用户名: 密码: 验证码:
可可西里地区渐新统含盐层系沉积特征与钾盐资源前景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾盐对国家经济建设和资源安全具有非常重要的意义,同时又是我国重要的紧缺矿物资源。继续深入钾盐资源勘查,加强在中国古今盐盆地找钾的研究与勘探,是摆在地质工作者面前一项十分迫切的任务。
     渐新世可可西里地区与柴达木盆地同处于干旱气候条件下,区内渐新统雅西措群地层中广泛分布有蒸发盐、膏盐岩沉积,纵向上具有多层系、厚度巨大的特点。柴达木盆地及西部的塔里木盆地已经发现有大量的新生代盐类矿产资源,同处于羌塘—滇西构造成矿域的云南思茅盆地也发现了具有工业价值的固体钾盐矿床,广袤的可可西里地区具有较好的钾盐资源前景,一直以来都被看作是钾盐远景区,但区内钾盐资源评价工作还是一片空白。
     本论文以沉积学理论、盐类地球化学分析理论为指导,以可可西里地区渐新统雅西措群含盐层系为主要研究对象,选取区内错仁德加盆地和沱沱河盆地为研究重点,通过野外宏观勘查与室内地球化学分析相结合的方法,对可可西里地区新生代盆地雅西措群进行了初步的沉积特征、沉积模式研究,盐类地球化学分析和找钾远景评价,为青藏高原北缘内陆湖相蒸发盆地找钾工作提供了新的理论支持和科学依据。
     首先,依靠路线地质调查资料和野外实测剖面,划分含盐层系,分析含盐层系的岩相类型、沉积相,进一步深入研究含盐层系的沉积特征和沉积模式。结果表明,可可西里地区至少可以识别出两套含盐层系,错仁德加盆地为紫红色含盐层系;沱沱河盆地为以黄绿色为主色调,间夹紫红色、灰绿色、灰黑色的杂色含盐层系。两套含盐层系都位于渐新统雅西措群中上部,均属于内陆湖相沉积,含膏盐岩产出在干盐湖沉积亚相,但两套含盐层系的沉积模式不同,错仁德加盆地属于开放型干盐湖沉积,沱沱河盆地属于封闭型干盐湖沉积体系。两者的沉积环境和古地理条件都有利于成钾。
     其次,利用微体古生物化石样品的鉴定结果,讨论含盐层系的时代归属,对比区内已知盐矿点的分布与含盐层系的空间展布,配合遥感解译工作,查明含盐层系的时空分布特点,还原古盐湖盆地的范围,圈定沉积中心。结果显示,紫红色含盐层系的时代大致可与柴达木盆地始新统下干柴沟组(E2)对应;沱沱河盆地杂色含盐层系可与柴达木盆地中新统下油砂山组(N1)对应。含盐层系的空间展布与盐矿点的分布具有高度的一致性,与遥感解译的沉积中心也能够很好地吻合。渐新世错仁德加地区古含盐湖盆中心出现在今贡冒日玛山—秀水河一带,野外露头可以以连片出现的中新统五道梁群泥灰岩为标志;沱沱河盆地古沉积中心在今唐古拉山乡—布玛浪纳地区,并以布查湖—盖巴些尕湖一带为最,露头上以厚度在50m以上大套连片产出的石膏层沉积为标志。
     最后,根据在南北两个盆地中发现的马鞍山盐湖,布查湖及盐湖周围采集的卤水样品水化学分析;精测剖面采集的岩盐地层样品地球化学成分分析,利用钾盐资源评价常用的特征系数溴氯系数、钾溴系数、钾氯系数,解析区内卤水的类型、含矿性及含盐层系的成钾潜力。结果表明,虽然研究区大规模的岩盐露头比较少见,但盐湖、盐泉(卤水)点出露较多,卤水矿化度较高,盐度较高,均属于岩盐淋滤型卤水,地球化学指标显示地下水含有曾与石盐、钾石盐矿层发生溶滤作用的特征,卤水中溴氯系数(Br×103/Cl)值较高,普遍>0.3,其它的特征系数变化趋势与Br×103/Cl变化一致,水化学分析结果的可信度高。研究区卤水样品的水化学指标达到了成钾潜力好的级别,钾盐资源前景好。区内岩盐地层样品受风化作用影响,地球化学特征值偏低,但布查湖南岸精测剖面仍具有钾盐矿化异常现象。
     综合评价认为,渐新世可可西里地区错仁德加盆地和沱沱河盆地成盐环境比较复杂,均属于内陆干盐湖成盐体系,沉积环境、岩相古地理和气候条件有利于成钾,地球化学指标显示地下水具有曾与石盐、钾石盐矿层发生溶滤作用的特征,区内两个盆地分别以马鞍山盐湖、布查湖为中心,存在着明显的水化学异常,曾经普遍达到过卤水演化析出钾盐的阶段,找钾前景较好。相比较而言,错仁德加地区成钾条件更好,具有发现隐伏钾盐矿层的可能。
Potash has extremely vital significance to the national economic construction and resources security. However, it is one of the most our country scarce resources in our country. Deepening the potash resources exploration and strengthening the study and survey in the ancient and modern salt basins are the very urgent tasks for all the geologists in China.
     In the period of Oligocene, Hoh Xil Basin was in the arid climate condition as same as the Qaidam Basin. There are a lot of salt rocks and evaporates deposits distribute in the stratum of Oligocene which was called Yaxicuo formation in Hoh Xil. These rocks own multi-layer and large thickness in vertical serial. In Qaidam, geologists have found a large number of salts mineral resources in Cenozoic, and the same result in Tarim basin where is in west of the Hoh Xil), meanwhile, in the south of Qiangtang-western Yunnan salt minerogenetic belt, Simao basin also be found as a solid potassium deposits area, has industrial value. Anyhow, vast Hoh Xil region has good prospect of potash resources, always be regarded as a key ones for potash search. Unfortunately, due to bad climate condition and high altitude, it is still a virgin land for potash resources evaluation.
     Take sedimentology and salt geochemical analysis as guiding theory, focus on Yaxicuo formation in Oligocene, select Cuorendejia(CRDJ) basin and Tuotuohe(TTH) basin in Hoh Xil region as the main research object, combine field exploration with indoor geochemical method, this paper summarizes the sedimentary characteristics and deposition model of the salt-bearing series in Cenozoic basin, in addition, by geochemical analysis, summarizes the condition of salt-forming processes, finally, evaluates the potash resource perspective. This paper is not only my master degree thesis, it also expected to give some theoretical support and new scientific basis for potash search in inland lacustrine facies evaporite basin in Qinghai-Tibet plateau.
     First, based on litho-facies and precipitation facies analysis of field section planes, identify sedimentary characteristics and deposition model of the salt-bearing series. The results showed that the Hoh Xil area can be at least identified two sets of salt-bearing series. Symbolize amaranth salt sediment group in the north, CRDJ basin, with yellow-green as mass-tone, sandwiched amaranth, celadon and gray, variegated salt sediment group in the south, TTH basin. Both of them are located in upper stratigraphic position in Oligocene Yaxicuo group, belong to inland lacustrine sediment, formed in ancient playa, but had different deposit modes. The former was formed in opening playa type, the latter belong to closing playa sediment. Nevertheless, both of the sedimentary environment and paleogeographic pattern are conducive to form potash mineral.
     Secondly, compared with the known salt occurrences and temporal and spatial distribution of the salt-bearing series, cooperated with satellite remote sensing, restoring the domain of ancient salt lake, delineating sedimentary center. The results showed that the distribution of salt occurrences and salt- bearing series are highly consistency, and perfectly identical with the remote sensing data. In Oligocene, ancient CRDJ salt lake basin center appeared in Gongmaorima mountain—Xiushui river area, could be marked at outcrops by the sectors-connecting Miocene Wudaoliang group limestone. TTH salt lake’s center at the region of Tanggula mountain—Bumalangna, with it deepest place at the area of Bucha lake—Gaibaxiega lake, could be identified by large sectors-connecting plaster layer, many of them was more than 50m in thickness.
     At last, using brine and salt geochemical method analysis, rely on Br×103 /Cl ratio, K×103 /Cl ratio, K/Br ratio, nMg/nCl ratio, which are common characteristics coefficient in potash resources evaluation, analytical the type of brine, the potentiality of mineral-bearing and the potential of salt-bearing stratum. As the results showed that large-scale halite outcrop relatively rare, but the salt lake, surface springs(brine) was plenty, having high salinity, and all belong to the concentrated solution, containing the old information of lixiviation with salt layer or potash layer. In the brine, Br×103 /Cl ratio is high, generally greater than 0.3, the other features coefficients have the same character and change trend, illuminate that chemical analysis is authentic. According to the geochemical index, most samples reach into good level of potash potential, Hoh Xil regions is proved as favorable and promising potash deposit-searching area.
     Comprehensive evaluation revealed that salt-forming environment belong to inland playa deposition system in this area, sedimentary environment, paleo- geographic and climate condition conducive to potash deposit. As respectively deposit center of CRDJ and TTH basin, Ma Anshan salt lake and Bucha salt lake and their circumambience exist obviously potash-mineral abnormalities. The two ancient salt lakes have been come through the stage of exhalation sylvite. Hoh Xil regions have good prospect of potash deposit. In comparison, the CRDJ basin is better than TTH basin, provided with probability to find some concealed potash ore-bearing.
引文
[1]李刚.中国钾盐产业现状与发展[C/OL]. 2009. http://www.wentong.com/cgi/search-cn.cgi?f=news_cn_1_&t=news_cn3_1_&id=88837.
    [2]郑绵平,齐文,张永生.中国钾盐地质资源现状与找钾方向初步分析[J].地质通报, 2006, 25(11): 1239-1246.
    [3]刘群,陈郁华,李银彩等.中国中、新生代陆源碎屑—化学岩型盐类沉积[M].北京:北京科学技术出版社,1987.
    [4]郑绵平,袁鹤然,张永生等.中国钾盐区域分布与找钾远景[J].地质学报,2010,84(11): 1523– 1553.
    [5]尹成明,李伟民,R. Andrea.柴达木盆地新生代以来的气候变化研究[J].吉林大学学报,2007, 37(5): 901-907.
    [6]高玄彧,白宪洲,李勇等.用碳氧同位素对沱沱河古近纪及新近纪早期气候变化的研究[J].成都理工大学学报,2006,33(1): 19-23.
    [7]徐丽,苗运法,方小敏等.青藏高原东北部西宁盆地中始新世-渐新世沉积物颜色与气候变化[J].兰州大学学报,2009,45(1): 12-19.
    [8] Zhifei Liu,Chengshan Wang. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet [J]. Sedimentary Geology,2001,140:251-270.
    [9]苗运法,方小敏,宋之琛等.青藏高原北部始新世孢粉记录与古环境变化[J].中国科学(D辑:地球科学),2008,38(2): 187-196.
    [10]伊海生,林金辉,周恳恳等.青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J].古地理学报,2007,9(3):303-312.
    [11]马万栋,马海洲.塔里木盆地西部卤水地球化学特征及成钾远景预测[J].沉积学报,2006,24 (1):96-106.
    [12] Sun Xiangjun, Wang Pinxian. How old is the Asian monsoon system?—Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 222 (2005) 181– 222.
    [13]薛春纪,基础矿床学(第二版)[M].地质出版社,2007, 214-222.
    [14] (苏)瓦利亚什科M.г.钾盐矿床形成的地球化学规律[M].中国工业出版社,1965.
    [15]姜在兴.沉积学(第二版)[M].石油工业出版社,2010.
    [16]张彭熹.中国蒸发岩研究中几个值得重视的地质问题的讨论[J].沉积学报,1992,10(3):78-84.
    [17]袁见齐著.袁见齐教授盐矿地质论文集[C].北京:学院出版社,1988.
    [18]袁见齐.钾盐矿床成矿理论研究的若干问题[J].地质论评1980,26(1):56-59.
    [19]袁见齐.盐类矿床成因理论的新发展并论中国钾盐找矿问题[J].化工矿产地质,1980,1:1-5.
    [20] R. F. Schmalz. Environment of marine evaporate deposition[J]. Miner.Ind.,1970,35(8):1-7.
    [21]夏文杰,李秀华.蒸发岩成因理论研究中的几个问题[J].矿物岩石,1983,3:1-11.
    [22]魏东岩.试论钾盐矿床的成矿条件[J].化工矿产地质,1999, 21(1) : 1-6.
    [23]邓尔新.钾盐成矿理论的若干问题[J].地球与环境,1980,5:37-50.
    [24]邓尔新,关于萨布哈成因的石膏和硬石膏矿床[J].成都理工大学学报(自然科学版),1991,02:31-38.
    [25] Michael I. Treesh,Gerald M. Friedman. Sabkha deposition of the Salina group (Upper Sliurian) of New York state[C]. Frourth Symposium on salt, 1974, Vol. 1.
    [26]袁见齐,钾肥与钾盐矿床[M].北京:燃料化学工业出版社,1975: 78-79.
    [27]云南省地质局第七普查大队,怎样找钾盐[M].北京:地质出版社,.1978
    [28]袁见齐.中国碎屑岩系盐类矿床的形成条件[C].为26届国际地质大会撰写的国际交流学术论文集,北京:地质出版社,1980,121-128.
    [29]谭红兵.塔里木盆地西部古岩盐地球化学与成钾预测研究[D].中国科学院盐湖研究所,2005.
    [30]袁见齐.钾盐专辑(第一辑)[C].北京:中国工业出版社,1963,1-20.
    [31]郑大中,郑若锋.论钾盐矿床的物质来源和找矿指示[J].盐湖研究,2006,14(4):9-17.
    [32] R .D. Matthews,G. C. Egleson. Origin and implications of a Mid-Basin potash facies in the Salina salt of Michigan[C]. Frourth Symposium on salt, 1974, Vol. 1.
    [33]曹养同,刘成林,焦鹏程等.中新生代盆地蒸发岩沉积旋回对比及库车盆地成钾讨论[J].矿床地质,2010,29(4):657-668.
    [34]曹养同,刘成林,焦鹏程等.新疆库车盆地古近系—新近系蒸发岩沉积旋回识别及对比[J].古地理学报,2010,12(1):31-41.
    [35]林耀庭,李为钧.从世界钾盐、钾肥生产和消费情况谈我国对策[J].中国井矿盐,1994,2:14-18.
    [36]魏东岩.美国新墨西哥州钾盐矿床及其开发[J].化工矿产地质,2001,23(1):31-38.
    [37] 2006年世界钾盐资源、生产供需形势分析[J/OL].中国化工报,2007. http://www.ampcn.com/news/detail/34704.asp.
    [38]王春宁,余俊清,陈良等.钾盐资源全球分布和我国找钾实践及方法探究[J].盐湖研究,2007,15(35):6-72.
    [39]刘成林,王弭力,焦鹏程等.世界主要古代钾盐找矿实践与中国找钾对策[J].化工矿产地质,2006,28(1):1-8.
    [40] 2007年西部地区钾盐资源成矿预测与评价项目总体设计[R].中国地质科学院矿产资源研究所.
    [41]袁俊宏.我国积极布局应对垄断下的“缺钾”困局[C/OL]. 2010年中国国际矿业大会钾盐专题论坛,2010. http://www.shac.gov.cn/zxzx/xwkd/gnxw/201011/t20101122_1284651.htm.
    [42]青海省地质调查院. 1:25万区调地质调查报告(沱沱河幅)[R]. 2005.
    [43]黄孔怒.可可西里地区气候的概况[J].青海环境,1990,(1):28-29.
    [44]中国石油天然气总公司新区事业勘探部.青藏地区可可西里盆地区域石油地质调查报告[R]. 1997.
    [45]张以茀,郑健康.青海可可西里及邻区地质概论[M].北京:地震出版社,1994,40-44,177.
    [46]孙瑕,伊海生,林金辉等.青藏高原北部新生代陆相盆地石油地质条件及勘探前景[J].沉积与特提斯地质,2008,28(4):7-13.
    [47]姜琳.青藏高原可可西里盆地烃源岩特征研究[D].成都理工大学沉积地质研究院硕士论文,2009.
    [48]周恳恳.可可西里盆地古—新近纪湖相碳酸盐岩沉积与古环境变化研究[D].成都理工大学沉积地质研究院硕士论文,2007.
    [49]青海省地质矿产局区调综合大队. 1:20万区调地质调查报告(错仁德加幅、沱沱河幅)[R].1989.
    [50] Yi Haisheng, Wang Chenshan, Liu Zhifei. Sedimentary Record of the Planation Surface in the Hoh Xil Region of the Northern Tibet Plateau[J]. ACTA Geologica Sinica, 2000, 74(4):827-835.
    [51]刘宝珺.沉积岩石学[M].地质出版社,1980.
    [52] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentaology, 2000, 47:179-214.
    [53]伊海生,时志强,杨伟等.湖相叠层石纹层生长节律记录的天文周期信号[J].沉积学报,2010,28(3):405-411.
    [54]伊海生,时志强,惠博等.湖相叠层石纹层的碳氧同位素特征及其生长节律的古环境意义[J].地学前缘,2009,16(6):168-176.
    [55]伊海生,林金辉,周恳恳等,可可西里地区中新世湖相叠层石成因及其古气候意义[J].矿物岩石,2008,28(1):106-113.
    [56]刘志飞,王成善.可可西里盆地早渐新世雅西措群沉积环境分析及古气候意义[J].沉积学报,2000,18(3),355-361.
    [57]刘志飞,王成善,金帏等.青藏高原沱沱河盆地渐新—中新世沉积环境分析[J].沉积学报,2005,23(2):210-216.
    [58] Liu Zhifei,Zhao Xixi,Wang Chengshan,et al. Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan plateau [J]. Geophysical Journal International,2003,154: 233-252.
    [59] Liu Zhifei,Wang Chengshan,,Yi Haisheng. Evolution and mass-balance in the Cenozoic Hoh Xil basin,northern Tibet[J]. Journal of Sedimentary Research,2001,71: 971-984.
    [60]刘志飞,王成善,伊海生等.可可西里盆地新生代沉积演化历史重建[J].地质学报, 2001,75(2):250~257.
    [61]陈毓川(主编),中国地质学会80周年学术文集[C].北京:地质出版社,2002,111-119.
    [62]刘志飞,王成善.青藏高原北部可可西里盆地第三纪风火山群沉积环境分析[J].沉积学报,2001,19 (1): 20-27.
    [63] Wang Chenshan,Liu Zhifei,Yi Haisheng,et al. Tertiary crustal shortening and penepla- nation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan plateau [J]. Journal of Asian Earth Sciences,2002,20:211~223.
    [64]地质部情报研究所译.沉积相模式[C],1979.
    [65] H. P. Eugster,L.A. Hardie. Sedimentation in an ancient playa-lake complex—the Wilkins Peak Member of the Green River Formation of Wyoming[J]. Geological Society of America Bulletin, 1975, 86(3): 319–334.
    [66]成都理工大学内部教材.岩相古地理教程[M].78-81.
    [67]刘志飞,王成善,金帏等.可可西里盆地早渐新世雅西措群爬升沙纹层理及其沉积环境意义[J].沉积学报,2004,22(4),560-565.
    [68]高玄彧,白宪洲,李勇等.用碳氧同位素对沱沱河盆地古近纪及新近纪早期气候变化的研究[J].成都理工大学学报(自然科学版),2006,33(1):19-22.
    [69]孙镇城,乔子真,杨革联等.柴达木盆地归属问题[J].古地理学报,2002,4(1):59-66.
    [70]蔡雄飞,刘德民,袁晏明等.试论柴达木和可可西里盆地古近纪—中新世地层的亲缘性[J].地层学杂志,2009,33(3):276-282.
    [71]朱利东.青藏高原北部隆升与盆地和地貌记录[D].成都理工大学博士学位论文,2004.
    [72]刘海军,刘登忠,吴波.可可西里盆地构造特征遥感研究[J].新疆地质,2009,27(3): 283-286.
    [73]鲁萍丽.青藏高原可可西里地区湖泊变化的遥感研究[D],北京:中国地质大学硕士论文,2006.
    [74]李家存,魏永明,蔺启忠等.遥感信息在南水北调西线工程区构造解译中的应用[J].吉林大学学报,2004,34(1):150-153.
    [75]朱利东,王成善,伊海生等.青藏高原盆地系统演化与高原形成时间[J].成都理工大学学报,2004,31(3):249-255.
    [76]刘志飞,王成善,伊海生等.藏北可可西里盆地老第三系沉积物源区分析及其高原隆升意义[J].地球科学—中国地质大学学报,2001,26(1):1-6.
    [77]曲一华,袁品泉,帅开业等.兰坪一思茅盆地钾盐成矿规律及预测[M].北京:地质出版社,1998,86-105.
    [78]林耀庭,颜仰基.四川盆地西部富钾卤水水文地球化学特征及其成因意义探讨[J].盐湖研究,1996,4(1):1—12.
    [79]林耀庭,颜仰基,吴应林.四川盆地某地富矿卤水水文地球化学特征极其成因资源意义. [J].岩相古地理,1996,16(4): 12—22.
    [80]于升松.察尔汗盐湖首采区钾卤水动态及其预测[M].北京:科学出版社,2000,33-39.
    [81]袁鹤然,郑绵平,陈文西.陕北奥陶系和塔里木石炭系钾盐找矿远景[J].地质学报,2010,84(11):1554-1564.
    [82]石油化学工业部化学矿山局组织编写.石油勘探中找钾盐矿的方法[M].北京:石油化学工业出版社,1977.
    [83]谭红兵,马万栋,马海州等.塔里木盆地西部古盐矿点卤水水化学特征与找钾研究[J].地球化学,2004,33(2):152-158.
    [84]蔡春芳,梅博文,李伟.塔里木盆地油田水文地球化学[J].地球化学,1996,25(6):614-623.
    [85]钱自强,曲一华,刘群.钾盐矿床[M].北京:地质出版社,1994:19-50.
    [86]肖荣阁,大井隆夫,蔡克勤等.硼及硼同位素地球化学在地质研究中的应用[J].地学前缘, 1999,6(2) :361- 368.
    [87]林耀庭,唐庆,熊淑君.四川盆地海相三叠系异常水化学探盐找钾的研究[J].化工矿产地质,1999,21(1):7-14.
    [88]陈郁华,译.国外钾盐矿产普查资料(专辑)[M].地质科学院情报研究所编,1972,32-48.
    [89]张克信,王国灿,骆满生等.青藏高原新生代构造岩相古地理演化及其对构造隆升的响应[J].地球科学—中国地质大学学报,2010,35(3):697-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700