用户名: 密码: 验证码:
柴达木盆地新生代沉积转型事件及区域对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古近纪和新近纪之交(约22Ma)是藏北高原新生代重要的沉积变革时期。柴达木盆地周缘被祁连山、阿尔金山和东昆仑山等巨型造山带所环绕,这一山间盆地的形成和演化与这些造山带密切相关,这里的新生代沉积变化记录可以为这些造山带隆升的时序提供直接证据。通过对野外实测剖面进行沉积学研究,结合室内薄片鉴定与统计,辅以阴极发光技术进行检验,判断了沉积物源,确认了盆地内部22Ma沉积物源发生了转变这一推测。在区域上,对柴达木盆地周缘的可可西盆地、塔里木盆地和库木库里盆地进对比研究,得出以下认识:
     (1)新生代柴达木盆地主要沉积了8套地层,从底到顶分别为古新世路乐河组,始新世下干柴沟组,渐新世上干柴沟组,中新世下油砂山组和上油砂山组,上新世狮子沟组,更新世七个泉组及全新世沉积。其沉积环境主要包括湖泊三角洲,滨湖、浅湖、深湖4个亚环境以及河流环境。
     (2)新生代柴达木盆地至少经历了两次完整的三级湖泛湖退旋回,即古近纪一次,新近纪一次。藻灰岩在渐新世末期开始出现,繁盛于下油砂山早期,于下油砂山组末期开始衰退。这个时期可能是柴达木盆地新生代一个比较湿润时期。泥云岩和膏盐主要发育在渐新世上干柴沟组和下干柴沟组中晚期,这个时期可能是柴达木盆地一个比较干燥的时期。
     (3)下干柴沟组沉积时期到上油砂山组沉积时期,沉积岩岩屑在总岩屑中一直占主导地位,说明阿尔金山至少一直是柴达木盆地西部的主要物源。
     (4)下油砂山组底部大量变质岩岩屑、侵入岩岩屑和喷出岩岩屑的出现暗示着古近纪和新近纪之交(22Ma),盆地主要物源区—阿尔金山发生了一期重要构造事件。
     (5)22Ma,即古近纪和新近纪之交是藏北高原新生代沉积的一个重要变革时期。柴达木盆地在这个时期沉积物源性质发生了转变;可可西里盆地古气候由炎热干旱背景转变为一个异常湿润的条件;塔里木盆地西南地区经历了由海相沉积体系向陆相沉积体系的重大转变;库木库里盆地由半干旱气候转变为湿润气候。
The turn of Paleogene and Neogene is an important transforming period of the Cenozoic sedmentary in Northern Tibetan Platean. Qaidam Basin is surrounded by the Qilian Mountains, Altun Mountains and Eastern Kunlun Mountains. The formation and evolution of the basin was closely related to these orogenic belts, so that the sedimentary records in Cenozoic in this basin can provide direct evidence for the uplifting time series of these orogenic belts. By sedimentary research on measured sections in the field, combined with indoor thin section analysis and Statistics, supplemented by the inspection of cathodoluminescence, the source of sediments has been confirmed and the speculation that there was a sedimentary transformation in the time of 22Ma of the Qaidam Basin has been verifyed. In a larger area, the Tarim Basin,Hoh Xili Basin and Kumukuli Basin have been compared with. Conclusions are as follows:
     (1) In Cenozoic there were 8 sets of main sedimentary strata in Qaidam Basin, form bottom to top layer: Palaeocene Lulehe Formation, Eocene Xiagancaigou Formation, Oligocene Shanggancaigou Formation, Miocene Xiayoushashan Formation and Shangyoushashan Formation, Pliocene Shizigou Formation, Pleistocene Qigequan formation and Holocene sedimentary strata. The sedimentary paleoenvironments include the paleo-river and four subenvironment: lakes delta, lakeshore, shallow lake and deep lake.
     (2) The Qaidam Basin had experienced at least two completely third-level cycles of lake regressions and transgressions in Cenozoic, the first cycle occurred in Paleogene, and the second occurred in Neogene. Algal limestone began in the late Oligocene, flourished in the early Xiayoushashan period, declined in the late of this period. This period may be the humid time in Cenozoic in the Qaidam Basin. Argillaceous dolomite and Gypsum-salt mainly developed in middle and late Eocene and Oigocene, the environment might be relatively dry in this period.
     (3) During the deposition period of Xiagancaigou Formation to Shangyoushashan Formation, rock debris of sedimentary stone is dominant in the whole debris, indicating that Altun Mountains was the main source area of the western Qaidam Basin at least
     (4) A lot of metamorphic rock debris, irruptive rock debris and effusive rock debris were found at the bottom of the Xiayoushashan Formation, implying that Altun Mountains has been experienced an important tectonic events in the turn of Paleogene and Neogene( 22Ma ).
     (5) The turn of Paleogene and Neogene is an important transforming period of the Cenozoic sedmentary in Northern Tibetan Platean. During this period the souce area of the Qaidam Basin changed; paleoclimate of the Hoh Xili Basin changed form the hot and dry to an unusually wet; marine depositional system transformed to a continental depositional system in the southwest of Tarim Basin; the paleaclimate of the Kumukuli Basin changed from half-dry to wet.
引文
[1]Harrison T. M., Copeland P., Kidd W. S. F., 1992, Raising Tibet. Science, 255: 1663-1670.
    [2]Molnar, P., Burchfiel, B.C., Zhao, Z., Lian, K., Wang, S., and Huang, M., 1987, Geologic Evolution of Northern Tibet: Results of an expedition to Ulugh Muztagh: Science, v. 235, 299–305.
    [3]Burchfiel, B.C., Molnar, P., Zhao, Z., Liang, K., Wang, S., Huang, M., and Sutter, J., 1989, Geology of the Ulugh Muztagh area, northern Tibet: Earth and Planetary Science Letters, v. 94, 57–70.
    [4]Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Shunmin, G., and Zhitai, C., 1998, Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, v. 135, 1–47.
    [5]Métivier, F., Gaudemer, Y., Tapponnier, P., and Meyer, B., 1998, Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, v. 17, 823–842.
    [6]Tapponnier P,Xu Zhiqin,Roger F et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science,294:1671-1677.
    [7]崔军文,张晓卫,唐哲民, 2006,青藏高原的构造分区及其边界的变形构造特征.中国地质, 33(2): 256-266
    [8]Wang, C. S., Zhao, X.X., Zhao, X. X., Liu, Z.F., Lippert, P. C., Graham, S.A., Coe, R. S., Yi, H.S., Zhu , L.D., Liu , S., and Li, Y.L., 2008, Constraints on the early uplift history of the Tibetan Plateau. PNAS, 105(13): 4987-4992.
    [9]Yin, A., McRivette, Burgess, W.P., and Chen, X., 2007, Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range, in Sears, J.W., Harms, T.A., and Evenchick, C.A., eds., Whence the Mountains? Inquiries into the evolution of orogenic systems: A volume in honor of Raymond Price: Geological Society of America Special Paper 433, 369–390.
    [10]Yin, A., Rumelhart, P., Cowgill, E., Butler, R., Harrison, T.M., Ingersoll, R.V., Cooper, K., Zhang, Q., and Wang, X.-F., 2002, Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, v. 114, 1257–1295.
    [11]Yin, A., Rumelhart, P., Cowgill, E., Butler, R., Harrison, T.M., Ingersoll, R.V., Cooper, K., Zhang, Q., and Wang, X.-F., 2002, Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, v. 114, 1257–1295.
    [12] DeCelles , P.G., Quade, J., Kapp, P., Fan, M. J., Dettman, D. L., Ding, L., 2007, High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253: 389–401.
    [13]吴珍汉,赵逊,叶培盛等,2007,根据湖相沉积碳氧同位素估算青藏高原古海拔高度.地质学报, 81(9): 1278-1288.
    [14]崔之久,伍永秋,刘耕年等, 1998,关于“昆仑——黄河运动”.中国科学(D辑), 28(1):.53-59.
    [15]李吉均,文世宣,张青松等,1979,青藏高原隆起的时代、幅度和形式探讨.中国科学:D辑,9(6): 608-616.
    [16]李吉均;方小敏;潘保田等, 2001,新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,21(5): 381-391.
    [17]傅开道,方小敏,高军平等, 2006,青藏高原北部砾石粒径变化对气候和构造演化的响应.地球科学, 36(8): 733-742.
    [18]郑德文,张培震,万景林等, 2006,构造、气候与砾岩-以积石山和临夏盆地为例.第四纪研究, 26(1): 63-68.
    [19]Mock, C., Arnaud, N.O., and Cantagrel, J.M., 1999, An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary Science Letters, v. 171, 107–122. 20]Wang, F., Lo, C.H., Li, Q., Yeh, M.W., Wan, J.L., Zheng, D.W., and Wang, E.Q., 2004, Onset timing of signifi cant unroofi ng around Qaidam basin, northern Tibet, China: constraints from 40Ar/39Ar and FT thermochronology on granitoids. Journal of Asian Earth Sciences, v. 24, 59–69.
    [21]Liu, Y.J., Genser, J., Neubauer, F., Jin, W., Ge, X.H., Handler, R., and Takasu, A., 2005, 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, v. 398, 199–224.
    [22]吴珍汉,胡道功,宋彪等, 2005,昆仑山南部西大滩盆北花岗岩的年龄与热历史.地质学报, 79(5): 628-635.
    [23]Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P., Malavieille, J., Arnaud, N., and Wu, C., 2001, Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission track constraints. Tectonophysics, v. 343, 111–134.
    [24]Yuan, W.M., Dong, J.Q., Wang, S.C., and Carter, A., 2006, Apatite fi ssion track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, v. 27, 847–856.
    [25]拜永山,任二峰,范桂兰等, 2008,青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据.地质通报, 27(7): 1044-1048.
    [26]王岸,王国灿,谢德凡等, 2007,东昆仑山小南川岩体裂变径迹年代与中新世晚期以来的构造地貌演化.地球科学-中国地质大学学报, 32(1): 51-57.
    [27]袁万明,张雪亭,董金泉等, 2004,东昆仑隆升作用的裂变径迹研究.原子能科学技术, 38(2): . 166-168.
    [28]陈正乐,宫红良,李丽等,2006,阿尔金山脉新生代隆升—剥露过程.地学前缘, 13(4): 91-99.
    [29]Rieser, A.B., Neubauer, F., Liu, Y.J., and Ge, X. H., 2005, Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam Basin, western China; tectonic vs. climatic control. Sedimentary Geology (June 2005), 177(1-2): 1-18.
    [30]Rieser, A.B., Liu, Y.J., Genser, J., Neubauer, F., Handler, R., Friedl, G., and Ge, X. H., 2006, 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China. Geological Society ofAmerica Bulletin, 118: p. 1522 - 1534.
    [31]赵东升, 2006,柴达木盆地西南区下干柴沟组下段沉积体系及有利砂体预测.西北大学博士学位论文, 1-128.
    [32]王世明,马昌前,佘振兵等, 2008,柴西新生代沉积源区及盆地热历史的磷灰石裂变径迹分析.地质科技情报, 27(5): 29-3
    [33]王鸿祯,刘本培,李思田,等.中国及邻区构造古地理和生物古地理[M].武汉:中国地质大学出版社, 1990.
    [34]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社, 1991.
    [35]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社, 1993.
    [36]宋春晖.青藏高原北缘新生代沉积演化与高原构造隆升过程[D].兰州大学, 2006.
    [37]杨藩,马志强,许同春,等.柴达木盆地第三纪磁性地层柱[J].石油学报, 1992, 13(2): 97-101.
    [38]孙知明,杨振宇,葛肖虹,等.柴达木盆地西北缘古近系磁性年代研究进展[J].地质通报, 2004, 23(9-10): 899-902.
    [39]姜在兴主编.沉积学[M].石油工业出版社, 2003.
    [40]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社, 1986.
    [41]王洪宝,王书宝,李勇.东辛油田下第三系沙一段湖相鲕粒灰岩的含油性[J].大庆石油地质与开发, 2004, 23(3): 20-23.
    [42]杨藩,乔子真,张海泉,等.柴达木盆地新生代介形类动物群特征及环境意义[J].古地理学报, 2006, 8(2): 143-156.
    [43]Dickinson, W. R., and Suczek, C. A., 1979, Plate tectonics and sandstone compositions: American Association of Petroleum Geologists Bulletin, v. 63, 2164–2182.
    [44]Heller, P. L., Bowdler, S. S., Chambers, H. P., Coogan, E. S., Hagen, J.C., Shuster, M. W., Winslow, N. S. and Lawton,T. F., 1986, Time of initial thrusting in the Sevier orogenic belt, Idaho-Wyoming and Utah. Geology, 14: p. 388 - 391.
    [45]Amano, K. and Taira, A., 1992, Two-phase uplift of Higher Himalayas since 17 Ma. Geology, 20: 391 - 394.
    [46]Carroll, A.R., et al., 1995, Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar Basins. GSA Bulletin, 107(5): p. 571-594.
    [47]Hendrix, M.S., Graham, S.A. and Carroll, A.R., 1992, Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins,northwest China. Geological Society of America Bulletin, V, 104: p. 53-79.
    [48]Yin, A., Rumelhart, P., Cowgill, E., Butler, R., Harrison, T.M., Ingersoll, R.V., Cooper, K., Zhang, Q., and Wang, X.-F., 2002, Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, v. 114, p. 1257–1295.
    [49]Ritts, B. D. Yue, Y.J., and Graham, S. A., 2004, Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh Fault, northern Tibetan Plateau; analysis of the Xorkol, Subei, and Aksay Basins. Journal of Geology, 112(2):207-229.
    [50]李德惠.晶体光学[M] .北京:地质出版社, 1984.
    [51]张长俊,《岩相古地理》参考资料兼实习指导书[M],成都理工学院沉积所, 1990.
    [52]徐惠芬,崔京钢,邱小平著.阴极发光技术在岩石学和矿床学中的应用[M].北京:地质出版社, 2006.
    [53]宋忠宝,任有祥,李智佩,等.U-Pb同位素测年方法及其应用[J].西北地质,1998年,19(1):68-71.
    [54]刘永江, Franz Neubauer,葛肖虹,等.阿尔金断裂带年代学和阿尔金山隆升[J].地质科学. 2007, 42(1): 134-146.
    [55]郭新转,刘永江,葛肖虹,等.柴西红三旱一号地区新生代砂岩成分分析及其区域构造意义[J].吉林大学学报(地球科学版), 2006, 36(2): 194-201.
    [56]郭新转.柴西红三旱一号地区新生代沉积特征及其区域构造意义[D].吉林大学, 2006.
    [57]刘欢,刘永江,袁四化,等.柴达木盆地西北部红三旱地区始新世-渐新世砂岩物源分析[J].地质通报, 2007, 26(1): 100-107.
    [58]任收麦,葛肖虹,刘永江,等.晚白垩世以来沿阿尔金断裂带的阶段性走滑隆升[J].地质通报, 2004, 23(9-10): 926-932.
    [59]尹成明,李伟民, Andrea R,等.柴达木盆地新生代以来的气候变化研究:来自碳氧同位素的证据[J].吉林大学学报(地球科学版), 2007, 37(5): 901-907.
    [60]陈正乐,张岳桥,王小风,等.新生代阿尔金山脉隆升历史的裂变径迹证据[J]. 2001, 22(5): 413-418.
    [61]陈正乐,王小凤,冯夏红,等.青藏高原北缘山脉隆升时限的同位素证据[J].吉林大学学报(地球科学版), 2003, 33(3): 270-275.
    [62]陈正乐,刘健,孙知明等.阿尔金山脉新生代剥露历史-前陆盆地沉积记录[J].地质通报, 2005, 24(4): 302-308.
    [63]Edward R, Trevor A. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision [J]. Journal of Geophysics Research, 1997, 102(B3): 5043-5063.
    [64]王军,西昆仑卡日巴生岩体和苦子干岩体的隆升—来自磷灰石裂变径迹分析的证据[J].地质论评, 1998, 44(4): 435-442.
    [65]拜永山,任二峰,范桂兰,等.青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据[J].地质通报, 2008, 27(7): 1044-1048.
    [66]蔡海磊,蔡雄飞,顾延生.昆仑山何时开始隆升[J].海洋地质动态, 2007, 23(5): 7-10.
    [67]刘志飞,王成善,伊海生等.可可西里盆地新生代沉积演化历史重建[J].地质学报, 2001, 75(2): 250-258.
    [68]Yi Haisheng,Wang Chengshan, Shi Zhiqiang, Lin Jinhui,Zhu Lidong. Early uplift history of the Tibetan Plateau: Records from paleocurrents and paleodrainage in the Hoh Xil basin[J]. Acta Geologica Sinica (English Edition),2008,82(1): 206-213.
    [69]伊海生,林金辉,赵西西等.西藏高原沱沱河盆地渐新世-中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探[J].沉积学报,2008,26(1):1-10.
    [70]伊海生,林金辉,周恳恳等.可可西里地区中新世湖相叠层石成因及其古气候意义[J].矿物岩石,2008,28(1): 106-113.
    [71]伊海生,林金辉,周恳恳等.青藏高原北部新生代湖相碳酸盐岩的碳氧同位素特征及古环境意义[J].古地理学报,2007,9(3):303-312.
    [72]伊海生,张小青,朱迎堂.青藏高原中部岩芯记录的第四纪湖平面变化及气候意义[J].地学前缘,2006,13(5):300-307.
    [73]金小赤,王军,陈炳蔚等.新生代西昆仑隆升的地层学和沉积学记录[J].地质学报,2001,75(4):459-467.
    [74]郭宪璞,丁孝忠,何希贤等.塔里木盆地中新生代海侵和海相地层研究的新进展[J].地.质学报,2002,76(3):209-304.
    [75]司家亮,李海兵,Laurie BARRIER等.青藏高原西北缘晚新生代的隆升特征—来自西昆仑山前盆地的沉积学证据[J].地质通报,2007,26(10):1356-1367.
    [76]肖爱芳,黎敦明,张汗军等.新疆库木库里盆地渐新统—上新统孢粉组合特征与古气候演变[J].陕西地质,2003,21(1):36-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700