用户名: 密码: 验证码:
催化臭氧化处理难降解制药废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制药废水具有COD值高且波动性大,可生化性差,毒性大等特点,直接采用生化方法处理制药废水效果欠佳,因而必须对其进行预处理,降低废水对微生物的毒性,提高废水的可生化性,使其适于生化处理。本实验考察了臭氧化联合SBR法工艺对制药废水的降解效果,研究了催化剂对提高处理效率的作用,比较了反应器设计优化对去除率的影响,并对降解机理进行了研究,得到了如下结论:
     1、臭氧对制药废水预处理作用较好,能够改善废水的可生化性。一次进水600ml,用浓度为71mg/L的臭氧气处理3h,隔20min取样,测定水样的pH、COD、BOD和色度等因素。结果显示:臭氧对废水色度的去除效果很好,在10min中内即可从320倍下降为零;COD按照一级反应规律被去除,即反应时间越长,臭氧对废水的去除效果越好,处理3h后出水COD值从4220mg/L下降到2087mg/L,去除率达到50.5%;废水的pH值由12.8下降到5.8,变化较大,说明臭氧处理后有酸性物质产生;废水B/C比提高较为显著,由原水的0.18上升到0.35,说明臭氧氧化能够改善废水的可生化性。
     2、过渡金属氧化物有很强的催化作用,可大大缩短臭氧化预处理时间。本实验采用Mn、Cu、Fe、Co、Pd氧化物作为催化剂,用活性炭纤维作载体,非均相催化臭氧化处理制药废水,结果显示,过渡金属氧化物均能有效提高臭氧的氧化效率,用71mg/L的臭氧气对600ml废水进行预处理,在40~60min之间即能达到良好的反应效果。如Fe氧化物催化臭氧化7min废水的色度即全部消除,40min后废水的COD去除率即可达到62.1%,超过了单用臭氧处理废水3h的去除率,此时废水的B/C比为0.36,已经具有较好的可生化性。在催化剂中,Pd、Fe、Co氧化物具有相对更好的催化效果,40min后COD去除率分别可以达到57.3%、62.1%和62.9%,B/C比分别提高到0.33、0.35和0.35,其中Fe氧化物尤佳,因此,可以选用Fe氧化物作为本实验废水的催化剂,不仅较易获得,而且成本较低。实验还对影响催化臭氧化的初始pH值、臭氧用量、催化剂投量、反应时间、初始污染物浓度等诸因素进行了考察,发现除了碱性条件对催化臭氧化预处理制药废水有普遍的促进作用外,其它因素都与特定的废水浓度相关联,存在最佳值,因而确定了相对于某一特定浓度下的最佳反应条件:在废水初始COD浓度为4220 mg/L条件下,选用氧化铁为催化剂,投加量3.6mg/L,控制臭
    
    氧气流量4OL/h,初始PH值12.5左右,反应时间为40min。在此条件下,出水
    COD可下降为1565mg/L,去除率62.9%,B/C比提高到0.35,可生化性得到了
    改善,pH值降为9.4左右,色度在反应7min后即可全部消除。
     3、用催化臭氧化/SBR联合工艺处理实验制药废水,可以达标排放。预处理
    出水调节PH值为7一7.5,进入SBR反应器进行处理,反应器直径Zoonun,有效
    容积为4L,用蠕动泵、搅拌器和时控开关实现自动控制,一个周期12h,其中进
    水1 smin,厌氧搅拌Zh,曝气sh,沉淀1.sh,排水15min,水力停留时间(HRT)
    48h,控制水温巧一200C。系统稳定运行后,十个周期出水平均Coo为25Omg/L,
    去除率达到84.工%,抽样检测BOD<50 mg/L,出水可以达到国家二级排放标准,
    联合工艺全过程c0D总去除率达到94%。
     4、对臭氧化苯胺的反应机理进行研究,发现至少存在两个降解途径。苯胺
    广泛应用于制药工业,也是本实验废水中含有的物质。只含有苯胺的废水经臭氧
    处理后,用高效液相色谱进行分析,出现了苯醒和硝基苯等物质的特征峰线,因
    此可以推测臭氧降解苯胺的可能途径至少有两条:
    o:N+O-
    白|
    OH·HOZ·
    夕刻于。
    中—
     O
    COz
     5、对反应器进行设计优化,可以提高臭氧氧化效率。实验设计制造了新的
    反应器,将直径由loollun缩小到50咖,高径比从2:1提高到8:1,同时改用更
    细密的砂芯布气装置,发现在处理等量废水和其它反应条件不变的情况下,臭氧
    对废水的coD去除率提高到74.2%,优化后处理效果改善较为显著。
     6、将催化臭氧化与活性碳十臭氧、HZOZ十臭氧等工艺进行比较,预处理效果
    分别为催化臭氧化>HZ氏+臭氧>活性碳+臭氧。
Since the pharmaceutical wastewater has kinds of compounds, low biodegradability, the important pollutants such as COD are out of criterion, the treatment of pharmaceutical wastewater is considered the one of the most difficult treatments for the most of pharmaceutical companies. So, in order to improve its biodegradability, we should pretreat the water. In these experiments, we treated the special pharmaceutical wastewater with the ozonation process coupled with SBR, then studied the effect of catalyst to increase treatment efficiency, researched the principle of the degradation and compared the redesigned reactor to old one. At last, we achieved several conclusions following.
    1, Ozone is preferable to pharmaceutical wastewater's pretreatment and can improve its biodegradability. We pretreated 600ml this water with 71mg/L ozone, sampling every 20min, then determined its factors such as pH, COD, BOD and chroma, The results show that ozone has very good removal effect to chroma, it can wipe off almost all the chroma in 10min, dropped from 320 to 0. COD was removed responding to stair reaction law, in another word, more time, better removal effect, and it dropped from 4220mg/L to 2087mg/L after 3 hours' treatment, the degradation rate reached to 50.5%. pH changed greatly from 12.8 to 5.8,it showed that there was acidity substance come into being. B/C increased a little notably from 0.18 to 0.35, it made out that ozone can improve its biodegradability.
    2, The catalysis of transition metal oxide is very powerful, and can greatly shorten the pretreated time of ozonation. We introduced the oxide of Mn, Cu, Fe, Co and Pd as catalyzer, and used active carbon fibre as carrier, then pretreated the refractory pharmaceutical wastewater by Heterogeneous Catalytic Oxidation. The results are that transition metal oxide can greatly advance the efficiency of ozonation. If we pretreated 600ml this water with 71mg/L ozone, it ,very soon in 40~60min, can reach favorable effect. For instance, if we use Fe oxide as catalyzer, chroma will be entirely eliminated in 7min, and COD removal rate can attain 62.1%, more than the
    
    
    rate of using single way of ozone treating 3h, and on the temporary, the B/C is 0.36. At those kinds of catalyzer, using Fe, Co and Pd oxide in pretreatment will have comparatively good catalyze effect, COD removal rate can attain partly 57.3%, 62.1% ' and 62.9%, B/C increased partly to 0.33, 0.35 and 0.35, and Fe was especially best among the three. So this experiment selected Fe oxide as ozonation catalyzer, not only for its good effect, but also for its low cost and easily obtaining. Furthermore, we studied the influenced factors of pretreatment such as original pH, ozone dosage, catalyzer casting quantity, reaction hour and original contamination concentration, and found that all factor were correlated to a given concentration of wastewater, expect alkalescence condition can accelerate pretreatment effect prevalently, so there must exist a best-of-all reaction condition, and the condition to a given COD concentration of wastewater is that original COD is 4220 mg/L, Fe oxide is 3.6mg/L, ozone airflow is 40L/h, original pH is 12.5, and reaction hour is 40min. On this condition, COD of outflow water fell to 1565mg/L, and its removal rate can reach 62.9%, on the temporary, B/C unproved to 035, pH dropped to 9.4, and chroma eliminated in 7min.
    3, If the refractory pharmaceutical wastewater was treated by the catalytic ozonation process coupled with SBR, it can let flow reaching the mark.. We accommodated pH of the outflow into 7~7.5, then put it in a SBR reactor for deeper treatment which diameter is 200mm and available dimension is 4L, using vermiculation pump, beater and time-controlling switch for automation. An react cycle was 12h composing of 15min's inflow, 2h's mix, 8h's charge, 1.5h's deposition and 15min's drainage. HRT was 48h and the temperature was 15~20C. After the system running stable, we measured COD and BOD of outflow. The average COD of ten cycles' was 250mg/L, correspondence with 84.1% removal rate,
引文
1.T. Kamiya. et al, New Combined System of Biological Process and Intermittent Oaonation for Advenced Wastwater Treatment, Wat. Sci. Tech, 1998.38 (8-9):145-153;
    2.Wataru Nishijima. et al, DOC Removal by Multi-stage Ozonation-Biological Treatment, Water Research, 2003.37:150-154;
    3.Jan C.Jochmsen .et al, Partial oxidation Effects During the Combined Oxidative and Biological Treatment of Seprated Streams of Tannery Wastwater,Wat. Sci. Tech, 1997.35(4):337-345;
    4.Logenmann F.P. et al, Water Treatment with A Fixed Bed Catalytic Ozonation Process,Wat. Sci. Tech, 1997.35 (4): 353-360;
    5.Jochimsen, J.C., Schenk, H., Jekel, M.R., Hegemann, W., 1997. Combined oxidative and biological treatment for separated streams of tannery wastewater. Water Sci.Technol. 36, 209-216;
    6.Jochimsen, J.C., Schenk, H., Jekel, M.R., Hegemann: W., 1997. Combined oxidative and biological treatment for separated streams of tannery wastewater. Water Sci.Technol. 36, 209-216;
    7.Hoigne. J. Bader H. Rare constants of reaction of ozone with organic and inorganic compounds-Ⅱ:Dissocialing organic compounds[J].wat. Res.,1983.17(3):185--194;
    8.Huang, C.H., 1995. Aqueous phase ozonation of chlorophenols. J. Haz. Mat. 41,31-45;
    9.Zwiener C., Frimmel, F.H., 2000. Oxidative treatment of pharmaceuticals in water. Wat. Res. 34,1881-1885:
    10.MaJ, GranhamN J D. Degradation of atrazine by managanese-catalysed:influence of radicalscavengers[J].Wat. Res.,2000,34(3):785-793;
    11.Andreozzi R, Ii\nsola A, Caprio V, D' Amore M G. The kinetics of Mn(Ⅱ) catalysed ozonation of oxalic acid in aqueous solution [J].Wat. Res.,1992.26(7):917-921;
    12.MaJ, GranhamN J D. Preliminary investigation of manganese-catalysed ozonation for the destruction of atrazine[J], ozone:Sci. Eng.,1997.19(3):227-240;
    13.HoigneJ. Chemistryof aqueous ozone and transformation of polluants by ozonation and advanced process [A]. Hrubec. J The Handbook of Environmental Chemistry,v5 part C-Quality and of Drinking Water [C].Springer-Verlag Berin Heidelberg .1998.84--141;
    14.Hoigne J, Bader H. Kinetic and Selektiritat der Ozonung Organischer Stoffe in Trinkwasser[m].Berin:International Symposium Ozonund Wsser, 1997;
    15.Jun Ma, Nigel J D Granham. Degradation of atrazine by manganese-catalysed ozonation:influnce of humic substances []J. Wat. Res.,1999,33(3):785-793;
    16.Legube B, Karpel N,Vel Leitner. Catalytic ozonation:a promising advanced oxidation technology for water treatment[J] .Catalytic Today, 1999,53:61-72;
    17.Boly. Ham.,Chemical treatment of leachate from sanitary landfills. JWPOF.1974,46(7):1776-1791;
    18.汪新民等,臭氧的制备及在水处理中的应用,安徽化工,2002.118(4):32-34;
    19.莫德清等,臭氧在水处理中的制约因素及缓解措施,桂林工学院学报,2002.22(3):366-368;
    
    
    20.许芝,臭氧氧化难生化降解有机物的研究,大连铁道学院学报,2001.22(4):82-86;
    21.陈云华等,臭氧氧化去除水中芳香族化合物机理初探,化工环保,1998.18(2):74-78;
    22.赵国华等,高浓度臭氧用于污水处理的研究,工业水处理,2002.22(3):1-4;
    23.严文瑶等,催化氧化法处理医药工业废水,工业水处理,2001.21(10):19-21;
    24.林波等,臭氧氧化法处理技术的现状,环境与开发,1998.13(4):6-7;
    25.陆杰等,制药工业废水处理技术,工业水处理,2001.21(10):1-4;
    26.李凤仙等,药厂扑热息痛废水治理的研究,环境科学与技术,1996.72(1):31-34;
    27.张林海,厌氧-好氧SBR法处理青霉素生产废水,第三届全国污水处理技术交流会,北京,1997:189-192;
    28.贾学庆等,化学气浮法处理庆大霉素废液研究,化工环保,1986.6(1):17-19;
    29.潘志祥,土霉素、麦迪霉素废水的化学气浮处理,工业水处理,1991.11(1):24-26;
    30.黄永辉等,杂环类制药废水处理工艺探讨,工业水处理,2001.21(1):29-31;
    31.王才等,制药废水生化处理实验研究,给水排水,1999.25(3):41-43;
    32.马娜等,难降解有机污染物的生物治理技术进展,工业水处理,2002.22(10):1-4;
    33.王红娟等,含酚废水处理技术的现状与开发前景,工业水处理,2002.22(6):6-9;
    34.王增玉等。难降解有机废水处理技术现状与发展,工业水处理,2002.22(12):1-4;
    35.卢宁川 府灵敏,臭氧处理高浓度有机废水,污染防治技术,2002,15(2).11-12;
    36.钟理 张浩等,臭氧在水中的自分解动力学及反应机理,华南理工大学学报:自然科学版,
    37.2002,30(2).-83-86;
    38.刘春芳,臭氧高级氧化技术在废水处理中的研究进展,石化技术与应用,2002,20(4).-278-280;
    39.冯易君等,用二氧化氯降解废水中的苯胺类化合物,环境保护科学,1994,20(3):13-16,40(4):29-31;
    40.张彭义等,Ni/Fe/Cu氧化物的催化臭氧化作用研究[J].环境科学,1998,19(4):29-32;
    41.杨庆良等,高湿度条件下分解臭氧的锰催化剂.环境工程,2002,20(2):6567;
    42.O.Leitzke.用臭氧结合生物处理过程净化重度污染水的方法.MatalluricalPower,1998,4:50-55;
    43.朱佳等,废水臭氧接触反映装置的传质过程,环境保护,1999,9:14-16;
    44.于萍等,高浓度含酚废水处理的新工艺,工业水处理,2002,22(9):5-8;
    45.石磊等,臭氧处理工业循环水试验研究,工业水处理,2002,22(9).38-40;
    46.钟理等,有机废水湿式臭氧氧化降解过程的研究,环境科学与技术,2001,93(1):8-11;
    47.郭建文(译),用臭氧净化废水,南炼科技,1997,5(3):46-48;
    48.唐传祥,臭氧氧化工艺在工业废水处理中的应用;
    49.陈云等,臭氧氧化去除水中芳香族化合物机理初探,化工环保,1998,18:74-78;
    50.傅嘉嫒等,臭氧分解的动力学和机理概述,四川环境,2001,3(20):10-12;
    51.陈英等,水中臭氧的分解动力学研究,高校化学工程学报,2001,5(15):500-504;
    52.李来胜等,臭氧氧化——一种有前景的水处理高级氧化技术,给水排水,2001,6(27):26-29;
    53.袁新华等,氯化铝催化作用瞎苯胺与二硫化碳的反应机理初探,化学通报,2002,9:627-630;
    54.臧树良等,污水中铬(Ⅲ)的催化动力学分析法研究,辽宁大学学报,1989,4:49-53
    55.丁军委等,苯胺在超临界水中氧化反应动力学的研究,高校化学工程学报,2001,1(15):66-70;
    56.孙高年等,催化湿式氧化法处理有机浓废水,四川化工,1995,3:42-45;
    
    
    57.宋珏等,水中臭氧的快速测定,卫生研究,2000,3(29):151-153;
    58.郑玉峰等,光降解制药废水的试验研究,环境保护科学,2002,28(109):16-20:
    59.缪晡等,臭氧氧化处理抗肿瘤抗生素生产废水在工程中的应用,医药工程设计,1995,4:39-42;
    60.弥铁钢等,臭氧的制备及气水混合的研究,内蒙古农牧学院学报,1999,2(20):104-107;
    61.杨继河等,水中臭氧现场快速检测盒的研究,环境与健康杂志,2001,2(18):117-118;
    62.赵朝成等,超声/臭氧氧化处理含酚废水实验研究,油气田环境保护,2001,9:26-29;
    63.张彭义等,水中有机物与羟基自由基反应的QSAR分析,环境化学,1999,3(5):232-237;
    64.张晖等,水中臭氧分解动力学,环境科学研究,1999,1(12):17-19;
    65.董少平等,催化臭氧华降解磺基水杨酸,中国环境科学,2001,6(21):515-518;
    66.毛传峰等,臭氧与TiO_2/UV协同降解对氯苯酚,环境污染与防治,2003,2(25):259-261;
    67.周云等,给水处理中的臭氧副产物,中国给水排水,1999,2(15):27-28;
    68.张林生等,臭氧化法在水处理中的应用,净水技术,2003,1(22):9-11;
    69.陈美娟等,臭氧技术及其在水处理应用中的探讨,机电设备,2002,4:28-31;
    70.刘春芳,臭氧高级氧化技术在废水处理中的研究进展,石化技术与应用,2002,4(20):278-280;
    71.孙青萍,金属氧化物催化剂消除臭氧的初步探索,环境污染与防治,2003,1(24):32-33;
    72.宋传君等,苯胺废水处理方法,化学推进剂与高分子材料,1999,5(71):19-20;
    73.赵淑莉等,高效液相色谱法测定废水中的苯胺类化合物,色谱,1997,6(15):508-511;
    74.李瑞琴,高压液相色谱法测定废水中的苯胺和硝基苯胺,环境科学研究,1998,6(11):34-36;
    75.赵文成,工业废水中苯胺测定方法改进的探讨,福建轻纺,2001,8(147):5-10;
    76.贾志谦等,3-3’二氯联苯胺盐酸盐合成工业酸性废水中污染物的高效液相色谱法测定,环境化学,2001,5(20):503-506;
    77.张彭义等,染料中间体废水的催化臭氧化预处理,环境科学,1996,4(17):14-17;
    78.张彭义等,Ni、Fe氧化物对吐氏酸废水催化臭氧化研究,水污染防治,1996,10(15):25-28;
    79.张彭义等,Ni/Fe/Cu氧化物的催化臭氧化作用研究,环境科学,1998,4(19):29-32;
    80.赵红忠,SBR污水处理工艺及自动化控制,电气传动自动化,2003,2(25):31-34;
    81.冯易君等,用二氧化氯降解废水中的苯胺类化合物(1),环境保护科学,1994,3(20):13-16;
    82.冯易君等,用二氧化氯降解废水中的苯胺类化合物(1),环境保护科学,1994,4(20):29-36;
    83.冷少华等,附载型二氧化钛光电催化降解苯胺机理,环境科学学报,2000,6(20):781-784;
    84.石枫华等,O_3/H_2O_2与Mn氧化工艺去除水中难降解有机污染物的对比研究,环境科学,2004,1(25):72-77;
    85.赵军,O_3氧化处理苯胺、硝基苯废水的实验研究,环境保护科学,1997,3(23):12-14;
    86.王才等,制药废水生化处理实验研究,给水排水,1999,3(25):41-43;
    87.黄永辉等,杂环类制药废水处理工艺探讨,工业水处理,2001,1(21):29-36
    88.李启良等,催化氧化法处理有机废水催化剂的选择应用,污染防治技术,2003,2(16):34-36;
    89. Ralph W .Matthews. Photo-xidation of organic material in aqueous suspensions of titanium dixide. Wat. Res. 1986,20(5):569-578;
    90. Ann Lorette Puden and David F. Ollis. Degration of chloroform by photoassisted
    
    heterogeneous catalysis in dilute aqueous suspension of titanium dioxide.Environ.Sci.Technol.,1983,17:628-631;
    91.王亚明等,有机废水催化臭氧化处理的研究进展,化工环保,1999,19(3):145-147;
    92.张仲燕等,去除难降解有机废水COD用高效多相催化剂的研究,上海大学学报(自然科学版),2000,6(1):87-90;
    93.王永仪等,废水湿式催化氧化处理研究进展,环境科学进展,2995,3(2):35-41;
    94.唐文伟等,废水处理湿式氧化技术研究进展,水污染防治,1999,18(5):220-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700