere [J]. Journal of Geophysical Research-Atmospheres,1996,101: 19373-19378.
    [64]Lim H. J., Turpin B. J., Russell L. M., Bates T. S. Organic and Elemental Carbon Measurements during ACE-Asia Suggest a Longer Atmospheric Lifetime for Elemental Carbon [J]. Environmental Science & Technology,2003,37(14):3055-3061.
    [65]Mayol-Bracero O. L., Gabriel R., Andreae M. O., Kirchstetter T. W., Novakov T., Ogren J., Sheridan P., Streets D. G. Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX):Chemical characterization, optical properties, and probable sources [J]. Journal of Geophysical Research-Atmospheres,2002,107:1-21.
    [66]Gray H. A., Cass G. R., Huntzicker J. J., Heyerdahl E. K., Rau J. A. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles [J]. Environmental Science & Technology,1986,20(6):580-589.
    [67]Li M., McDow S. R., Tollerud D. J, Mazurek M. A. Seasonal abundance of organic molecular markers in urban particulate matter from Philadelphia, PA [J]. Atmospheric Environment,2006,40(13):2260-2273.
    [68]Cabada J. C., Pandis S. N., Subramanian R., Robinson A. L., Polidori A., Turpin B. Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method [J]. Aerosol Science and Technology,2004,38(1):140-155.
    [69]Geron C. Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA [J]. Atmospheric Environment,2009,43(4):959-969.
    [70]Lim H. J., Turpin B. J., Edgerton E., Hering S. V., Allen G., Maring H., Solomon P. Semicontinuous aerosol carbon measurements:Comparison of Atlanta Supersite measurements [J]. Journal of Geophysical Research-Atmospheres,2003,108:1-12.
    [71]Allen J. O, Hughes L. S, Salmon L. G, Mayo P. R, Johnson R. J, Cass G. R. Characterization and evolution of primary and secondary aerosols during PM2.5 and PM10 episodes in the South Coast Air Basin [J]. Report A-22 to the Coordinating Research Council (CRC),2000.
    [72]Tolocka M. P, Solomon P. A, Mitchell W., Norris G. A, Gemmill D. B., Wiener Russell W, Vanderpool Robert W, Homolya James B, Rice Joann. East versus west in the US: chemical characteristics of PM2.5 during the winter of 1999 [J]. Aerosol Science & Technology,2001,34(1):88-96.
    [73]Russell M., Allen D. T. Seasonal and spatial trends in primary and secondary organic carbon concentrations in southeast Texas [J]. Atmospheric Environment,2004,38(20): 3225-3239.
    [74]Raman R. S., Hopke P. K., Holsen T. M. Carbonaceous aerosol at two rural locations in New York State:Characterization and behavior [J]. Journal of Geophysical Research-Atmospheres,2008,113:1-18.
    [75]Yu X., Cary R. A., Laulainen N. S. Primary and secondary organic carbon downwind of Mexico City [J]. Atmospheric Chemistry and Physics,2009,9(1):541-593.
    [76]Yttri K.E., Dye C., Braathen O., Simpson D., Steinnes E. Carbonaceous aerosols in Norwegian urban areas [J]. Atmospheric Chemistry and Physics,2009,9(6):2007-2020.
    [77]Gelencsar A., May B., Simpson D., Senchez-Ochoa A., Kasper-Giebl A., Puxbaum H., Caseiro A., Pio C., Legrand M. Source apportionment of PM2.5 organic aerosol over Europe:Primary/secondary, natural/anthropogenic, and fossil/biogenic origin [J]. Journal of Geophysical Research-Atmospheres,2007,112:1-12.
    [78]Saarikoski S., Timonen H., Saarnio K., Aurela M., J rvi L., Keronen P., Kerminen V. M., Hillamo R. Sources of organic carbon in fine particulate matter in northern European urban air [J]. Atmospheric Chemistry and Physics,2008,8:6281-6295.
    [79]Sillanp M, Frey A, Hillamo R, Pennanen A. S, Salonen R. O. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe [J]. Atmospheric Chemistry and Physics,2005,5(11):2869-2879.
    [80]Viana M., Maenhaut W., Brink H. M., Chi X., Weijers E., Querol X., Alastuey A., Mikuska P., Veeera Z. Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities [J]. Atmospheric Environment,2007,41(28):5972-5983.
    [81]Park R. J., Jacob D. J., Chin M., Martin R. V. Sources of carbonaceous aerosols over the United States and implications for natural visibility [J]. Journal of Geophysical Research-Atmospheres,2003,108:1-19.
    [82]Park S. S., Lee K. H., Kim Y. J., Kim T. Y, Cho S. Y, Kim S. J. High time-resolution measurements of carbonaceous species in PM2.5 at an urban site of Korea [J]. Atmospheric Research,2008,89(1-2):48-61.
    [83]He Z., Kim Y. J., Ogunjobi K. O., Kim J. E., Ryu S. Y. Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002 [J]. Atmospheric Environment,2004,38(12):1795-1800.
    [84]Von S. E, Zhou J, Stone E. A., Schauer J. J., Qasrawi R., Abdeen Z., Shpund J., Vanger A., Sharf G., Moise T. Seasonal And Spatial Trends In The Sources Of Fine Particle Organic Carbon In Israel, Jordan, And Palestine [J]. Atmospheric Environment,2010,44: 3669-3678.
    [85]Jimenez J. L., Canagaratna M. R., Donahue N. M., Prevot A.S.H., Zhang Q., Kroll J. H., DeCarlo P. F., Allan J. D., Coe H., Ng N. L. Evolution of organic aerosols in the atmosphere [J]. Science,2009,326:1525-1529.
    [86]Zhang Q., Worsnop D. R., Canagaratna M. R., Jimenez J. L. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh:Insights into sources and processes of organic aerosols [J]. Atmospheric Chemistry and Physics,2005,5:3289-3311.
    [87]Tanner R. L., Gaffney J. S., Phillips M. F. Determination of organic and elemental carbon in atmospheric aerosol samples by thermal evolution [J]. Analytical chemistry, 1982,54(9):1627-1630.
    [88]Cachier H., Bremond M. P., Buat-Menard P. Thermal separation of soot carbon [J]. Aerosol Science and Technology,1989,10(2):358-364.
    [89]Cachier H., BREMOND M. P., BUAT-MENARD P.. Determination of atmospheric soot carbon with a simple thermal method [J]. Tellus B,1989,41(3):379-390.
    [90]黄虹,李顺诚,曹军骥,邹长伟,陈新庚.大气气溶胶中有机碳和元素碳监测方法的进展[J].分析科学学报,2006,22(2):225-229.
    [91]Chow J. C., Watson J. G., Pritchett L. C., Pierson W. R., Frazier C. A., Purcell R. G. The DRI thermal/optical reflectance carbon analysis system:description, evaluation and applications in US air quality studies [J]. Atmospheric Environment Part A General Topics,1993,27(8):1185-1201.
    [92]Chow J. C., Watson J. G., Pritchett L. C., Pierson W. R., Frazier C. A., Purcell R. G. The DRI thermal/optical reflectance carbon analysis system:description, evaluation and applications in U. S. air quality studies [J]. Atmospheric Environment Part A, General topics,1993,27(8):1185-1201.
    [93]Turpin B. J., Cary R. A., Huntzicker J. J. An in situ, time-resolved analyzer for aerosol organic and elemental carbon [J]. Aerosol Science and Technology,1990,12(1): 161-171.
    [94]Huntzicker J. J., Johnson R.L., Shah J. J., Cary R. A. Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method [M]. Particulate Carbon. Springer.1982:79-88.
    [95]Watson J. G, Chow J. C, Chen L-W. A. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons [J]. Aerosol and Air Quality Research, 2005,5(1):65-102.
    [96]Chow J. C., Watson J. G., Crow D., Lowenthal D. H., Merrifield T. Comparison of IMPROVE and NIOSH carbon measurements [J]. Aerosol Science and Technology, 2001,34(1):23-34.
    [97]Chow J. C., Watson J. G., Chen L. W. A., Arnott W. P., Moosmuller H. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols [J]. Environmental Science & Technology,2004,38(16): 4414-4422.
    [98]Schauer J. J., Mader B. T, Deminter J. T., Heidemann G., Bae M. S., Seinfeld J. H., Flagan R. C., Cary R. A., Smith D., Huebert B. J. ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon [J]. Environmental Science & Technology,2003,37(5):993-1001.
    [99]Turpin B. J., Huntzicker J. J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS [J]. Atmospheric Environment,1995,29(23):3527-3544.
    [100]Cachier H., Bremond M. P., Buat-Menard P. Carbonaceous aerosols from different tropical biomass burning sources [J]. Nature,1989,340:371-373.
    [101]Ding X., Wang X. M., Gao B., Fu X. X., He Q. F., Zhao X. Y., Yu J. Z., Zheng M.. Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China [J]. Journal of Geophysical Research-Atmospheres,2012,117:1-14.
    [102]Chow J. C., Watson J. G., Louie P.K.K, Chen L.W.A., Sin D. Comparison of PM2.5 carbon measurement methods in Hong Kong, China [J]. Environmental Pollution,2005, 137(2):334-344.
    [103]Chu S. H. Stable estimate of primary OC/EC ratios in the EC tracer method [J]. Atmospheric Environment,2005,39(8):1383-1392.
    [104]Castro L, M., Pio C. A., Harrison R. M., Smith D.J.T. Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations [J]. Atmospheric Environment,1999,33(17):2771-2781.
    [105]Lim H. J., Turpin B. J. Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta supersite experiment [J]. Environmental Science & Technology,2002,36(21):4489-4496.
    [106]Yuan Z. B., Yu J. Z., Lau A. K. H., Louie P. K. K., Fung J. C. H. Application of positive matrix factorization in estimating aerosol secondary organic carbon in Hong Kong and its relationship with secondary sulfate [J]. Atmospheric Chemistry and Physics,2006, 6(1):25-34.
    [107]Lin P., Hu M., Deng Z., Slanina J., Han S., Kondo Y, Takegawa N., Miyazaki Y, Zhao Y, Sugimoto N. Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon [J]. Journal of Geophysical Research-Atmospheres,2009,114:1-14.
    [108]Millet D. B., Donahue N. M., Pandis S. N., Polidori A., Stanier C. O., Turpin B. J., Goldstein A. H. Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study:Results, interpretation and quantification of primary and secondary contributions [J]. Journal of Geophysical Research-Atmospheres,2005,110: 1-17.
    [109]Hu W. W., Hu M., Deng Z. Q., Xiao R., Kondo Y, Takegawa N., Zhao Y J., Guo S., Zhang Y H. The characteristics and origins of carbonaceous aerosol at a rural site of PRD in summer of 2006 [J]. Atmospheric Chemistry and Physics,2012,12(4): 1811-1822.
    [110]Strader R., Lurmann F., Pandis S. N. Evaluation of secondary organic aerosol formation in winter [J]. Atmospheric Environment,1999,33(29):4849-4863.
    [111]Wang Z., Wang T., Guo J., Gao R., Xue L., Zhang J., Zhou Y, Zhou X., Zhang Q., Wang W. Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China [J]. Atmospheric Environment,2012,46:516-527.
    [112]Schauer J. J., Rogge W. F., Hildemann L. M., Mazurek M. A., Cass G. R., Simoneit B.R.T. Source apportionment of airborne particulate matter using organic compounds as tracers [J]. Atmospheric Environment,1996,30(22):3837-3855.
    [113]Guo S., Hu M., Guo Q., Zhang X., Schauer J. J., Zhang R. Quantitative evaluation of emission control of primary and secondary organic aerosol sources during Beijing 2008 Olympics [J]. Atmos Chem Phys Discuss,2013,12(12):32883-32909.
    [114]Song Y., Zhang Y. H, Xie S. D., Zeng L. M., Zheng M., Salmon L. G., Shao M., Slanina S.. Source apportionment of PM2.5 in Beijing by positive matrix factorization [J]. Atmospheric Environment,2006,40(8):1526-1537.
    [115]Guo H., Cheng H. R., Ling Z. H., Louie P. K. K., Ayoko G. A. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? [J]. Journal of Hazardous Materials,188(1):116-124.
    [116]Kleindienst T. E., Jaoui M., Lewandowski M., Offenberg J. H., Lewis C. W., Bhave P. V., Edney E. O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location [J]. Atmospheric Environment,2007,41(37):8288-8300.
    [117]Hu D., Bian Q., Lau A. K. H., Yu J. Z. Source apportioning of primary and secondary organic carbon in summer PM2.5 in Hong Kong using positive matrix factorization of secondary and primary organic tracer data [J]. Journal of Geophysical Research-Atmospheres,2010,115:1-13.
    [118]Guo S. Hu M., Guo Q. P., Zhang X., Zheng M., Zheng J., Chang C. C., Schauer J. J., Zhang R. Y. Primary Sources and Secondary Formation of Organic Aerosols in Beijing, China [J]. Environmental Science & Technology,2012,46(18):9846-9853.
    [119]Blanchard C. L., Hidy G. M., Tanenbaum S., Edgerton E., Hartsell B., Jansen J. Carbon in southeastern US aerosol particles:Empirical estimates of secondary organic aerosol formation [J]. Atmospheric Environment,2008,42(27):6710-6720.
    [120]Li W., Zhou S. Z., Wang X. P., Xu Z., Yuan C., Yu Y. C., Zhang Q. Z., Wang W. X. Integrated evaluation of aerosols from regional brown hazes over northern China in winter:Concentrations, sources, transformation, and mixing states [J]. Journal of Geophysical Research-Atmospheres,2011,116:1-11.
    [121]Posfai M., Anderson J. R., Buseck P. R., Sievering H. Soot and sulfate aerosol particles in the remote marine troposphere [J]. Journal of Geophysical Research-Atmospheres, 1999,104:21685-21693.
    [122]Posfai M., Gelencser A., Simonies R., Arato K., Li J., Hobbs P. V., Buseck P. R. Atmospheric tar balls:Particles from biomass and biofuel burning [J]. Journal of Geophysical Research-Atmospheres,2004,109:1-9.
    [123]Moffet R. C., Prather K. A. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates [J]. Proceedings of the National Academy of Sciences,2009,106(29):11872-11877.
    [124]李卫军,邵龙义.雾霾和沙尘污染天气气溶胶单颗粒研究(中英文)[M].北京:科学出版社,2013.
    [125]Bauer S. E., Koch D. Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model [J]. Journal of Geophysical Research-Atmospheres,2005,110:1-15.
    [126]Fuller K. A., Malm W. C., Kreidenweis S.M. Effects of mixing on extinction by carbonaceous particles [J]. Journal of Geophysical Research-Atmospheres,1999,104: 15941-15954.
    [127]Li W. J., Wang T., Zhou S. Z., Lee S. C, Huang Y., Gao Y., Wang W. X.. Microscopic Observation of Metal-Containing Particles from Chinese Continental Outflow Observed from a Non-Industrial Site [J]. Environmental Science & Technology,2013,47(16): 9124-9131.
    [128]济南市统计局,国家统计局济南调查队.济南统计年鉴[M].北京:中国统计出版社,2010.
    [129]国家统计局,环境保护部.中国环境统计年鉴[M].北京:中国统计出版社,2013.
    [130]Yang L., Wang D., Cheng S., Wang Z., Zhou Y, Zhou X., Wang W. Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China [J]. Science of the Total Environment,2007,383(1-3):164-173.
    [131]Wang Z., Wang T., Gao R., Xue L., Guo J., Zhou Y, Nie W, Wang X., Xu P., Gao J. Source and variation of carbonaceous aerosols at Mount Tai, North China:Results from a semi-continuous instrument [J]. Atmospheric Environment,2011,45(9):1655-1667.
    [132]Bae M. K., Schauer J. J., DeMinter J. T., Turner J. R., Smith D., Cary R. A. Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method [J]. Atmospheric Environment,2004,38(18):2885-2893.
    [133]Kanaya Y, Komazaki Y, Pochanart P., Liu Y, Akimoto H., Gao J., Wang T., Wang Z. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006 [J]. Atmospheric Chemistry and Physics,2008,8: 7637-7649.
    [134]Zhou Y, Wang T., Gao X., Xue L., Wang X., Wang Z., Gao J., Zhang Q., Wang W. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 m asl) in central-eastern China [J]. Journal of Atmospheric Chemistry,2009,64:107-127.
    [135]Draxler R. R., Rolph G. D. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory, Silver Spring, MD. Access via NOAAARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). [J].2014.
    [136]Wang T., Wong H.L.A., Tang J., Ding A., Wu W. S., Zhang X. C. On the origin of surface ozone and reactive nitrogen observed at a remote mountain site in the northeastern Qinghai-Tibetan Plateau, western China [J]. Journal of Geophysical Research-Atmospheres,2006,111:1-15.
    [137]Ding A. J., Wang T. Fu C. B. Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China [J]. Journal of Geophysical Research-Atmospheres,2013,118(16):9475-9488.
    [138]Brankov E., Rao S. T., Porter P. S. A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants [J]. Atmospheric Environment,1998, 32(9):1525-1534.
    [139]Clegg S. L., Brimblecombe P., Wexler A. S. Thermodynamic model of the system H+-NH4+-SO42--NO3-H2O at tropospheric temperatures [J]. The Journal of Physical Chemistry A,1998,102(12):2137-2154.
    [140]朱星宇,陈勇强SPSS多元统计分析方法及应用[M].清华大学出版社,2011.
    [141]He K., Yang E, Ma Y, Zhang Q., Yao X., Chan C. K., Cadle S., Chan T., Mulawa P. The characteristics of PM2.5 in Beijing, China [J]. Atmospheric Environment,2001,35(29): 4959-4970.
    [142]Nunes T. V, Pio C. A. Carbonaceous aerosols in industrial and coastal atmospheres [J]. Atmospheric Environment Part A General Topics,1993,27(8):1339-1346.
    [143]Offenberg J. H., Baker J. E. Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres [J]. Atmospheric Environment,2000,34(10): 1509-1517.
    [144]Chow J. C., Watson J. G., Lowenthal D. H., Solomon P. A., Magliano K. L., Ziman S. D., Richards L. W. PM10 and PM2.5 Compositions in California's San Joaquin Valley [J]. Aerosol Science and Technology,1993,18(2):105-128.
    [145]Wang T., Nie W., Gao J., Xue L. K., Gao X. M., Wang X. F., Qiu J., Poon C. N., Meinardi S., Blake D. Air quality during the 2008 Beijing Olympics:secondary pollutants and regional impact [J]. Atmospheric Chemistry and Physics,2010,10(16): 7603-7615.
    [146]Wang W, Primbs T., Tao S., Simonich S.L. M.. Atmospheric Particulate Matter Pollution during the 2008 Beijing Olympics [J]. Environmental Science & Technology, 2009,43(14):5314-5320.
    [147]Wang M., Zhu T., Zheng J., Zhang R. Y., Zhang S. Q., Xie X. X., Han Y. Q., Li Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics [J]. Atmospheric Chemistry and Physics,2009,9(21):8247-8263.
    [148]Wang S. X., Zhao M., Xing J., Wu Y., Zhou Y., Lei Y, He K. B., Fu L. X., Hao J. M. Quantifying the Air Pollutants Emission Reduction during the 2008 Olympic Games in Beijing [J]. Environmental Science & Technology,2010,44(7):2490-2496.
    [149]Wang X., Westerdahl D., Chen L. C., Wu Y, Hao J. M., Pan X. C., Guo X. B., Zhang K. M. Evaluating the air quality impacts of the 2008 Beijing Olympic Games:On-road emission factors and black carbon profiles [J]. Atmospheric Environment,2009,43(30): 4535-4543.
    [150]Witte J. C., Schoeberl M. R., Douglass A. R., Gleason J. F., Krotkov N. A., Gille J. C., Pickering K. E., Livesey N. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics [J]. Geophysical Research Letters,2009,36: 1-6.
    [151]Duan F. K., He K. B., Ma Y. L., Jia Y. T., Yang F. M., Lei Y, Tanaka S., Okuta T. Characteristics of carbonaceous aerosols in Beijing, China [J]. Chemosphere,2005, 60(3):355-364.
    [152]lander T. J. A., Leskinen A. P., Raunemaa T. M., Rantanen L. Characterization of diesel particles:effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility [J]. Environmental Science & Technology, 2004,38(9):2707-2714.
    [153]陶俊,柴发合,高健,曹军骥,刘随心,张仁健.16届亚运会期间广州城区PM-(2.5)化学组分特征及其对霾天气的影响[J].环境科学,2013,34(2):409-415.
    [154]Liu H., Wang X. M., Zhang J. P., He K. B., Wu Y., Xu J. Y. Emission controls and changes in air quality in Guangzhou during the Asian Games [J]. Atmospheric Environment,2013,76:81-93.
    [155]Wang T., Poon C. N., Kwok Y. H., Li Y S. Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China [J]. Atmospheric Environment,2003,37(25):3539-3550.
    [156]Zhang X. Y., Wang Y. Q., Zhang X. C., Guo W., Gong S. L.. Carbonaceous aerosol composition over various regions of China during 2006 [J]. Journal of Geophysical Research-Atmospheres,2008,113:1-10.
    [157]Dan M., Zhuang G., Li X., Tao H., Zhuang Y. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing [J]. Atmospheric Environment,2004, 38(21):3443-3452.
    [158]Duan F., Liu X., Yu T., Cachier H. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing [J]. Atmospheric Environment,2004,38(9):1275-1282.
    [159]Li W. F., Bai Z. P., Liu A. X., Chen J., Chen L.. Characteristics of major PM2.5 components during winter in Tianjin, China [J]. Aerosol Air Qual Res,2009,9:105-119.
    [160]Cao J. J., Wu F., Chow J. C., Lee S. C., Li Y, Chen S. W., An Z. S., Fung K. K., Watson J. G., Zhu C. S. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China [J]. Atmospheric Chemistry and Physics,2005,5:3127-3137.
    [161]Meng Z. Y, Jiang X. M., Yan P., Lin W. L., Zhang H. D., Wang Y. Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China [J]. Atmospheric Environment,2007,41(32):6901-6908.
    [162]Cao J. J., Shen Z. X., Chow J. C., Qi G. W., Watson J. G. Seasonal variations and sources of mass and chemical composition for PMio aerosol in Hangzhou, China [J]. Particuology,2009,7(3):161-168.
    [163]Ye D., Zhao Q., Jiang C. T., Chen J., Meng X. X.. Characteristics of elemental carbon and organic carbon in PM10 during spring and autumn in Chongqing, China [J]. China Particuology,2007,5(4):255-260.
    [164]Tao J., Zhang L. M., Engling G., Zhang R. J., Yang Y. L, Cao J. J., Zhu C. S, Wang Q. Y, Luo L. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning [J]. Atmospheric Research, 2013,122:270-283.
    [165]Xu L. L., Chen X. Q., Chen J. S., Zhang F. W., He C., Zhao J. P., Yin L. Q. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China [J]. Atmospheric Research,2012,104:264-272.
    [166]Chen B., Du K., Wang Y., Chen J. S., Zhao J. P., Wang K., Zhang R W, Xu L. L. Emission and transport of carbonaceous aerosols in urbanized coastal areas in China [J]. 2012, Aerosol and Air Quality Research,12:371-378.
    [167]Cao J. J., Lee S. C., Chow J. C., Watson J. G., Ho K. F., Zhang R. J., Jin Z. D., Shen Z. X., Chen G. C., Kang Y. M. Spatial and seasonal distributions of carbonaceous aerosols over China [J]. Journal of Geophysical Research-Atmospheres,2007,112:1-9.
    [168]Feng Y, Chen Y., Guo H., Zhi G,. Xiong S., Li J., Sheng G., Fu J. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China [J]. Atmospheric Research,2009,92(4):434-442.
    [169]Cao J. J., Lee S. C., Ho K. F., Zhang X. Y, Zou S. C., Fung K., Chow J. C., Watson J. G. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period [J]. Atmospheric Environment,2003,37(11):1451-1460.
    [170]Cao J. J., Lee S. C., Ho K. F., Zou S. C., Fung K., Li Y, Watson J. G., Chow J. C. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China [J]. Atmospheric Environment,2004,38(27): 4447-4456.
    [171]Zhou S. Z., Wang Z., Gao R., Xue L. K., Yuan C., Wang T., Gao X. M., Wang X. F., Nie W., Xu Z., Zhang Q. Z., Wang W. X. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China [J]. Atmospheric Environment,2012,63(203-212.
    [172]Han Y. M., Han Z. W., Cao J. J., Chow J. C., Watson J. G., An Z. S., Liu S. X., Zhang R. J. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance [J]. Atmospheric Environment,2007, 45(10):2405-2414.
    [173]Qu W. J., Zhang X. Y, Arimoto R., Wang Y. Q., Wang D., Sheng L. F., Fu G. Aerosol background at two remote CAWNET sites in western China [J]. Science of the Total Environment,2009,407(11):3518-3529.
    [174]Cao J. J., Xu B. Q., He J. Q., Liu X. Q., Han Y. M., Wang G., Zhu C. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China [J]. Atmospheric Environment,2009,43(29):4444-4452.
    [175]Carrico C. M., Bergin M. H., Shrestha A. B., Dibb J. E., Gomes L., Harris J. M. The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya [J]. Atmospheric Environment,2003,37(20):2811-2824.
    [176]Ram K.., Sarin M. M., Hegde P. Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India:Sources and temporal variability [J]. Atmospheric Environment,2008,42(28):6785-6796.
    [177]Watson J. G., Chow J. C., Lowenthal D. H., Cahill C. F., Blumenthal D. L., Richards L. W., Jorge H. G. Aerosol chemical and optical properties during the Mt. Zirkel Visibility Study [J]. Journal of Environmental Quality,2001,30(4):1118-1125.
    [178]Pio C. A., Legrand M., Oliveira T., Afonso J., Santos C., Caseiro A., Fialho P., Barata F., Puxbaum H., Sanchez-Ochoa A. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe [J]. Journal of Geophysical Research-Atmospheres,2007,112:1-15.
    [179]Krivacsy Z., Hoffer A., Sarvari Z., Temesi D., Baltensperger U., Nyeki S., Weingartner E., Kleefeld S., Jennings S. G. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites [J]. Atmospheric Environment,2001,35(36):6231-6244.
    [180]Lelieveld J., Heintzenberg J.. Sulfate Cooling Effect on Climate Through In-Cloud Oxidation of Anthropogenic SO2 [J]. Science,1992,258(5079):117-120.
    [181]Yu J. Z., Huang X. F., Xu J., Hu M. When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate [J]. Environmental Science & Technology,2005,39(1):128-133.
    [182]Gao X. M., Nie W., Xue L. K., Wang T., Wang X. F., Gao R., Wang W. X., Yuan C., Gao J., Ravi K. P. Highly Time-Resolved Measurements of Secondary Ions in PM2.5 during the 2008 Beijing Olympics:The Impacts of Control Measures and Regional Transport [J]. Aerosol and Air Quality Research,2013,13(1):367-376.
    [183]Carlton A. G., Turpin B. J., Altieri K. E., Seitzinger S., Reff A., Lim H. J., Ervens Barbara. Atmospheric oxalic acid and SOA production from glyoxal:Results of aqueous photooxidation experiments [J]. Atmospheric Environment,2007,41(35):7588-7602.
    [184]Yao X., Fang M., Chan C. K. Size distributions and formation of dicarboxylic acids in atmospheric particles [J]. Atmospheric Environment,2002,36(13):2099-2107.
    [185]Lim H. J., Carlton A. G., Turpin B. J. Isoprene forms secondary organic aerosol through cloud processing:Model simulations [J]. Environmental Science & Technology,2005, 39(12):4441-4446.
    [186]Zhang Q., Streets D. G., Carmichael G. R., He K. B., Huo H., Kannari A., Klimont Z., Park IS, Reddy S., Fu J. S. Asian emissions in 2006 for the NASA INTEX-B mission [J]. Atmospheric Chemistry and Physics,2009,9(14):5131-5153.
    [187]Sun M., Wang Y., Wang T., Fan S., Wang W., Li P., Guo J., Li Y. Cloud and the corresponding precipitation chemistry in south China:Water-soluble components and pollution transport [J]. Journal of Geophysical Research-Atmospheres,2010,115:1-10.
    [188]Duncan B. N., Martin R. V., Staudt A. C., Yevich R., Logan J. A. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations [J]. Journal of Geophysical Research-Atmospheres,2003,108:1-28.
    [189]Volkamer R., Jimenez J. L., San Martini F., Dzepina K., Zhang Q., Salcedo D., Molina L. T., Worsnop D. R., Molina M. J. Secondary organic aerosol formation from anthropogenic air pollution:Rapid and higher than expected [J]. Geophysical Research Letters,2006,33:1-4.
    [190]Johnson D., Utembe S. R., Jenkin M. E. Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK [J]. Atmospheric Chemistry and Physics,2006,6(2): 419-431.
    [191]Dzepina K., Volkamer R. M., Madronich S., Tulet P., Ulbrich I. M., Zhang Q., Cappa C. D., Ziemann P. J., Jimenez J. L. Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City [J]. Atmospheric Chemistry and Physics, 2009,9:5681-5709.
    [192]Zhang J., Wang T., Chameides W. L., Cardelino C., Kwok J., Blake D. R., Ding A., So K. L. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China [J]. Atmospheric Chemistry and Physics,2007,7:557-573.
    [193]De Gouw J. A., Middlebrook A. M., Warneke C., Goldan P. D., Kuster W. C., Roberts J. M., Fehsenfeld F. C., Worsnop D. R., Canagaratna M. R., Pszenny A. A. P. Budget of organic carbon in a polluted atmosphere:Results from the New England Air Quality Study in 2002 [J]. Journal of Geophysical Research-Atmospheres,2005,110:1-22.
    [194]Kleinman L. I., Springston S. R., Daum P. H., Lee Y. N., Nunnermacker L. J, Senum G. I., Wang J., Weinstein-Lloyd J., Alexander M. L., Hubbe J. The time evolution of aerosol composition over the Mexico City plateau [J]. Atmospheric Chemistry and Physics, 2008,7(5):14461-14509.
    [195]Slowik J. G., Brook J., Chang R. Y. W., Evans G. J., Hayden K., Jeong C. H., Li S. M., Liggio J., Liu P. S. K., McGuire M., Mihele C., Sjostedt S., Vlasenko A., Abbatt J. P. D. Photochemical processing of organic aerosol at nearby continental sites:contrast between urban plumes and regional aerosol [J]. Atmospheric Chemistry and Physics, 2011,11(6):2991-3006.
    [196]Miyakawa T., Takegawa N., Kondo Y. Photochemical evolution of submicron aerosol chemical composition in the Tokyo megacity region in summer [J]. Journal of Geophysical Research-Atmospheres,2008,113:1-12.
    [197]Hayes P. L., Ortega A. M., Cubison M. J., Froyd K. D., Zhao Y., Cliff S. S., Hu W. W., Toohey D. W., Flynn J. H., Lefer B. L., Grossberg N., Alvarez S., Rappengluck B., Taylor J. W., Allan J. D., Holloway J. S., Gilman J. B., Kuster W. C., de Gouw J. A., Massoli P., Zhang X., Liu J., Weber R. J., Corrigan A. L., Russell L. M., Isaacman G., Worton D. R., Kreisberg N. M., Goldstein A. H., Thalman R., Waxman E. M., Volkamer R., Lin Y. H., Surratt J. D., Kleindienst T. E., Offenberg J. H., Dusanter S., Griffith S., Stevens P. S., Brioude J., Angevine W. M., Jimenez J. L. Organic aerosol composition and sources in Pasadena, California during the 2010 CalNex campaign [J]. Journal of Geophysical Research-Atmospheres,2013,118:9233-9257.
    [198]Wang T., Wei X. L., Ding A. J., Poon C. N., Lam K. S., Li Y. S., Chan L. Y, Anson M. Increasing surface ozone concentrations in the background atmosphere of Southern China,1994-2007 [J]. Atmospheric Chemistry and Physics,2009,9(16):6217-6227.
    [199]Zhou S. Z., Wang T., Wang Z., Li W. J., Xu Z., Wang X. F., Yuan C, Poon C. N., Louie Peter K. K., Luk Connie W. Y, Wang W. X. Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China [J]. Atmospheric Environment,2014,88:219-229.
    [200]Zhao X. J., Zhang X. L., Xu X. F., Xu J., Meng W., Pu W. W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing [J]. Atmospheric Environment,2009,43(18):2893-2900.
    [201]Zhang R., Khalizov A. F., Pagels J., Zhang D., Xue H., McMurry P. H. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing [J]. Proceedings of the National Academy of Sciences,2008,105:1-9.
    [202]Shao L. Y., Li W. J., Xiao Z. H., Sun Z. Q. The mineralogy and possible sources of spring dust particles over Beijing [J]. Advances in Atmospheric Sciences,2008,25: 395-403.
    [203]Bond T. C., Zarzycki C., Flanner M. G., Koch D. M. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse [J]. Atmospheric Chemistry and Physics Discussions,2013,10(6):15713-15753.
    [204]Adachi K., Buseck P. R. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City [J]. Atmospheric Chemistry and Physics 2008,8(3): 9179-9207.
    [205]Li W.J., Zhang D.Z., Shao L.Y., Zhou S.Z., Wang W.X.. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain [J]. Atmospheric Chemistry and Physics,2011,11(22): 11733-1174
    [206]Jacobson M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols [J]. Nature,2001,409(6821):695-697.
    [207]Li W.J., Shao L.Y. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China [J]. Journal of Geophysical Research-Atmospheres,2009, 114:1-10.
    [208]Li W.J., Shao L.Y. Mixing and water-soluble characteristics of particulate organic compounds in individual urban aerosol particles [J]. Journal of Geophysical Research-Atmospheres,2010,115:1-9.
    [209]Wu Z, Hu M, Liu S, Wehner B, Bauer S. New particle formation in Beijing, China: Statistical analysis of a 1-year data set [J]. Journal of Geophysical Research-Atmospheres,2007,112:1-10.
    [210]Wehner B., Birmili W., Ditas F., Wu Z., Hu M., Liu X., Mao J., Sugimoto N., Wiedensohler A. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China,2004-2006 [J]. Atmospheric Chemistry and Physics, 2008,8(20):6155-6168.
    [211]Li W., Zhou S., Wang X., Xu Z., Yuan C., Yu Y, Zhang Q., Wang W. Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states [J]. Journal of Geophysical Research-Atmospheres,2011,116:1-11.
    [212]Pope C. A., Young B., Dockery D. W. Health effects of fine particulate air pollution: lines that connect [J]. Journal of the Air & Waste Management Association,2006,56(6): 709-742.
    [213]Adriano D. C. Trace elements in terrestrial environments:Biogeochemistry, bioavailability, and risks of metals [M]. Springer,2001.
    [214]Hu X., Zhang Y. N., Ding Z. H., Wang T. J., Lian H. Z., Sun Y. Y, Wu J. C.. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China [J]. Atmospheric Environment,2012,57: 146-152.
    [215]He K. M., Wang S. Q., Zhang J. L. Blood lead levels of children and its trend in China [J]. Science of the Total Environment,2009,407(13):3986-3993.
    [216]Silbergeld E. K. Preventing lead poisoning in children [J]. Annual review of public health,1997,18(1):187-210.
    [217]Shao L., Shi Z., Jones T. P., Li J., Whittaker AG, BeruBe KA. Bioreactivity of particulate matter in Beijing air:Results from plasmid DNA assay [J]. Science of the Total Environment,2006,367(1):261-272.
    [218]Zereini F., Alt R, Messerschmidt J.U., Wiseman C., Feldmann I., Von Bohlen A., Miiller J.U., Liebl K., Puttmann W. Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany [J]. Environmental Science & Technology,2005,39(9):2983-2989.
    [219]Zheng N., Liu J., Wang Q., Liang Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China [J]. Science of the Total Environment,2010,408(4):726-733.
    [220]Tian H. Z., Wang Y., Xue Z. G., Cheng K., Qu Y P., Chai F. H., Hao J. M. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China,1980-2007 [J]. Atmospheric Chemistry and Physics,2010,10(23):11905-11919.
    [221]Yang L. X., Zhou X. H., Wang Z., Zhou Y, Cheng S. H., Xu P. J., Gao X. M., Nie W, Wang X. F., Wang W. X. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment [J]. Atmospheric Environment,2012,55:506-514.
    [222]Sun Y, Zhuang G., Wang Y, Han L., Guo J., Dan M., Zhang W, Wang Z., Hao Z. The air-borne particulate pollution in Beijing--concentration, composition, distribution and sources [J]. Atmospheric Environment,2004,38(35):5991-6004.
    [223]Chen J. M., Tan M. G., Li Y. L., Zheng J., Zhang Y. M., Shan Z. C., Zhang G. L., Li Y. Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai [J]. Journal of Hazardous Materials,2008,156:36-43.
    [224]Han B., Kong S. F., Bai Z. P., Du G., Bi T., Li X., Shi G. L., Hu Y. D. Characterization of Elemental Species in PM2.5 Samples Collected in Four Cities of Northeast China [J]. Water, Air, & Soil Pollution,2012,209(1):15-28.
    [225]Yang W., Yin Y, Wei Y, Chen K. Characteristics and sources of metal elements in PM2.5 during hazy days in Nanjing [J]. China Environmental Science,2010,30(1):12-17.
    [226]Wang X., Bi X., Sheng G., Fu J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China [J]. Environmental Monitoring and Assessment,2006, 119(1):425-439.
    [227]Xu H. M., Cao J. J., Ho K. F., Ding H., Han Y. M., Wang G. H., Chow J. C., Watson JG, Khol SD, Qiang J. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi'an, China [J]. Atmospheric Environment,2011,217-224.
    [228]Fang G. C., Chang C. N., Chu C. C., Wu Y. S., Fu P. P. C., Yang I. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5.10 aerosols at a farm sampling site in Taiwan, Taichung [J]. The Science of the Total Environment,2003,308(1-3): 157-166.
    [229]Furuta N., Iijima A., Kambe A., Sakai K, Sato K. Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004 [J]. Journal of Environmental Monitoring,2005,7(12):1155-1161.
    [230]Balasubramanian R., Qian W. B. Characterization and source identification of airborne trace metals in Singapore [J]. Journal of Environmental Monitoring,2004,6(10): 813-818.
    [231]Heo J. B., Hopke P. K., Yi S. M. Source apportionment of PM2.5 in Seoul, Korea [J]. Atmospheric Chemistry and Physics,2009,9(14):4957-4971.
    [232]Ho K. F., Cao J. J., Lee S. C., Chan C. K. Source apportionment of PM2.5 in urban area of Hong Kong [J]. Journal of Hazardous Materials,2006,138(1):73-85.
    [233]Wei F., Teng E., Wu G., Hu W., Wilson W. E., Chapman R. S., Pau J. C., Zhang J. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities [J]. Environmental Science & Technology,1999,33(23):4188-4193.
    [234]Xie R. K., Seip H. M., Liu L., Zhang D. S. Characterization of individual airborne particles in Taiyuan City, China [J]. Air Quality, Atmosphere & Health,2009,2(3): 123-131.
    [235]Wei F. S. The element background values of Chinese soil [J]. China Environmental Science Press, Beijing,1990.
    [236]Miguel E., Llamas J. F., Chacon E., Berg T., Larssen S., Roset O., Vadset M. Origin and patterns of distribution of trace elements in street dust:Unleaded petrol and urban lead [J]. Atmospheric Environment,1997,31(17):2733-2740.
    [237]Querol X., Pey J., Minguillon M. C., Perez N., Alastuey A., Viana M., Moreno T., Bernabe RM, Blanco S., Cardenas B. PM speciation and sources in Mexico during the MILAGRO-2006 Campaign [J]. Atmospheric Chemistry and Physics,2008,8(1): 111-128.
    [238]Thurston G. D., Spengler J. D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston [J]. Atmospheric Environment,1985,19(1):9-25.
    [239]Zhang Y. P., Wang X. F., Chen H., Yang X., Chen J. M., Allen J. O. Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry [J]. Chemosphere,2009,74(4):501-507.
    [240]Thorpe A., Harrison R. M. Sources and properties of non-exhaust particulate matter from road traffic:A review [J]. Science of the Total Environment,2008,400(1-3): 270-282.
    [241]Manoli E., Voutsa D., Samara C. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece [J]. Atmospheric Environment,2002,36(6):949-961.
    [242]Pacyna E. G., Pacyna J. M., Fudala J., Strzelecka-Jastrzab E., Hlawiczka S., Panasiuk D., Nitter S., Pregger T., Pfeiffer H., Friedrich R. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe [J]. Atmospheric Environment,2007,41(38):8557-8566.
    [243]Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles [J]. Environmental health perspectives,2005, 113(7):823-839.
    [244]Birmili W., Allen A. G., Bary F., Harrison R. M. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic [J]. Environmental Science & Technology,2006,40(4):1144-1153.
    [245]Donaldson K., Brown D. M., Mitchell C, Dineva M., Beswick P. H., Gilmour P., MacNee W. Free radical activity of PMio:iron-mediated generation of hydroxyl radicals [J]. Environmental Health Perspectives,1997,105(Suppl5):1285-1289.
    [246]Utsunomiya S., Jensen K. A., Keeler G. J., Ewing R. C. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere [J]. Environmental Science & Technology,2004,38(8):2289-2297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700