用户名: 密码: 验证码:
防治煤自燃的悬砂胶体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国西部和北部地区,煤炭资源丰富但矿井火灾严重,由于缺土少水,常规注浆使用成本偏高,但山砂和粉煤灰资源丰富。为了提高注砂质量,减少注砂时水的消耗量,提高防灭火效率,本文开展了防治煤自燃的悬砂胶体研究。
     研制出了防治煤自燃的由无机凝胶材料和有机高聚物组成的悬砂胶体复合添加材料。本文测试分析了黄土、粉煤灰和山砂等颗粒状注浆固相材料在颗粒粒径、物相组成以及显微结构等方面的共性;研制了悬砂胶体复合添加材料:该材料悬砂效果显著,常温常压下少量添加即可与砂按比例快速制备出均匀稳定的悬稠砂浆,操作过程简便快捷,克服了悬砂稠化剂制备过程繁琐且需高温加热的不足;通过流变实验研究了浓度、剪切速率和温度对悬砂胶体粘度的影响,建立了悬砂胶体流变本构方程。
     建立了颗粒双电层空间作用模型,揭示了山砂颗粒在悬砂胶体中的悬浮机理。悬砂胶体随添加浓度增加表面张力也随之增加,表明胶体体系有向不稳定方向发展的倾向;山砂颗粒在悬砂胶体中的稳定悬浮,不仅受到胶体中高聚物主链通过羧基与钙离子作用在山砂表面形成的立体分布结构的影响,还存在颗粒双电层的空间作用效应:悬砂胶体体系的稳定得益于体系中胶体粒子荷负电形成的双电层结构;山砂中电离产生的钙离子吸附在砂粒外层形成表面荷正电的固体颗粒双电层;而砂粒表面立体分布结构还对砂粒间的聚集产生空间位阻效应以阻碍山砂颗粒之间的空间团聚;因此,根据颗粒双电层空间作用模型,悬砂胶体粒子对于山砂的分散作用表现在颗粒双电层影响下造成的静电力效应及山砂粒子间的空间位阻效应两者的协同作用,即能保证胶体自身体系的稳定性,更为重要的是保证了山砂颗粒能稳定地悬浮于悬砂胶体体系中。力学分析表明只有当山砂颗粒对其下部流体的应力小于胶体本身的屈服应力时,才可使山砂颗粒稳定悬浮。
     基于结构两相流理论构建了悬稠砂浆两相流体管路流动数学模型。实验研究了剪切速率、含砂量和温度对悬稠砂浆流变性的影响,推导了悬稠砂浆流变本构方程;基于结构两相流理论,综合考虑液相粘度、固相颗粒相间碰撞和颗粒脉动影响等因素建立了悬稠砂浆管路流动数学模型;并利用流体模拟软件对管路中砂浆流速、粘度和阻力损失等流动参数进行了模拟解算;通过砂浆制备与管路流动模拟系统对管路中砂浆流量和阻力损失参数进行了测试;对比分析试验测试数据和数值模拟结果二者具有较好的吻合性,验证了数学模型建立的可靠性。
     研究并阐述了悬砂胶体降低煤中活性基团反应活性的阻化机理。利用红外光谱实验、程序升温实验和指标气体测试,从本质和现象上对悬砂胶体抑制煤自燃性能进行了综合考察和分析,研究并阐述了悬砂胶体对煤自燃过程的阻化机理:在煤氧化升温过程中,悬砂胶体能够有效降低脂肪族甲基、亚甲基、醇酚类羟基、羰基、稠环中C=C和芳烃-CH基团等活性基团的反应活性,增加氧化反应能垒,抑制官能团参与氧化反应的能力,增加煤氧化反应活化能,从而减少反应过程中CO和C2H4气体的生成,降低煤自燃过程的氧化反应速率,抑制煤自燃过程;并通过封堵压力测试考察了悬砂胶体的封堵漏风隔氧能力;实验结果体现了悬砂胶体对煤氧化升温过程具有显著的阻化性能。
     本文通过实验分析和理论研究,对悬砂胶体流变性、悬浮性、流动性及其对煤自燃过程的阻化性能等进行了系统的研究和分析,对悬砂防灭火技术进行了精简和优化,解决了悬砂胶体对山砂固相颗粒的悬浮机理、悬稠砂浆管路流动阻力特性到及胶体本身对煤氧化升温过程的阻化机理等方面的难题,为以后该防灭火材料的大力推广奠定了理论基础。
     该论文有图83幅,表8个,参考文献140篇。
Grouting is one of the methods which were widely applied in fire control technology in coal mine at present. In fact, Northwest China has abundant coal resource but with serious mine fire disaster and shortage of water and loess, the cost of conventional grouting is high. However, in those areas there are abundant sand and fly ash resources, in order to improve the quality of sand injection and reduce the wastage of water when grouting, the paper make a further study on the new sand-suspended colloid materials of fire control technology.
     The new compound material of sand-suspended colloid was developed, which was composed of mineral inorganic gel and organic polymer. In the paper, the general characters of loess, fly ash and mountain with granular shape, such as the grain diameter, phase composition, microstructure observation, were analyzed firstly. Then through enough experiments and improvement of original additives, the sand-suspended colloid materials was developed, and by little addition of it, the steady sand-suspended slurry can be produced easily. By the further study on impact factors with different concentrations, shear rate and temperatures to sand-suspended colloid viscosity, we generated the rheology constitutive equation of sand-suspended colloid.
     In order to study the suspended mechanisms of solid particles in sand-suspended colloid, the space work model based on theory of double-electric layer is established. The surface tension of sand-suspended was increasing with the concentration of additives, which illustrate that the colloid system has a tendency for unsteady status. Double electric layer that formed by colloid particles charged plays the important role about the stability in sand-suspended colloid system, the dispersion of sand-suspended colloid to sand-suspended slurry is the synergistic effect combined with steric effect and electrostatic repulsion effect that created by the reason of double electric layer particles. So that it can ensure the stability of colloid system and sand-suspended slurry. The mechanical analysis indicated that under the conditions of stress of rock sand particles to the lower part of fluid less than yield stress of colloid itself, the sand can suspend steadily.
     A mathematical model of two-phase flow in pipeline for sand-suspended colloid based on two-phase flow theory is established. The experimental study on impact factors of sand-suspended slurry rheology, for example, the shear rate, suspended sediment concentration and temperature, was carried out; meanwhile the rheology constitutive equation of sand-suspended slurry was presented. The yield pseudo plastic two-phase fluid of sand-suspended slurry flow model in the pipeline was established, and the solution of the model was also presented. By using the sand-suspended slurry preparation and flow pipeline system, the flow parameters of it were tested. The results show that the numerical and test results have good agreement. Thus it verifies the reliability of the mathematical model.
     The inhibition mechanism of sand-suspended colloid is investigated, which could depress the reactivity of active groups in coal. It was studied that the sand-suspended colloidal has an influence on the structure of functional groups, cross point temperature, index gas and the apparent activation energy in the temperature oxidation process of different kinds of coal. Through in-situ Fourier infrared spectrum experiment, it was showed that the sand-suspended colloid can inhibit the activity and generation of methyl, methylene, hydroxyl, carboxyl, carbonyl and functional groups of aliphatic. The resistance performance experiment, based on programmed temperature method, was also showed that the sand-suspended colloid has an important influence on the cross point temperature, index gas and the apparent activation energy of lignite, kennel coal, gas-fat coal and lean coal in oxidation heating process. So it has a hysteresis effect on the coal oxidation process. Based on the theoretical research of sand-suspended colloid, sealing pressure testing and stored coal fire, the ability of sealing and fire control was inspected.
     Based on the experiment and theoretical research, the paper analyzed the rheology, suspension property, liquidity and fire control ability of sand-suspended colloid, optimized the sand-suspended fire control technology, and made clear the problems of the sand-suspended colloid suspend mechanism, flowed friction property and ignition inhibition mechanism, which laid the theoretical foundation for the application of this technology.
引文
[1]中华人民共和国统计局,编. 2010中国统计年鉴[C].北京:中国统计出版社,2010.
    [2]郑积源.跨世界科技与社会可持续发展[M].北京:人民出版社,1998.
    [3]中华人民共和国国家统计局,编.中华人民共和国2009年国民经济和社会发展统计公报[C]. 2010年2月25日
    [4]中华人民共和国国家统计局,编.中华人民共和国2010年国民经济和社会发展统计公报[C]. 2011年2月28日.
    [5]国家安全生产监督管理总局,国家煤矿安全监察局煤矿安全技术专家会诊资料汇编(下册)[C]. 206-209, 691-692.
    [6]王德明,编著.矿井火灾学[M].徐州:中国矿业大学出版社,2008:168-178.
    [7]王省身,张国枢,著.矿井火灾学[M].徐州:中国矿业大学出版社, 1990.
    [8]王凤良,李昭柱.浅析注砂灭火工艺[J].鹤煤科技,1993,3:17-20.
    [9]宋录生.矿井惰性气体防灭火技术[M].北京:化学工业出版社,2008.
    [10]杨运良,程磊.采用均压技术防止综放采空区自然发火[J].煤矿安全,2003,3(42):20-21.
    [11]栾玉涛,孙久政,翟小伟.东荣二矿煤层群开采煤柱自燃均压治理技术研究与应用[J].陕西煤炭,2008,2:81-82,99.
    [12] Colaizzi, Gary J. Prevention, control and /or extinguishment of coal seam fires using cellular grout [J]. International Journal of Coal Geology, v59, n1-2, Jul12, 2004: 75-81.
    [13] Michaylov M., Hristov A. Prevention and fighting of endogenous fires in Babino mine by slurring. Minno delo, 1986, 2: 16-20.
    [14]杨文华,译.用空气泡沫扑灭内因火灾(译自俄文),煤矿安全,1987,(6),50-51.
    [15]王德明.矿井防灭火新技术—三相泡沫[J].煤矿安全,2004,35(7):16-18.
    [16]秦波涛,王德明,陈建华.防灭火三相泡沫流体特性实验研究[J].辽宁工程技术大学学报,2006,25(4):489-492.
    [17]周福宝,王德明,张玉良.含氮气三相泡沫惰化火区的机理及应用研究[J].煤炭学报,2005,30(4):443-446.
    [18]秦波涛.防治煤炭自燃的三相泡沫理论与技术研究[D].徐州:中国矿业大学,2005.
    [19]陆伟.高倍阻化泡沫防治煤自燃[J].煤炭科学技术,2008,36(10):41-44.
    [20]松田范之,张在浩.情胜气体在各国煤矿的应用[J].世界煤炭技术,1990(1):11-15.
    [21] Walter Both. Fighting Mine Fires with Nitrogen in the Germany Coal Industry, Mine Frigineer, Vol.140, No.296, 1981
    [22]煤炭部赴德煤矿液氮灭火技术考察组.联邦德国煤矿防灭火技术(二)[J].煤炭工程师,1986(3):44-51.
    [23] Morries. R. A review of experiences on the use of inert gases in mine fire [J]. Mining Society Technology. 6(1),Nov.1987.
    [24]戚颖敏.矿井火灾防治技术的现代发展与应用[J].煤矿安全,1991,(4):7-13.
    [25]龙凤矿课题组.放顶煤综采采空区防火技术[J].抚矿科技. 1991.4:13-15.
    [26]张东坡.易自燃特厚煤层综放面采空区注氮防灭火技术研究与应用[D].太原:太原理工大学,2010.
    [27]郝宇,刘杰,王长元,等.综放工作面超厚煤层注氮防灭火技术应用[J].煤矿安全,2008,(4):7-13.
    [28]付亚平.氮气防灭火技术在开采褐煤煤层底分层综放工作面的应用[J].煤矿安全,2006,(3):30-32
    [29]刘广金,氮气防灭火技术在平顶山矿区的应用[C]. 2007年全国煤矿安全学术年会会议资料汇编,2007.
    [30]周连春,张世明.注氮防灭火技术在火区控制中的应用[J].水力采煤与管道运输,2009,(2):51-53.
    [31]杜志刚,王捧社,施玉成. MKY—360型二氧化碳发生器在煤矿防灭火中的应用[J].煤炭科学技术,2002,30(7):10-12.
    [32]周凤增. CO2灭火技术在开滦集团公司的应用实践[J].煤矿安全,2006,37(5):23-26.
    [33]郝迎格,简俊常.超长综放工作面自然发火的防治技术[J].中国煤炭,2005,31(9):61-65.
    [34]赵忠,王海东,刘永军. CO2灭火技术在天祝煤矿的成功实践[J].煤矿安全,2005,36(5):15-17.
    [35] Ann G. Kim. Cryogenic injection to control a coal waste bank fire [J]. International Journal of Coal Geolog, 2004, 59: 63-73.
    [36]王树刚,王如竹.红庙矿采空区注砂防灭火技术的应用[J].煤矿安全,2002,33(5):8-10.
    [37]刘宝民,王泰.红庙煤矿自燃火灾的综合防治[J].北京工业职业技术学院学报,2004,3(1):38-40.
    [38]孟庆坤,朱涛.海州立井火区灭火及续采防复燃技术[J].矿业安全与环保,2003,30(4):52-54.
    [39]王博,刘伟. XP-9801原油基压裂液室内实验研究[J].油气采收率技术,1999,6(1):61-67.
    [40]李素悦,罗春芝,张冰清.改性魔芋粉无固相完井液的室内研究[J].钻采工艺,2000,23(5):67-69.
    [41]卜继勇,陈大钧,王成文,等.一种油包水乳化压裂液的实验研究[J].石油与天然气化工,2003,32(6):372-376.
    [42]李增华,周世宁,吴梅.粘性水灭火剂流体力学特性的理论分析[J].消防科学与技术,2003,22(6):518-518
    [43]李增华,周世宁.粘性水灭火剂性能试验及灭火机理研究[J].中国安全科学学报,2003,13(9):41-43.
    [44]亢力强,曾卓雄,姜培正.宾汉流体与颗粒间的密相两相湍流研究[J].西安交通大学学报,2002,36(7):693-696.
    [45]丛峰松,张洪斌,张惟杰,等.天然大分子食品水溶胶的增稠性、粘弹性和协同作用[J].食品科学,2004,25(11):195-199.
    [46]舒坦. MG盐水溶液的凝胶化转变的临界行为[D].武汉:华中科技大学材料科学与工程学院,2002.
    [47]钱丽颖. HMG及MG盐水溶液的凝胶化过程[D].武汉:华中科技大学材料科学与工程学院,2001.
    [48]邹新禧.超强吸水剂[M].北京:化学工业出版社,2002:589.
    [49]夏德宏,周军,邬婕.宾汉流体管流减阻机理及措施[J].冶金能源,2002,21(1):31-34.
    [50]颜进华,陈克复.纸板涂料流变特性研究─粒度对粘土悬浮液的影响[J].广东造纸,1996,(2):18-20.
    [51]陈克复,杨仁党,侯庆喜.纸浆与漂白剂的混合机理与纸浆流变学[J].中国造纸学报,2001,(16):23-27.
    [52]王德明,李增华,秦波涛,等.一种防治矿井火灾的绿色环保新材料的研制[J].中国矿业大学学报,2004,33(2):205-208.
    [53]陈建华.防治煤炭自燃的悬砂稠化剂的技术与应用研究[D].徐州:中国矿业大学,2006.
    [54] Hasim Yilma. ELECTRORHEOLOGICAL PROPERTIES OF DIATOM ITE/SILICONE OILSUSPENSIONS UNDER DC FIELDS [J]. Chinese Journal of Polymer Science Vo1.24,No.5,(2006),63-471.
    [55]王武昌、李玉星,樊栓狮,等. HCFC-141b水合物浆流动特性实验[J].低温工程. 2010,(4):13-17.
    [56]周建芳,陈黎明,Perter S. Hui.两性瓜尔胶衍生物溶液的流变特征[J].物理化学学报. 2003,19(11):1081-1084.
    [57]郭立红.一种聚酰胺酸溶液的流变性研究[D].南京:南京工业大学,2006.
    [58]孔德玉.硅溶胶分散氧化铝浆料的稳定机理及免脱气胶态原位凝固成型制备莫来石陶瓷研究[D].杭州:浙江大学,2005.
    [59]胡琼英,兰叶青,薛家骅.土壤胶体稳定性影响因素[J].土壤. 1996,28(6):290-294.
    [60]丁宏达.浆体管流特性及其设计参数计算[J].冶金矿山设计与建设,1995,(1):3-9.
    [61] Saad EI-din M. Desouky,等.假塑性流体广义管道设计关系式[J].国外油气储运,1991,9(4):15-18.
    [62]左博,张蒙正.屈服假塑性凝胶模拟液直圆管流变和流动特性分析[J].火箭推进,2009,35(1):45-50.
    [63]仲晓星.煤自燃倾向性的氧化动力学测试方法研究[D].徐州:中国矿业大学,2008.
    [64]陆伟.煤自燃逐步自活化反应过程研究[D].徐州:中国矿业大学,2006.
    [65]叶兵.防止煤炭自燃的阻化机理及阻化特性研究[D].阜新:辽宁工程技术大学,2004.
    [66]刘吉波.煤炭的阻燃机理分析和氯化盐类汽雾阻化剂的应用[J].华北科技学院学报,2002,4(2):8-10.
    [67]杨胜强,张人伟,邸志前,等.煤炭自燃及常用防灭火措施的阻燃机理分析[J].煤炭学报,1998,23(6):620-621.
    [68]石必明.易自燃煤低温氧化和阻化的微观结构分析[J].煤炭学报,2000,25(3):294-298.
    [69]陈惠钊,编著.粘度测量[M].北京:中国计量出版社,2003.
    [70]固井科研组.适合钻井液及水泥浆的赫谢尔—巴尔克莱(Herschel-Bulkley)流变模式及其应用[J].西南石油学院学报,1983(4):1-16.
    [71]李增华.矿用高效粘附性灭火剂的研究[D].徐州:中国矿业大学,1998.
    [72]郑忠,李宁,编著.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1995.
    [73]彭福华张艳丽.硅酸盐粘土矿物的晶体结构与陶瓷减水剂的解凝机理[J].中国陶瓷工业,2010,17(4):38-41.
    [74]彭申甫,汪苞,罗忠鉴,著.无机化学原子分子结构络合物胶体化学.成都:四川人民出版社,1984.
    [75]顾继友,编著.胶接理论与胶接基础[M].北京:科学工业出版社,1996.
    [76]张福田,著.分子界面化学基础[M].上海:上海科学技术文献出版社,2006.
    [77]朱步瑶,赵振国,编著.界面化学基础[M].北京:科学工业出版社,1996.
    [78]傅鹰,编著.化学热力学导论[M].北京:科学出版社,2010.
    [79] D·J肖(英),著.胶体与表面化学导论[M].北京:化学工业出版社,1989:209-220.
    [80]吕少华,唐黎明,朱元斌.乳胶漆稳定性理论及影响因素[J].化学建材,2002,18(3):4-7.
    [81]吴树森,章燕豪,编著.界面化学——原理与应用[M].上海:华东化工学院出版社,1989:246-250.
    [82] AYAO KITAHARA,AKIRA WATANABE (日本),编著.界面电现象[M].北京:北京大学出版社,1992:49-50.
    [83]陈宗淇,戴闽光,编.胶体化学[M].北京:高等教育出版社,1984:272-275.
    [84]沈钟,赵振国,王国庭,编著.胶体与表面化学[M].北京:化学工业出版社,2004:98-100.
    [85] Sato Tatsuo. Stability of Dispersion [J]. Journal of Coatings Technology. 1993,825(65): 113-121.
    [86]邱文革,李淑岳,编.工业助剂及其复配技术[M].北京:化学工业出版社,2009.
    [87]顾惕人,朱步瑶,李外郎,等编著.表面化学[M].北京:科学出版社,1994.
    [88]卢寿慈,主编.工业悬浮液——性能,调制及加工[M].北京:化学工业出版社,2003.
    [89]丁莹如,秦关林,编著.固体表面化学[M].上海:上海科学技术出版社,1988.
    [90]韩森,罗立峰,张登良.矿料表面电荷性质的研究与测试[J].西安公路学院学报. 1993,13(4):43-47.
    [91]金世勋,编.物理化学[M].北京:高等教育出版社,1989.
    [92]周祖康,顾惕人,马季铭,编著.胶体化学基础[M].北京:北京大学出版社,1987.
    [93]岳湘安,著.液-固两相流基础[M].北京:石油工业出版社,1996:2-5.
    [94]郭东屏,张石峰,著.渗流理论基础[M].西安:陕西科学技术出版社,1994.
    [95]汪海阁,刘希圣.带屈服值的假塑性流体同心环空稳态波动压力研究[J].应用数学和力学,1996,17(1):15-22.
    [96]张蔚东,屠大燕.湍流液环柱塞流动的―双边界层‖模型[J].力学与实践,1989,11(5):13-17.
    [97]戴干策,陈敏恒,编著.化工流体力学[M],北京:化学工业出版社,2005:142-148
    [98] Vaclav Matousek,Flow Mechnaism of Sand-water Mixurtes inPipelines[D]. Holland: DELFT University of Teehnolog, 1997.
    [99] Newitt D M, et al. Hydraulic conveying of solids in horizontal pipes[J]. Trans Inst Chem Engrs, 1955, 33: 93-113.
    [100]白晓宁,胡寿根,张道方,等.固体物料管道水力输送的研究进展与应用[J].水动力学研究与进展(A),2001,16(3):303-311.
    [101]尹连庆,原永涛.输灰工程[M].保定:华北电力学院出版社,1994:22-30.
    [102]邓祥吉,倪福生,罗荣民.管道输沙阻力损失的2种计算模型[J].河海大学常州分校学报,2005,19(1):54-56,60.
    [103]陈文广,古德生.浆体水平管道输送阻力损失计算探讨[J].中南矿冶学院学报,1994,25(4):162-166.
    [104]倪晋仁,王光谦.泥石流的结构两相流模型Ⅰ理论[J].地理学报,1998,53(1):66-76.
    [105]王聪慧.稠密液固两相湍流混合的数值分析及应用[D].沈阳:吉林大学,2010.
    [106]刘阳,陆慧林,刘文铁,等.循环流化床多组分颗粒气固两相流动模型和数值模拟[J].化工学报,2003,54(8):1065-1071.
    [107] Gidaspow D, Rukmini B, Ding J. Hydrodynamics of circulating fluidized beds: kinetictheory approach [J]. Proceedings of the 7th Engineering Foundation Conference on Fluidization, 1992[C]. Brishbane: Australia Dagineering Foundation, 1992: 75.
    [108] JENKINS J T,SAVAGE S B. Theory for Rapid Flow of Identieal,Smooth nearly Elastic Sphelrical Particles [J]. Jour. Fluid Mech. 1983,130:187-202.
    [109]秦书玉,赵书田,张永吉,等,著.煤矿井下内因火灾防治技术[M].东北大学出版社,1993.
    [110]位爱竹.煤炭自燃自由基反应机理的实验研究[D].徐州:中国矿业大学,2008.
    [111] Michael C. Clarke, Joseph A. Shonhardt, David F. Bagster. The estimation of the propensity for spontaneous combustion in colliery wastes. Mining and the Environment, A Professional Approach[C]. A National Conference, July 1997.
    [112] Haihui Wang,Bogdan Z.Dlugogorski,Eric M.Kennedy. Coal oxidation at low temperatures oxygen consumption,oxidation products, reaction mechanism and kinetic modeling [J]. Progress in Energy and Combustion Science, 2003, (29): 487-513.
    [113] Wiwik Sujanti, Dong-ke Zhang. A laboratory study of spontaneous combustion of coal: the influence of inorganic matter and reactor size [J]. Fuel,1999 78(2): 549-556.
    [114] Jones J.C. Towards an alternative criterion for the shipping safety of activated carbons. Journal of Loss Prevention in the Process Industries.1998(11): 407-411.
    [115] Cem Semsogut, Ibrahim Cinar.A Ressearch on The Tendency of Ermenek District Coals to Spontaneous Combustion. Mineral resources Engineering, 2000, 9(4): 421-427.
    [116] Smith A C, Lazzara C P. Inhibition of spontaneous combustion of coal Pittsbturgh [J]. Unites States Bureau of mines, 1988: 85-92.
    [117] Lazzara Charles P. Overview of U.S.,Bureau of (min)es spontaneous combustion research, Session Papers-American mining Congress Coal convention[J]. Washington: American mining Congress 1991: 119.
    [118] Feng K K. Spontaneous combustion of Canadian coals[J]. CIM Bulletin, 1985, 78(5): 71-75.
    [119] Kam AY, Hixson AN, Perlmutter DD. The oxidation of bituminous coal. II. Experimental kinetics and interpretation. Chem Engng Sci 1976, 31: 821-34.
    [120] Kam AY, Hixson AN, Perlmutter DD. The oxidation of bituminous coal. I. Development of a mathematical model. Chem Engng Sci 1976, 31: 815-9
    [121]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.10.
    [122]虞继舜.煤化学[M].北京:冶金工业出版社,2000:130-131.
    [123]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25 (3):111-114.
    [124]黄庠永,姜秀民,张超群,等.颗粒粒径对煤表面羟基官能团的影响[J].燃烧科学与技术, 2009 15(5)457-460.
    [125]胡小芳,胡大为.煤加催化剂后漫反射红外光谱与弹筒发热量变化关系[J].煤化工,2007,6(3):19-32.
    [126]张超群,姜秀民,黄庠永等.煤焦吸附NO特性与红外光谱分析[J].化工学报,2007,58(3):581-586.
    [127]杨永良,李增华,尹文宣.易自燃煤漫反射红外光谱特征[J].煤炭学报,2007,32(7):730-733.
    [128]朱红,李虎林,欧泽深,等.不同煤阶煤表面改性的FTIR谱研究[J].中国矿业大学学报,2001,30(4):366-379.
    [129]李文,李保庆,三浦孝一.原位漫反射红外分析水分对煤中氢键形成的作用规律[J].燃料化学学报,1999,27:11-14.
    [130]董庆年,陈学艺,靳国强,等.红外发射光谱法原位研究褐煤的低温氧化过程[J].燃料化学学报,1997,25(4):333-338.
    [131]翁诗甫,编著.分析仪器使用与维护丛书—傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.
    [132]吴性良,孔继烈,主编.分析化学原理[M].北京:化学工业出版社,2010:294-295.
    [133]陆伟,王德明,陈舸,等,煤自燃阻化剂性能评价的程序升温氧化法研究[J].矿业安全与环保,2005,32(6):12-14.
    [134]秦波涛,王德明,陈建华.三相泡沫阻化特性实验研究[J].湖南科技大学学报:自然科学版,2006,21(1):5-8.
    [135] Schmal D, Duyzer J H,Heuven J W. A model for the spontaneous heating of coal[J]. Fuel, 1985(64):963-972.
    [136] Chen X D. On the mathematical modelling of the transient spontaneous heating in a moist coal stockpile[J]. Combustion and Flame, 1992(90): 114-120.
    [137]仲晓星,王德明,尹晓丹.基于程序升温的煤自燃临界温度测试方法[J].煤炭学报,2010,35(专刊):128-131.
    [138]李增华,齐峰,杜长胜,等.基于吸氧量的煤低温氧化动力学参数测定[J].采矿与安全工程学报,2007,24(2):137-140.
    [139]齐峰.煤低温氧化动力学参数及氧化热测试理论与方法研究[D].徐州:中国矿业大学,2006.
    [140]时国庆.防灭火三相泡沫在采空区中的流动特性与应用[D].徐州:中国矿业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700