用户名: 密码: 验证码:
大气颗粒物中溴和碘的浓度特征及来源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对大气颗粒物化学成分的研究是大气气溶胶化学中的基础研究领域,其研究成果可以为大气颗粒物的源解析以及大气气溶胶界面上的多相反应等方面的研究提供支持。溴、碘作为大气中重要的活性物种,参与了大气中的多种化学过程,对臭氧的损耗有重要影响,同时影响众多重要物种的源和汇,对大气化学过程起到重要的作用,研究活性卤素化学已成为近年来大气化学研究领域的热点问题。本论文从研究大气颗粒物中溴和碘的分析方法入手,研究了大气颗粒物中溴和碘的浓度特征及其来源,测定了大气颗粒物中碘的物种,研究了大气颗粒物源尘中溴和碘的含量、以及大气颗粒物中的主要人为源——煤燃烧过程中溴和碘的释放行为,得到以下研究结论。
     1、微波消解ICP-MS同时测定大气颗粒物和煤样中溴和碘。(1)煤样的消解介质为7-8mLHNO3、1-2mLHF、2mLH2O2,颗粒物样品的消解介质为5mLHNO3、2mLH2O2和2滴HF。(2)测试液中硝酸介质浓度为5%。(3)氧化剂Na2S2O8的用量为1mL20%Na2S2O8溶液;加入1滴0.1%AgNO3溶液,将不同价态Br、I氧化至统一高价态。(4)溴、碘的检测限分别为5 ng/mL和0.15ng/mL。(5)Br的加标回收率为80-110%,I的加标回收率为80-120%,符合ISO 5725标准中一般接受范围70-130%的要求。(6)本方法的测试结果符合土壤标样的标准值。
     2、上海市大气颗粒物(TSP和PMlo)中溴和碘的浓度特征。(1)采样期间,TSP中总溴和总碘含量的均值分别为163.6±108.7μg/g和55.6±37.μg/g;PM10中总溴和总碘的含量均值分别为230.4±137.0μg/g和78.4±44.3 gg/g。(2)采样期间,TSP中总溴和总碘的体积浓度均值分别为27±20 ng/m3和9.4±5.6ng/m3, PM10中总溴和总碘的体积浓度均值分别为22±14 ng/m3和8.0±4.6 ng/m3。(3)TSP和PMlo中总溴体积浓度的季节变化规律表现为秋季>春季>冬季>夏季;TSP和PM10中总碘体积浓度的季节变化规律表现为冬季>春季>秋季>夏季;TSP和PMlo中水溶性和酸溶性溴和碘的季节变化规律与总溴和总碘的规律基本一致。(4)TSP中Br/I的比值和PM1o中Br/I的比值分别为7.0±16.5和5.3±9.6。(5)TSP中水溶性溴和碘占总溴和总碘的比例分别为34±18%和32±19%,PM1o中水溶性溴和碘占总溴和总碘的比例分别为31±18%和32±15%;与水溶性溴、碘相比,PM1o中溴、碘溶出量增加了22.5%和18.4%。
     3、大气颗粒物源尘中溴和碘以及煤燃烧过程中溴和碘的释放行为。(1)煤炭中溴含量约10-30μg/g,碘含量约1-10μg/g。(2)燃烧过程中,Br、I的释放率随温度升高而增加,在1000℃处形成平台;强氧化性燃烧气氛对溴、碘的释放行为有抑制作用。(3)煤燃烧过程中,痕量元素I则几乎全部分布在气相中,而Br主要分布于气相中,在底渣和颗粒相中也有分布。(4)固体添加剂可以在燃烧过程中对溴和碘进行有效捕集。
     4、上海市大气颗粒物中溴和碘的来源及其影响因素。(1)PM10中Br的富集因子(Efs)在0.3-3.0之间,均值为1.0±0.7;I的Efs在154-791之间,均值为426±169,碘的富集因子远远大于溴的富集因子。PMlo中的溴主要来源于海洋气溶胶,但同时存在溴的损失,尤其表现在春季和冬季;颗粒物中的碘主要来源于海洋气溶胶和受气粒转化的作用。(2)风向为向岸流时,大气颗粒物TSP、PM10中溴、碘的浓度均低于离岸流时的浓度,风向对大气中颗粒物中溴、碘浓度有显著影响。影响颗粒物中溴的主要气象因素为大气气压,而影响颗粒物中碘的主要气象因素为大气气压和温度。(3)当大气中SO2、NO2浓度上升时,大气颗粒物中Br、I的浓度呈现出不同程度的上升趋势;大气颗粒物中总碘的浓度与SO2及NO2呈显著正相关,总溴的相关性不显著;颗粒物中溶解性溴和碘与S02的相关性较高,与N02的相关性较弱。(4)随着城市大气污染程度的增加,大气颗粒物中Br/I在减小。颗粒物中Br/I比值与空气中主要污染物SO2、NO2呈现负相关,且PM10中Br/I比值与S02负相关达到显著水平。
     5、大气颗粒物中碘的物种。(1)在昼间,PMlo中碘酸根、碘离子和可溶性有机碘含量分别为1.32±0.82μg/g、16.75±±9.43μg/g和18.23±±11.061μg/g;在夜间,PM1o中碘酸根、碘离子和可溶性有机碘含量分别为2.87±2.06μg/g、16.75±9.96gg/g和24.21±11.46μg/g。(2)在昼间,PM10中碘酸根、碘离子和可溶性有机碘的浓度分别为0.24±0.22 ng/m3、3.36±2.21 ng/m3和3.67±2.67 ng/m3;在夜间,碘酸根、碘离子和可溶性有机碘的浓度分别为0.244±0.22 ng/m3、3.11±±2.21 ng/m3和2.97±±2.77 ng/m3。(3)在昼间,PM1o中碘酸根、碘离子和可溶性有机碘离子占溶解性碘的比例分别为3.1±1.3%、47.1±2.4%和49.4±2.5%;在夜间,PMlo中碘酸根、碘离子和可溶性有机碘离子占溶解性碘的比例分别为3.9±3.7%、53.4±8.7%和42.7±11.5%。
Study on chemical composition of aerosols, which can provide basic data for source apportionment of atmosphric particulate and heterogeneous reaction on particulate, is the basic research area. Bromine and Iodine are important reactive halogen species in the atmosphere, which can participate in many atmospheric chemical processes, play important role in the ozone depletion, affect sources and sinks of many important compounds. Reactive halogen chemistry is an important frontier research field in the atmospheric chemistry. Therefore, the aim of this dissertation is to develop a analytical method of iodine and bromine in coal and atmospheric particles, research concentration characteristics and sources of bromine and iodine in aerosols, and behavior of the trace elements bromine and iodine during coal combustion process.
     1. Determination of iodine and bromine in coal and atmospheric particles by inductively coupled plasma mass spectrometry. (1) 7-8 mL of nitric acid,1-2 mL of hydrofluoric acid, and 2 mL of hydrogen peroxide were used as digestion solution for coal, and for atmospheric particles,5 mL of nitric acid,2 drops of hydrofluoric acid, and 2 mL of hydrogen peroxide were used as digestion solution. (2) 5%(V/V) of nitric acid in determination solution was employed in this analytical method. (3) 1mL of NaS2O8(20% solution) and one drop of 0.1% AgNO3 solution were introduced in determination solution for oxidizing Br and I to the same valence. (4) The detection limits (DL) of Br and I were 5 ng/mL and 0.15 ng/mL, respectively. (5) The recoveries of Br and I ranged from 80% to 110% and from 80% to 120%, respectively. The accuracy of the method was well within the generally accepted range of 70-130% indicated in ISO 5725. (6) The determined contents of Br and I in soil certified reference materials by this method were accurate with comparison of certified value.
     2. Concentration characteristics of bromine and iodine in aerosols in Shanghai. (1) The contents of total Br and total I are 163.6±108.7μg/g and 55.6±37.7μg/g for TSP, and 230.4±137.0μg/g and 78.4±44.3μg/g for PM10, in sampling period, respectively. (2) The concentrations of total Br and total I are 27±20 ng/m3 and 9.4±5.6 ng/m3 for TSP, and 22±14 ng/m3 and 8.0±4.6 ng/m3 for PM10, in sampling period, respectively. (3) The seasonal variations of total Br concentrations in TSP and PM10 were Autumn> Spring> Winter> Summer. For total I, the seasonal variations in TSP and PM10 were Winter> Spring> Autumn > Summer. (4) The Br/I ratios are 7.0±16.5 and 5.3±9.6 for TSP and PM10, respectively. (5) For TSP, watersoluble Br and I accounted for 34±18% and 32±19% of the total Br and total I, while for PM10, water-soluble Br and I accounted for 31±18% and 32±15%, respectively. Soluble Br and I in PM10 extracted by acid increased by 22% and 18% respectively, compared with water-soluble Br and I.
     3. The contents of Br and I in source dust of aerosols, and the behavior of bromine and iodine during coal combustion process. (1) The contents of Br and I in different coal are ranged from 10 to 30μg/g, and from 1 to 10μg/g, respectively. (2) The release of bromine and iodine increased with an increase in temperature, decreased with the increase of oxygen concentration. (3) At the given experimental condition, iodine was observed almost entirely in the vapor phase, but bromine was observed dominantly in the vapor phase, as well as in residue and particulate matter, respectively. (4) Solid additives could capture bromine and iodine effectively during coal combustion process.
     4. The sources and effect factors of Br and I in aerosols in Shanghai. (1) The sea water enrichment factor for Br ranged from 0.3 to 3.0, with a mean of 1.0±0.7, whilst for I, it ranged from 154 to 791, with a mean of 426±169 for PM10. It indicated that I concentrations were essentially affected by marine aerosol concentrations and the gas-to-particle reactions in the production of I aerosols. The major part of aerosols bromine originated from marine sources, and the bromine depletion on particulate surface was very high in summer and autumn. (2) When the wind flowed to the shore, the concentrations of particulate bromine and particulate iodine were lower than the values in the offshore flow. The wind direction, air pressure and air temperature were the major factors in influencing the concentration of Br and I in aerosols. (3) The concentrations of Br and I in aerosols increased with the concentrations of SO2 and NO2 increasing. Iodine in aerosols showed a highly positive correlation with SO2 and NO2, whereas for Br, it only weakly correlated with these pollutants. (4) When the air quality deteriorated, the Br/I ratio decreased. The Br/I ratio in aerosols showed a highly negative correlation with SO2 and NO2 in air.
     5. Iodine speciation in PM10. (1) The contents of iodate, iodide and soluble organic iodine(SOI) are 1.32±0.82μg/g,16.75±9.43μg/g and 18.23±11.06μg/g for PM10, during the day, respectively. The contents of iodate, iodide and SOI are 2.87±2.06μg/g,16.75±9.96μg/g and 24.21±11.46μg/g for PM10 during the night, respectively. (2) The concentrations of iodate, iodide and SOI are 0.24±0.22 ng/m3,3.36±2.21 ng/m3 and 3.67±2.67 ng/m3 for PM10, during the day, respectively. The concentrations of iodate, iodide and SOI are 0.24±0.22 ng/m3, 3.11±2.21 ng/m3 and 2.97±2.77 ng/m3 for PM10, during the night, respectively. (3) SOI and iodide are the most abundant fraction, accounting for 49.4±2.5%,47.1±2.4% during the day, and 42.7±11.5%,53.4±8.7% during the night, respectively.
引文
[1]葛茂发,马春平.活性卤素化学[J].化学进展.2009,21:307-334
    [2]Carpenter L J Iodine in the Marine Boundary Layer[J].Chem. Rev.2003,103:4953-4962
    [3]Bedjanian Y, Poulet GKinetics of Halogen oxide radicals in the stratosphere[J].Chem. Rev.2003,103(12):4639-4655
    [4]Wayne R P, Poulet G, Biggs P, et al.Halogen oxides:Radicals,sources and reservoirs in the laboratory and in the atmosphere[J].Atmos.Environ.1995,29(20):2677-2881
    [5]Vogt R, Sander R,Von Glasow R,et al.Iodine chemistry and its role in halogen activation and ozone loss in the Marine Boundary Layer:A Model Study[J]. J.Atmos.Chem. 1999,32:375-395
    [6]Simpson W R,VonGlasow R,Riedel K, et al.Halogens and their role in polar boundary-layer ozone depletion[J].Atmos. Chem. Phys.2007,7:4375-4418
    [7]Sander R, Keene W C, Pszenny A A,et al.Inorganic bromine in the marine boundary layer a critical review[J].Atmos.Chem.Phys.2003,3:1301-1336
    [8]Sinnhuber B M, Sheode N, Sinnhuber M,et al.The contribution of anthropogenic bromine emissions to past stratospheric ozone trends:a modelling study[J].Atmos.Chem.Phys. 2009,9:2863-2871
    [9]Hou X L,Hansen V,Aldahan A,et al.A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta.2009,632(2):181-196
    [10]Giese B,Laturnus F,Adams F C,et al.Release of volatile C1-C4 by marine macroalgae from various climate zones [J].Environ. Sci. Technol.1999,33:2432-2439
    [11]Abrahamsson K,Loren A,Wulff A,et al.Air-sea exchange of halocarbons:the influence of diurnal and regional variations and distribution of pigments[J].Deep-Sea Research. 2004,51:2789-2805
    [12]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992.pp41-48,pp469-474
    [13]Amachi S,Kasahara M,Hanada S,et al.Microbial participation in iodine volatilization from soils[J]. Environ.Sci.Technol.2003,37(17):3885-3890
    [14]唐修义.中国煤中微量元素[M].北京:商务印书馆,2004:pp6-11
    [15]Clarke L B, The fate of trace elements during coal combustion and gasification:an overview[J].Fuel.1993,72:731-736
    [16]Sturges W T,Harrison R M.Bromine in marine aerosols and the origin,nature and quantity of natural atmospheric bromine[J].Atmos.Environ.1986,20(7):1485-1496
    [17]Paciga J J,Roberts T M,Robert E J. Particle size distributions of lead,bromine,and chlorine in urban-industrial aerosols[J].Environ.Sci.Technol.1975,9(13):1141-1144
    [18]刘铮,朱其清.土壤微量元素译文集[M].江苏科学技术出版社.1981,01:2-3
    [19]邢光熹,朱建国.土壤微量元素和稀土元素化学[M].科学出版社.2003,01:50-51
    [20]Vassilev S V,Eskenazy G M,Vassileva C G Contents modes of occurrence and origin of chlorine and bromine in coal[J].Fuel.2000,79:903-921
    [21]Pires M, Fiedler H, Teixeira E C. Geochemical distribution of trace elements in coal: modelling and environmental aspects[J].Fuel.1997,76(14/15):1425-1437
    [22]Xu M H,Yan R,Zheng C G,et al.Status of trace element emission in a coal combustion process:a review[J].Fuel Processing Technology.2004,85:215-237.
    [23]Raask E, The mode of occurrence and concentrion of trace elmements in coal[J].Fuel.1985,11:97-118
    [24]Finkelman R B,Palmer C A,Krasnow M R,et al.Combustion and leaching behavior of elements in the argonne premium coal samples[J].Energy & Fuels.1990,4:755-766
    [25]Wang J,Tomita A.A Chemistry on the volatility of some trace elements during coal combustion and pyrolysis[J].Energy & Fuels.2003,17:954-960
    [26]Mark S G, William H Z. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant[J].Environ.Sci.Technol.1988, 22:1079-1085
    [27]Liu G J, Zhang H Y, Gao L F, et al.Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China[J]. Fuel Processing Technology.2004,85:1635-1646
    [28]Meij R.Trace elements behavior in coal-fired power plants [J].Fuel processing technology.1994,39:199-217
    [29]Vassilev S V,Eskenazy G M,Vassileva C G.Contents.modes of occurrence and behaviour of chlorine and bromine in combustion wastes from coal-fired power stations[J]. Fuel.2000,79:923-937
    [30]Yan R,Gauthier D,Flamant GPartitioning of trace elements in the flue gas from coal combustion[J].Combustion and Flame.2001,125:942-954
    [31]Hoffmann T,O'Dowd C D,Seinfeld J H.Iodine oxide homogeneous nucleation:An explanation for coastal new particle production[J].Geophys.Res.Lett.2001,28: 1949-1952
    [32]O'Dowd C D, Jimenez J L,Bahreini R.et al.Marine aerosol formation from biogenic iodine emissions[J].Nature.2002,417:632-636
    [33]Von Glasow R,Von Kuhlmann R,Lawrence M G,et al.Impact of reactive bromine chemistry in the troposphere[J].Atmos.Chem.and Phys.2004,4:2481-2497
    [34]Platt U,Honninger GThe role of halogen species in the troposphere[J].Chemosphere. 2003,52(2):325-338
    [35]Leblanc C,Colin C,Cosse A,et al. Iodine transfers in the coastal marine environment:the key role of brown algae and of their vanadium-dependent haloperoxidases[J].Biochimie. 2006,88(11):1773-1785
    [36]Hunt S W,Roeselova M,Wang W, et al.Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol:Evidence for interface chemistry[J]. J. Phys. Chem.A.2004,108(52):11559-11572
    [37]Thomas J L,Jimenez-Aranda A,Finlayson-Pitts B J,et al.Gas-phase molecular halogen formation from NaCl and NaBr aerosols:When are interface reactions important[J]. Phys. Chem.A.2006,110(5):1859-1867
    [38]O'Driscoll P,Minogue N,Takenaka N,et al.Release of nitric oxide and iodine to the atmosphere from the freezing of Sea-Salt aerosol components[J].J. Phys. Chem.A. 2008,112(8):1677-1682
    [39]Nakano Y,Ishiwata T.Rate Constants of the reaction of NO3 with CH3I measured with use of Cavity Ring-Down Spectroscopy[J].J. Phys. Chem. A.2008,109(29):6527-6531
    [40]Enami S,Vecitis C D,Cheng J,et al.Global inorganic source of atmospheric bromine[J].J. Phys. Chem.A.2007,111(36):8749-8752
    [41]Abbatt J P,Waschewsky C GHeterogeneous interactions of HOBr,HNO3,O3 and NO2 with deliquescent NaCl aerosols at room temperature[J].J.Phys.Chem.A.1998, 102(21):3719-3725
    [42]王明星.大气化学[M].第二版.北京:气象出版社.1995,pp183-190
    [43]Holmes N S.A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications[J].Atmos.Environ. 2007,41(10):2183-2201
    [44]Kolb C E.Iodine's air of importance[J].Nature.2002,417:597-598
    [45]O'Dowd C D,Hoffmann T.Coastal new particle formation:s review of the current state-of-the-art[J].Environ. Chem.2005,2(4):245-255
    [46]Saunders R W, Plane J M.Formation pathways and composition of iodine oxide Ultra-Fine particles[J]. Environ.Chem.2005,2(4):299-303
    [47]Sellegri K,Yoon Y J,Jennings S G, et al.Quantification of coastal new ultra-fine particles formation from in situ and chamber measurements during the BIOFLUX campaign[J]. Environ.Chem.2005,2(4):260-270
    [48]Baker A.R.,Thompson D.,Campos M.L.A.M.,et al. Iodine concentration and availability in atmospheric aerosol[J].Atmos.Environ.2000,34(25):4331-4336.
    [49]Duce R A,Moyers J L.Gaseous and particulate bromine in the marine atmosphere[J]. Geophys.Res.1972,77(27):5330-5338
    [50]Duce R A,Moyers J L.Gaseous and particulate iodine in the marine atmosphere[J]. Geophys.Res.1972,77(27):5229-5237
    [51]Winchester J W, Duce R A,The global distribution of iodine,bromine and chlorine in marine aerosols[J].Naturwissenschaften.1967,54:110-113
    [52]Berg W W,Sperry P D,Rahn K A, et al.Atmospheric bromine in Arctic[J].J.geophys.Res. 1983,88:6719-6736
    [53]Sadasivan S,Trace constituents in cloud water,rainwater and aerosol samples collected near the west coast of India during the southwest monsoon[J]. Atmos.Environ. 1980,14:33-38
    [54]Rancher J, Kritz M A,Diurnal fluctuations of Br and I in the tropical marine atmosphere[J].J.Geophys.Res.1980,85:5581-5587
    [55]Arimoto R,Duce R A, Ray B J, et al.Trace elements in the atmosphere of American Samoa:Concentrations and deposition to the tropical South Pacific[J].J.Geophys.Res. 1987,92:8465-8479
    [56]Arakaki T,Kuroki Y,Okada K,et al.Chemical composition and photochemical formation of hydroxyl radicals in aqueous extracts of aerosol particles collected in Okinawa, Japan[J].Atmos.Environ.2006,40(25):4764-4774
    [57]Xu D D,Dan M,Song Y,et al.Concentration characteristics of extractable organohalogens in PM2.5 and PM10 in Beijing[J].China.Atmos.Environ.2005,39(22):4119-4128
    [58]Baker A R. Marine aerosol iodine chemistry:the importance of soluble organic iodine[J]. Environ.Chem.2005,2:295-298
    [59]Gilfedder B S, Lai S C, Petri M, et al. Iodine speciation in rain, snow and aerosols[J]. Atmos.Chem.Phys.2008,8:6069-6084
    [60]Lai S, Hoffmann T, Xie Z Q.Iodine speciation in marine aerosols along a 30,000 km round-trip cruise path from Shanghai, China to Prydz Bay Antarctica[J].Geophys. Res.Lett.2008,35:doi:10.1029/2008GL035492.
    [61]Gilfedder B S, Petri M, and Biester H.Iodine speciation in rain and snow:Implications for the atmospheric iodine sink[J].Geophys.Res.2007,112:D07301,doi:10.1029/2006 JD007356
    [62]Gilfedder B S,Petri M,Biester H.Iodine and bromine speciation in snow and the effect of orographically induced precipitation[J].Atmos. Chem. Phys.2007,7:2661-2669
    [63]Wei F, Teng E, Wu G, et al. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities[J].Environ.Sci.Technol.1999,19:238-242
    [64]He K, Yang F,Ma Y L,et al.The characteristics of PM2.5 in Beijing.China[J].Atmos. Environ.2001,35:4959-4970
    [65]张元勋,王荫淞,李德禄等.上海冬季大气可吸入颗粒物的PIXE研究[J].中国环境科学,2005,25(增刊):1-5
    [66]吕森林,陈小慧,吴明红等.上海市PM2.5的物理化学特征及其生物活性研究[J].环境科学.2007,28(3):472-477
    [67]Cheng Z L,Lam K S,Chan L Y,et al.Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996[J].Atmos. Environ.2000,34:2771-2783
    [68]Moyers J L,Zoller W H,Duce R A,Hoffman G L.Gaseous bromine and particulate lead, vanadium, and bromine in a polluted atmosphere[J].Environ.Sci.Technol.1972,6:68-71
    [69]Duce R A,Zoller W H,Moyers J L.Particulate and gaseous halogens in the Antarctic atmosphere[J]. J.Geophys.Res.1973,78:7802-7810
    [70]Khandekar R N,Kelkar D N,Vohra K G.Bromine to lead ratios in suspended air particulate matter in Greater Bombay[J].Atmos.Environ.1982,16:621-624
    [71]Moyers J L,Duce R A.Gaseous and particulate bromine in the marine atmospher[J]e. J.Geophys.Res.1972a,77:5330-5338
    [72]Moyers J L,Duce R A.Gaseous and particulate iodine in the marine atmosphere[J]. J.Geophys.Res.1972b,77:5229-5237
    [73]Kritz M A,Rancher J.Circulation of Na, Cl, and Br in the Tropical marine atmosphere[J]. J.Geophys.Res.1980,85:1633-1639
    [74]Sturges W T,Barrie L A.Chlorine,Bromine and Iodine in arctic aerosols[J]. Atmos.Environ.1988,22:1179-1194
    [75]Sturges W T,Shaw G E.Halogens in aerosols in central Alaska[J]. Atmos.Environ. 1993,27:2969-2977
    [76]Duce R A,Woodcock A H,Moyers J L.Variation of ion ratio with size among particles in tropical oceanic air[J].Tellus XIX:369-379
    [77]Sturges W T,Shaw G E.Halogens in aerosols in Central Alaska[J]. Atmos.Environ.1993, 27A(17/18):2969-2977
    [78]陈宗良,葛苏,张晶.北京大气气溶胶小颗粒的测量与解析[J].环境科学研究.1994,7(3):1-9
    [79]滕恩江,胡伟,吴国平等.中国四城市空气中粗细颗粒物元素组成特征[J].中国环境科学.1999,19(3):238-242
    [80]Duce R A,Winchester J W.Determination of iodine, bromine and chlorine in atmospheric samples by neutron activation analysis[J].Radiochimica Acta.1965,4(2)11:100-104
    [81]范哲锋,靳晓涛,王亚峰.电感耦合等离子体发射光谱法测定碘的研究[J].光谱学与光谱分析.2001,21(3):370-372
    [82]莫曦明,梁旭霞,陈砚朦等.电感耦合等离子体质谱法(ICP-MS)测定饮用水中碘元素[J].中国卫生检验杂志.2006,16(10):1179-1180
    [83]黄光明,窦银萍,张静梅等.电感耦合等离子体质谱法同时测定地下水中硼溴、碘[J].岩矿测试.2008,27(1):25-28
    [84]Larsen E H,Ludwigsen M B.Determination of iodine in food-related certified reference materials using wet ashing and detection by inductively coupled plasma mass spectrometry[J].J.Anal.Spectrom.1997,12(4):435-439
    [85]李冰,何红蓼,史世云等.电感耦合等离子体质谱法同时测定地质样品痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响[J].岩矿测试2001,20(3):161-166
    [86]马新荣,李冰,韩丽荣等.稀氨水密封溶解—电感耦合等离子体质谱测定土壤沉积物及生物样品中的碘、溴[J].岩矿测试.2003,22(3):174-178
    [87]李杰,钟立峰,崔学军等Carius管溶样—标准加入电感耦合等离子体质谱法测定土壤中碘[J].岩矿测试.2006,25(1):19-21
    [88]刘虎生,邵宏翔.电感耦合等离子体质谱[M].北京:化学工业出版社.2005:pp1-6
    [89]廖可兵,刘爱群,聂西度等.大气颗粒物中微量金属元素的质谱分析[J].武汉理工大学学报.2006,28(12):52-55
    [90]东明ICP-MS法同时测定大气颗粒物中24种金属元素的方法研究[J].辽宁省环境科学学会2006年学术年会.2006:285-288
    [91]帅琴,杨薇,徐鸿志等.大气颗粒物中痕量稀土元素的ICP-MS分析研究[J].第十届全国稀土元素分析化学学术报告会.2003,B-10:64-65
    [92]邹本东,徐子优,华蕾.密闭微波消解电感耦合等离子体发射光谱(ICP-AES)法同时测定大气颗粒物PM10中的18种无机元素[J].中国环境监测.2007,23(1):6-10
    [93]刘刚,钟少军,瞿成利等.应用离子色谱离线螯合及ICP-MS测定海水中多种痕量元素[J].高等学校化学学报.2007,28(1):53-55
    [94]刘晶,郑楚光,陆晓华.微波消解和氢化物发生ICP-AES法测定煤中痕量砷[J].分析科学学报.2004,20(1):23-25
    [95]陈韵,陈晓远,肖艳辉等.微波消解—氢化物发生—原子荧光光谱法测定土壤中的铅[J].韶关学院学报(自然科学版).2006,27(9):62-66
    [96]郭欣,贾小红,郑楚光等.采用微波消解原子荧光光谱法测定煤中的汞[J].华中科技大学学报(自然科学版).2003,31(11):66-68
    [97]辛仁轩,宋崇立,王建晨等.低功率有机ICP中乙醇增敏效应的研究[J].光谱学与光谱分析.2002,22(6):1005-1008
    [98]International Standard ISO 5725(1-6),1994
    [99]Bowman H R,Conway J G, Asaro F.Atmospheric lead and bromine concentration in Berkeley, Calif (1963-70) [J].Environ.Sci.Technol.1972,6(6):558-560
    [100]Kan F,Tanner P A. Inter-relationships and seasonal variations of inorganic components of PM10 in a western pacific coastal city[J].Water,Air and Soil Pollution.2005,165(1-4): 113-130
    [101]Berg W W,Heidt L E,Pollock W,et al.Brominated organic species in the Arctic atmosphere[J].Geophys.Res.Lett.1984,11:429-432
    [102]Yang S J, Cheng R B,Yang Y N.Physical and chemical properties of aerosols in the Western Pacific marine boundary layer[J].Chinese Science Bulletin.1989,16:52-56
    [103]Wang W G, Ge M F, Tian Y T,et al.A flow tube of methyl iodine uptake on soot surface[J]. Chem.Phys.Lett.2007,440:348-351
    [104]Ratafia-Brown J A. Overview of trace elements partitioning in flames and furnaces of utility coal-fired boilers [J]. Fuel processing technology.1994,39(2):139-157
    [105]Liu D,Sakai Y,Yamamoto M, et al. Behavior of fluorine in the combustion of Chinese coal in small furnaces [J]. Energy & Fuels.2006,20(4):1406-1410
    [106]Xie W,Pan W P, John T R.Behavior of chloride during coal combustion in an AFBC System[J].Energy & Fuels.1999,13(3):585-591
    [107]Guo R X,Yang J L,Liu D Y,et al.Transformation behavior of trace elements during coal pyrolysis[J].Fuel Processing Technology.2002,77-78(20):137-143
    [108]Liu K,Pan W P,Riley J T.A study of chlorine behavior in a simulated fluidized bed combustion system[J].Fuel.2000,79(9):1115-1124
    [109]Helbel J J.Trace element behavior during coal combustion:results of a laboratory study[J]. Fuel processing technology.1994,39(1-3):159-172
    [110]John C QJames R C.The inorganic geochemistry of coal, petroleum, and their gasification/combustion products [J].Fuel processing technology.1994,40(l):15-48
    [111]Yu J L,John A L,Terry F W.Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review[J].Progress in energy and combustion science.2007,33(2):35-170
    [112]Poissant L,Schmit J P,Beron P.Trace inorganic elements in rainfall in the Montreal Island[J].Atmos.Environ.1994,28:339-346
    [113]Fickert S,Adams J W,Crowley J N.Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions[J].J. Geophys.Res.1999,104:23719-23727
    [114]Huff A K,Abbatt J P D. Gas-Phase Br2 production in heterogeneous reactions of Cl2, HOCl, and BrCl with Halide-Ice Surfaces[J].J.Phys.Chem.A.2000,104:7284-7293
    [115]Adams J W,Holmes N S,Crowley J N.Uptake and Reaction of HOBr on Frozen and dry Salt Surfaces[J]. Atmos. Chem.Phys.2002,2:79-91
    [116]Vogt R,Crutzen P J,Sander R.A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer[J].Nature.1996,383:327-330
    [117]Foster K L,Plastridge R A,Bottenheim J W,et al.The role of Br2 and BrCl in surface ozone destruction at Polar Sunrise[J].Science.2001,291:471-474
    [118]Simpson W R,Alvarez-Aviles L, Douglas T A,et al.Halogens in the coastal snow pack near Barrow,Alaska:Evidence for active bromine air-snow chemistry during springtime[J]. Geophys.Res.Lett.2005,32:L04811,doi:10.1029/2004GL021748
    [119]Duce R A,Wasson J T,Winchester J W,et al.Atmospheric iodine, bromine and chlorine[J]. J.Geophys.Res.1963,68:3943-3947.
    [120]Duce R A,Winchester J W,Van Nahl T W.Iodine, bromine and chlorine in the Hawaiian marine atmosphere[J]J.Geophys.Res.1965,70:1775-1799

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700