用户名: 密码: 验证码:
亚热带稻田生态系统CO_2通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田生态系统碳循环对大气温室气体的吸收/排放以及全球气候变化起着不可忽视的影响。该生态系统与大气间CO_2交换特征及其影响因素是碳循环研究的重要内容,其不仅是碳循环过程机理和调控机制以及模型模拟的需要,而且可以为估算和评价稻田生态系统碳源/汇强度及其对大气CO_2浓度变化的贡献提供科学依据。
     以我国亚热带丘陵区稻田生态系统为研究对象,采用涡度相关技术对该系统与大气间CO_2交换通量进行了连续观测,通过分析能量平衡的闭合程度对涡度相关法观测稻田生态系统通量数据的可靠性进行了评价;分析了稻田生态系统CO_2通量在不同时间尺度上(日、季节)的变化特征及其影响因素;估算出了稻田生态系统与大气间CO_2的年交换通量;并对箱式法在稻田生态系统CO_2吸收/排放通量观测中的应用作了初步的探讨。
     通过研究,取得的主要结论有以下几个方面:
     (1)采用涡度相关技术对亚热带丘陵区稻田生态系统CO_2通量进行观测的过程中发现该系统能量平衡存在不闭合现象。在假定常规的有效能量(Rn-G)测定正确的前提下,涡度相关法测定的湍流通量(LE+H)结果偏低。能量平衡比率在5~8月份平均为0.85,表现为能量不闭合程度较高;1~4月份和9~12月份平均为0.92,表现为不闭合程度较低;年能量平衡比率为0.87,平均不闭合程度为13%。这表明该方法在稻田生态系统通量观测中的可靠性相对较高。
     (2)稻田生态系统与大气间CO_2的交换(NEE)具有明显的日变化规律。在水稻生长季节,白天稻田生态系统以吸收CO_2(为负值)为主,夜间则表现为排放CO_2(为正值)。光辐射和温度是影响CO_2通量日变化的主要环境因子。白天CO_2通量对光量子通量密度(PPFD)变化的响应过程可以用直角双曲线方程进行描述。随PPFD的增加,CO_2通量(绝对值)呈增加趋势,但当PPFD>1000μmol/m~2/s时,CO_2通量变化比较稳定。在水稻不同生育期,CO_2通量对光强的响应存在较大差异,其中以水稻生长旺盛期的光能利用效率(a)和最大光合速率(Pmax)最高。早稻和晚稻生长期CO_2通量对PPFD的响应存在较大差异,晚稻各生育期的a值明显高于早稻。
     (3)在摩擦风速(U*)大于0.1 m/s的情况下,稻田生态系统夜间呼吸(Reco,包括植株呼吸和土壤呼吸)速率随温度的升高呈指数增加。5 cm土层温度(T5)可以作为与Reco进行拟合的温度指标。早稻生长季Reco对温度变化的响应明显较晚稻生长季敏感。此外,排水对稻田CO_2通量变化也产生影响,其导致稻田生态系统夜间排放CO_2量增加,白天净吸收CO_2量减少。土壤湿度是排水期稻田生态系统CO_2通量变化的关键影响因素。
     (4)稻田生态系统CO_2通量具有明显的季节变化动态。叶面积指数(LAI)是影响CO_2通量季节变化的重要因素,其与水稻日光合吸收CO_2总量(GPP)之间呈显著的正相关关系。水稻生长季净吸收的CO_2总量与其生物量的变化趋势相一致。晚稻生长季稻田生态系统从大气中净吸收CO_2量(NEE绝对值)约为319 g C/m~2,明显高于早稻生长季的净吸收量(232 g C/m~2)。
     (5)稻田生态系统CO_2通量的年变化特征表现为6~9月份较高,1~5月和10~12月较低的对称分布。光合有效辐射(PAR)和日平均气温(Ta)是影响CO_2通量年变化的主要环境因子,二者与CO_2通量之间的关系可以用二元线性方程进行拟合。稻田生态系统年GPP、Reco和NEE分别为5861.3 g/m~2、3385.8 g/m~2和-2475.6 g/m~2,表明亚热带区域稻田生态系统是大气CO_2的汇,年净吸收CO_2强度接近2.5 kg/m~2。年NEE的计算结果明显受到U*临界值和与夜间呼吸通量进行拟合所选取的温度指标的影响。
     (6)提出了对透明箱法观测的CO_2通量进行计算的指数一级动力学拟合方法(ER)。该方法可以有效地解决常用的线性拟合方法(LR)在植被同化速率较强的晴天条件下净吸收通量计算结果偏低的问题,这表明ER法可以作为箱式法观测包括植被同化过程在内的CO_2通量的计算方法。
     (7)箱式法观测的稻田CO_2排放通量与气温和土壤温度(0、5、10和15 cm)之间均存在显著的指数关系。CO_2累计排放量与水稻地上生物量存在极显著的正相关关系,可以用幂函数表示。稻田生态系统CO_2-C净收支随水稻移栽后天数呈幂函数关系增加。
Carbon cycle in paddy ecosystem strongly affects the uptaking /emitting of greenhouse gases and global climate change. CO_2 exchange between the ecosystem and the atmosphere is a key part of carbon cycle.Measurements of the net exchange of carbon dioxide between paddy ecosystem and the atmosphere not only benefit to understand well the mechanism of carbon cycle and its modeling and evaluating, but also help to determinate the annual carbon source or sink strength of the paddy ecosystem and to assess its contribution to the budget of CO_2 in the atmosphere, especially in subtropical region.
     In the research, CO_2 fluxes from paddy ecosystem in subtropical hilly region were measured continuously using eddy covariance technique. The objectives were to assess the accuracy of eddy covariance method, investigate the variation of CO_2 fluxes on daily and seasonal temporal scales, analyze the relationship between CO_2 fluxes and environmental factors, and to quantify the annual net ecosystem exchange (NEE) from the paddy ecosystem. Moreover, application of chamber method in the observation of CO_2 fluxes from paddy fields was investigated.
     The main conclusion and innovations were showed in the following:
     (1) Energy imbalance was found during the observation and measurement of CO_2 fluxes using eddy covariance technique in paddy ecosystem in subtropical hilly region. The sum of sensible and latent heat (H+LE) might be underestimated if (Rn-G) was accurate. The energy balance ratio (EBR) of (H+LE) to (Rn-G) was averagely 0.85 from May to Aug, which was lower than that of other periods (0.92) during a year, that is, the extent of energy balance closure was relatively lower from May to Aug. The annual EBR was 0.87 on average with a mean imbalance of 13%. It showed that eddy covariance technique could be reliablely applied in the observation and measurement of CO_2 fluxes.
     (2) The NEE between paddy ecosystem and the atmosphere was the balance of photosynthesis and respiration processes. A notable diurnal pattern of CO_2 fluxes was observed, with uptaking CO_2 from the atmosphere (negative value) during the daytime and emitting CO_2 to the atmosphere (positive value) in the nighttime. Photosynthetic photon flux density (PPFD) and temperature were the main factors for the daily change of CO_2 fluxes. A rectangular hyperbolic light-response function could be used to describe the relationship of CO_2 flux and PPFD. The absolute values of CO_2 fluxes increased with the increment of PPFD. When PPFD was higher than 1000μmol m~(-2) s~(-1), light saturation was observed. The carbon dioxide fluxes response differently to light in different growing stages of rice. In the blooming stage, the quantum yield (a) and the maximum rate of photosynthesis assimilation (Pmax) were higher than that in tillering and ripening stages. Moreover, these light response parameters in late rice growing season were general higher than that in early rice growing season.
     (3) In nighttime, respiration from soil and plants (ecosystem respiration, Reco) with U* (friction velocity) >0.1 m s-1 changed exponentially with the increase of soil temperature at the depth of 5 cm (T5). Reco during the early rice-growing season was more sensitive to temperature than that during the late rice-growing season. Moreover, CO_2 fluxes were affected by drainage. When the paddy was drained, net CO_2 uptake from the atmosphere in daytime was less, and in nighttime, CO_2 emission was greater than when the paddy was flooded. Soil moisture was proved to be the dominant factor for controlling CO_2 emission during the drainage period.
     (4) Leaf area index (LAI) was a critical influential factor of the seasonal pattern of daily CO_2 flux. A significant positive correlation was found between LAI and the daily gross primary production (GPP). In addition, the cumulative GPP was consistent with the change of rice total biomass. During the growing season of late rice, the absolute value of NEE was about 319 g C m~(-2), which was higher than that during early rice growing season (about 232 g C m~(-2)).
     (5) The annual trend of daily values of GPP, Reco and the absolute value of NEE behaved higher from Jun. to Sep. and lower during the other monthes. Photosynthecially active radiation (PAR) and mean daily air temperature (Ta) were two main influential factors for controlling the annual trend of GPP and NEE. The response of GPP and NEE to PAR and Ta could be described by binary linear functions, respectively. The annual GPP, Reco and NEE in paddy ecosystem were 5861.3 g CO_2 m~(-2), 3385.8 g CO_2 m~(-2) and -2475.6 g CO_2 m~(-2), respectively. It showed that paddy ecosystem in subtropical region was a sink of atmospheric CO_2 with a net absorbing rate 2.5 kg m~(-2) a-1. However, the estimated annual NEE was strongly affected by friction velocity threshold and the reference temperature used in the respiration-temperature function.
     (6) A new method with an order kinetics equation (ER) was put forward to simulate the change rate of CO_2 concentration versus measurement time and to calculate CO_2 flux observed by closed chamber method. This method could solve the lack of linear regression method (LR) to a great extent, which was used very often now but usually underestimated CO_2 flux in sunny daytime. ER method was proved to be a new feasible means to observe and calculate CO_2 flux including photosynthesis process.
     (7) CO_2 emission rates measured by closed chamber method appeared exponential relationships with air and soil temperatures at the depth of 0, 5, 10 and 15 cm, respectively, which was consistent with the result from the eddy covariance measurement. There was a very marked power function relationship between CO_2 cumulative emission amount and rice biomass. CO_2-C net uptaking from atmosphere increased with rice growing by power function.
引文
1. Albrizio R, Steduto P. Photosynthesis, respiration and conservative carbon use efficiency of four field grown crops. Agric. For. Meteorol. 2003, 116: 19~36
    2. Angell R F, Svejcar T, Bates J. Bowen ratio and closed chamber carbon dioxide flux measurements over sagebrush steppe vegetation. Agric. For. Meteorol. 2001, 108: 153~ 161
    3. Angell R, Svejcar T. A chamber design for measuring net CO2 exchange on rangeland. Range Manage, 1999, 52: 27~31
    4. Anthoni P M, Freibauer A, Kolle Olaf, et al. Winter wheat carbon exchange in Thuringia, Germany. Agric. For. Meteorol. 2004, 121: 55~67
    5. Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res. 2000, 30: 113~175
    6. Aubinet M, Heinesch B, Longdoz B. Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Glob. Change Biol. 2002, 8: 1053~1071
    7. Baldocchi D D, Vogel C A. Hall B. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric. For. Meteorol. 1997, 83: 147~170
    8. Baldocchi D D. Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique. Glob. Change Biol. 2003, 9: 478~492
    9. Baldocchi D, Falge E, Gu L, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Am. Meteorol. Soc. 2001, 82: 2415~2434
    10. Baldocchi D, Finnigan J, Wilson K, et al. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 2000, 96: 257~ 291
    11. Baldocchi D, Valentini R, Running S, et al. Strategies for measuring and modeling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Glob. Change Biol. 1996, 2: 159~168
    12. Baldocchi D. A comparative study mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) cropⅡ, CO2 exchange and water use efficiency. Agric. For. Meteorol. 1994, 67: 291~321
    13. Baldocchi D. Law B E. Anthoni P M. On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest. Agric. For. Meteorol. 2000,103: 249~264
    14. Barford C C, wofsy S C, Goulden M L, et al. Factors controlling long- and short-term sequestration atmospheric CO2 in a mid-latitude forest. Science, 2001, 294: 1688~1691
    15. Barr A G, Griffis T J, Black T A, et al. Comparing the carbon budgets of boreal and temperate deciduous forest stands. Can. J. For. Res. 2002, 32: 813~822
    16. Berbigier P, Bonnefond J M, Mellmann P. CO2 and water vapor fluxes for 2 years above Euroflux forest site. Agric. For. Meteorol. 2001, 108: 183~197
    17. Black T A, Den H G, Neumann H H, et al. Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Glob. Change Biol. 1996, 2: 219~229
    18. Blanken P D, Black T A, Neumann H H, et al. Turbulent flux measurements above and below the overstory of a boreal aspen forest. Boundary-Layer Meteorology, 1998, 89: 109~140
    19. Bubier J, Crill P, Mosedale A. Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrol. Process, 2002, 16: 3667 ~3682
    20. Cai Z C, Xing G X, Shen G Y, et al. Measurements of CH4 and N2O emission from rice fields in Fengqiu, China. Soil Science and Plant Nutrition, 1999, 45(1): 1~13
    21. Cai Z C, Xing G X, Yan X Y, et al. Methane and nitrousoxide from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil, 1997, 196(1): 7~ 14
    22. Campbell C S, Heilman J L, McInnes K J, et al. Diel and seasonal variation in CO2 flux of irrigated rice. Agric. For. Meteorol. 2001, 108: 15~27
    23. Carrara A, Kowalski A S, Neirynck Johan, et al. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric. For. Meteorol. 2003, 119: 209~227
    24. Constantin J, Grelle A, Ibrom A, Morgenstern K. Flux partitioning between understory and overstory in a boreal spruce/pine forest determined by eddy covariance method. Agric. For. Meteorol. 1999, 98-99: 629~643
    25. Culf A D, Folken. The energy balance closure problem. In: Vegetation, water, humans and the Climate Springer. Berlin. 2002
    26. Cure J D, Acook B. Crop response to carbon dioxide doubling: a literature survey. Agric. For. Meteorol. 1986, 38: 127~145
    27. Curtis P S. A meta-analysis of leaf gas-exchange and nitrogen in trees grown under elevated CO2 in situ. Plant, Cell and Environ. 1996, 19: 127~137
    28. Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest.Glob. Change Biol. 1998, 4: 217~227
    29. Dong Y, Qi Y, Liu J, et al. Variation characteristics of soil respiration fluxes in four types of grassland communities under different precipitation intensity. Chinese Science Bulletin, 2005, 50(1): 1~9
    30. Dugas W A, Fritschen L J, Gay L W, et al. Bowen ration, eddy correlation and potable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agric. For. Meteorol. 1991, 56: 1~20
    31. Dugas W A, Reicosky D C, Kiniry J R. Chamber and micrometeorological measurements of CO2 and H2O fluxes for three C4 grasses. Agric. For. Meteorol. 1997, 83: 113~133
    32. Ehleringer J, Pearcy R W. Variation in quantum yield for CO2 uptake among C3 and C4. Plant physiology, 1983, 73: 555~559
    33. Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107: 43~69
    34. Falge E, Baldocchi D, Tenhunen J, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. For. Meteorol. 2002, 113: 53~74
    35. Fan S, Gloor M, Mahlman J. North American carbon sink. Science, 1999, 283: 1815
    36. Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 2001, 33: 155~165
    37. Flanagan L B, Wever L A, Carson P J. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob. Change Biol. 2002, 8: 599~615
    38. Goulden M L, Daube B C, Fan S M, et al. Physiological responses of a black spruce forest to weather. Journal of Geophysical Research, 1997, 102 (24): 28987~28996
    39. Goulden M L, Munger J W, Fan SM, et al. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science, 1996, 271, 1576~1578
    40. Grace J, Malhi Y, Lloyd J, et al. The use of eddy covariance to infer the carbon dioxide uptake of Brazilian rain forest. Glob. Change Biol. 1996, 2: 209~217
    41. Greco S, Baldocchi D D. Seasonal variation of CO2 and water vapor exchange rates over a temperate deciduous forest. Glob. Change Biol. 1996, 2: 183~197
    42. Griffis T J, Black T A, Morgenstern K, et al. Ecophysiological controls on the carbon balance of three southern boreal forests. Agric. For. Meteorol. 2003, 117: 53~71
    43. Gulledge J, Schimel J P. Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems, 2000, 3: 269~282
    44. Harazono Y, Kim J, Miyata A, et al. Measurement of energy budget components duringthe International Rice Experiment (IREX) in Japan. Hydrol. Process, 1998, 12 (6): 2081~2092
    45. Harrison K, Broecker W. A strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochemical Cycles, 1993, 7(1): 69~80
    46. Houghton J T, Ding Y, Griggs D J, et al. (Eds.). IPCC Third Assessment Report: Climate Change 2001. The Scientific Basis. Cambridge University Press. Cambridge. 2001: 944.
    47. http//www.ncagri.gov.cn/expert/rice
    48. Huang Y, Jiang J Y, Sass R L, et al. Comparison of field measurements of CH4 emission from rice cultivation in Nanjing, China and in Texas, USA. Advance in Atmospheric Science, 2001, 18(6): 1121~1130
    49. IPCC, Climate Change 1995. The Science of Climate Change. In: Houghton J T, Meira Filho L G, Callander B A, et al. (Eds.) Cambridge Univ. Press, Cambridge. 1995
    50. IPCC. Climate Change 1995: The Science of Climate Change, Report of Working Group 1. Cambridge University Press, New York. NY. 1996: 4
    51. IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. 2001
    52. IPCC. Land use, land-use change, and forestry, a special report of the IPCC. Cambridge University Press, 2000
    53. Ivan A J, Andrew S K, Reinhart C. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric. For. Meteorol. 2001, 106: 61~69
    54. Janssens I A, Lankreijer H, Matteucci G, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Change Biol. 2001, 7: 269~278
    55. Jones H J. Plant and Microclimate: A quantitative approach to environmental plant physiology. Cambridge: Cambridge University Press. 1983
    56. Kato T, Tang Y, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai Tibetan Plateau, China. Agric. For. Meteorol. 2004, 124: 121~134
    57. Katul G G, Leuning R, Kim J. Estimating CO2 source/sink distributions within a rice canopy using higher order closure models. Boundary-Layer Meteorology, 2001, 98(1): 103~125
    58. Keulen V H, Seligman N G. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs, Pudoc. Wageningen, 1987, 310
    59. Khalil M A, Rasmussen R A, Wang M X, et al. Emission of trace gases from Chinese ricefields and biogas generation: CH4, N2O, CO2, chlorocarbons, and hydrocarbons. Chemosphere, 1990, 20(1~2): 207~226
    60. Kustas W P, Prueger J H, Hipps L E, et al. Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment. Agric. For. Meteorol. 1998, 90: 257~263
    61. Lal R. Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 2002, 116: 353~362
    62. Lavigne M B, Ryan M G, Anderson D E. Comparing nocturnal eddy covariance measurements to the estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. Journal of Geophysical Research, 1997, 102: 28977~28985
    63. Law B E, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestiral vegetation. Agric. For. Meteorol. 2002, 113: 97~120
    64. Law B E, Williams M, Anthoni P M. Measuring and modeling seasonal variation of carbon dioxide and water vapor exchange of Pinus ponderosa forest subject to soil water deficit. Glob. Change Biol. 2000, 6: 613~630
    65. Lawa B E, Baldocchib D D, Anthonic P M. Below canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For. Meteorol. 1999, 94: 171~188
    66. Leadley P W, Drake B G. Open-top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas-exchange. Vegetatio, 1993, 104: 3~15
    67. Lee X, Fuentes J D, Staebler R M, et al. Long term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada. Journal of Geophysical Research, 1999, 104(13): 15975~15984
    68. Lee X, Hu X Z. Forest air fluxes of carbon, water and energy over non-flat terrain. Boundary-Layer Meteorology, 2002, 103: 277~301
    69. Lee X. On micrometeorological observation of surface-air exchange over tall vegetation. Agric. For. Meteorol. 1998, 91: 39~49
    70. Leuning R, Judd M J. The relative merits of open and closed path analyzers for measurement of eddy fluxes. Glob. Change Biol. 1996, 2: 241~253
    71. Lindroth A, Grelle A, Moren A S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Change Biol. 1998, 4: 443~450
    72. Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Functional Ecology, 1994, 8: 315~323
    73. Luo Y, Hui D, Cheng W, et al. Canopy quantum yield in a mesocosm study. Agric. For. Meteorol. 2000, 100: 35~48
    74. Mahrt L. Flux sampling errors for aircraft and towers. J. Atmos. Ocean Technol., 1998, 15: 416~429
    75. Massman W, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. For. Meteorol. 2002, 113: 121~144
    76. Mayocchi C L. Bristow K L. Soil surface heat flux: some general questions and comments on measurements. Agric. For. Meteorol. 1995, 75: 121~144
    77. McMillen R T. An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology, 1988, 43: 231~245
    78. Miyata A, Leuning R, Denmead O T, et al. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric. For. Meteorol. 2000, 102: 287~303
    79. Moncrieff J, Valentini R, Greco S, et al. Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. Journal of Experimental Botany, 1997, 48 (310): 1133
    80. Monje O, Bugbee B. Adaption to high CO2 concentration in an optimal environment: Radiation capture, canopy quantum yield and carbon use efficiency. Plant, Cell and Environ. 1998, 21(3): 15~24
    81. Moore B D, Palmquist D E, Seemann J R. The biochemical and molecular basis for photosynthesis acclimation to elevated atmospheric CO2. Plant, Cell and Environ. 1999, 22: 567~582
    82. Moore C J. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 1986, 37: 17~35
    83. Murthy R, Griffin K L, Zarnoch S J, et al. Carbon dioxide efflux from a 550 m3 soil across a range of soil temperatures. Forest Ecology and Management, 2003, 178(3): 311~327
    84. Paul E A, Harris D, Collins H P, et al. Evolution of CO2 and soil carbon dynamics in biologically managed, row-crop agro-ecosystems. Applied Soil Ecology, 1999, 11: 53~ 65
    85. Paustian K, Cole C, Sauerbeck D. Mitigation of greenhouse gas emission: an overview. Climate Change, 1998, 40: 135~162
    86. Paw U K, Baldoccho D D, Meyers T P, et al. Corrections of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 2000, 97: 487~511
    87. Peter C S, Paul H J, Paul B. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric. For. Meteorol. 2002, 113: 3~19
    88. Petit J R, Jouzel J, Raynard N I, et al. Climate and atmospheric history of the past 42000years from the Vostok ice core, Antartica. Nature, 1999, 399: 429~436
    89. Pickering N B, Jones J W, Boote K J. Evaluation of the portable chamber technique for measuring canopy gas-exchange by crops. Agric. For. Meteorol. 1993, 63: 239~254.
    90. Pilegaard K, Hummelsh?j P, Jensen N O, et al. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agric. For. Meteorol. 2001, 107: 29~41
    91. Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology & Biochemistry, 2000, 32: 35~45
    92. Raymond F A, Tony S, Jon B. Bowen ratio and closed chamber carbon dioxide flux measurements over sagebrush steppe vegetation. Agric. For. Meteorol. 2001, 108: 153~ 161
    93. Rochette P, Desjiardins R D, Pattey E, et al. Crop net carbon dioxide exchange rate and radiation use efficiency in soybean. Agron. J. 1995, 87: 22~28
    94. Rosenzweig C, Hillel D. Soils and global climate change: Challenges and opportunities. Soil Science, 2000, 165: 47~56
    95. Saigusa N, Oikawa T, Liu S. Seasonal variations in the exchange of CO2 and H2O between grassland and the atmosphere: an experimental study. Agric. For. Meteorol. 1998, 89, 131~139
    96. Santrucek J, Sage R F. Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. Aust. J. Plant Physiol. 1996, 78: 619~622
    97. Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169~172
    98. Schimel D S. Terrestrial ecosystem and the carbon cycle. Glob. Change Biol. 1995, 1: 77 ~91
    99. Schmid H P, Grimmond C S, Cropley F, et al. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric. For. Meteorol. 2000, 103: 357~374
    100.Schmid H P. Experimental design for measurements: matching scales of observations and fluxes. Agric. For. Meteorol. 1997, 87: 179~200
    101.Schulze E D and Heimann M. Carbon and water exchange of terrestrial ecosystem. In: Galloway J N, Melillo M (Eds.), Asian change on context of global change. Cambridge University Press, Cambridge. 1998
    102.Schulze E D, Wirth C, Heimann M. Managing forests after Kyoto. Science, 2000, 289: 2058~2059
    103.Seiko O, Shuichi H. Diel and seasonal changes in carbon dioxide concentration and fluxin an Andisol. Soil Science, 1995, 160(2): 117~124
    104.Silvola. J, Alm J, Ahlholm U, et al. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology, 1996, 84: 219~228
    105.Sitt M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environ. 1991, 14: 741~762
    106.Soegaard H, Jensen N O, Boegh E, et al. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modeling. Agric. For. Meteorol. 2003, 114: 153~173
    107.Stannard D I, Blanford J H, Kustas W P. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon experiment. Water Resource, 1994, 30(5): 1227 ~1239
    108.Steduto P, Cetink?kü?, Albrizio R, et al. Automated closed-system canopy-chamber for continuous field-crop monitoring of CO2 and H2O fluxes. Agric. For. Meteorol. 2002, 111: 171~186
    109.Steduto P, Hsiao T C. Maize canopies under two soil water regimes: Validity of Bowen Ratio-Energy Balance technique for measuring water vapor and carbon dioxide fluxes at 5-min intervals. Agric. For. Meteorol. 1998, 89: 215~228
    110.Steduto P, Hsiao T C. Maize canopies under two soil water regimesⅠ. Diurnal patterns of energy balance, carbon dioxide flux, canopy conductance. Agric. For. Meteorol. 1998, 89: 169~184
    111.Steduto P, Hsiao T C. Maize canopies under two soil water regimesⅡ. Season trends of evapotranspiration, carbon dioxide assimilation and canopy conductance and as related to leaf area index. Agric. For. Meteorol. 1998, 89: 185~200
    112.Sun J, Desjardins R, Mahart L, et al. Transport of carbon dioxide, water vapor, and ozone by turbulence and local circulation. Journal of Geophysical Research, 1998, 103: 258~ 273
    113.Tissue D T, Thomas R B, Strain B R. Long term effects on photosynthesis and Rubisco in loblolly pine seedlings. Plant, Cell and Environ. 1993, 16: 859~865
    114.Tjoelker M G, Oleksyn J, Reich P B. Modeling respiration of vegetation: evidence for a general temperature dependent Q10. Glob. Change Biol. 2001, 7: 223~230
    115.Tsukamoto O. Turbulent fluxes over paddy field under various ponding depth. J. Agric. Meteorol. 1993, 49: 19~25
    116.Twine T E, Kustas W P, Norman J M, et al. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103: 279~300
    117.Uxes D, John B M, Edward N A. Conditional sampling for measuring mercury vapor.Atmospheric Environment, 2002, 36: 4309~4321
    118.Valentini R, Angelis P D, Matteucci G, et al. Seasonal net carbon exchange of a beech forest with the atmosphere. Glob. Change Biol. 1996, 2: 197~207
    119.Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determination of carbon balance in European forests. Nature, 2000, 404: 861~865
    120.Verma A B, Baldocchi D D, Anderson D E, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary-Layer Meteorology, 1986, 36: 71~91
    121.Wagner S W, Reicosky D C, Alessi R S. Regression models for calculating gas fluxes measured with a closed chamber. Agron. J. 1997, 89 (2): 279~284
    122.Webb E K, Pearman G, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer. Q. J. Poy. Meteorol. Soc. 1980, 106: 85~100
    123.Wilson K B, Goldstein A H, Falge E, et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113: 223~243
    124.Wilson K B, Hanson P J, Baldocchi D D. Factors controlling evaporation and energy balance partitioning beneath a deciduous forest over an annual cycle. Agric. For. Meteorol. 2000, 102: 83~103
    125.Xu L, Baldocchi D D. Seasonal variation in carbon dioxide exchange over Mediterranean annual grassland in California. Agric. For. Meteorol. 2004, 123(2): 79~96
    126.Yang S S, Chang H L. Methane emission from paddy fields in Taiwan. Biol. Fertile. Soils, 2001, 33: 157~165
    127.Yu Q, Liu Y, Liu J. Simulation of leaf photosynthesis of winter wheat on Tibetan Plateau and in North China Plain. Ecological Modeling, 2002, 155: 205~216
    128.蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学, 2000, 14(4): 219~224
    129.蔡祖聪.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报, 1999, 36(4): 484~491
    130.曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模型.中国科学, D辑, 2004, 34(增刊Ⅱ): 1~14
    131.曹树青,翟虎渠,张红生,等.不同类型水稻品种叶源量及有关光合生理指标的研究.中国水稻科学, 1999, 13(2): 91~94
    132.陈步峰,李意德,林明献,等.热带山地雨林CO2浓度环境的时空梯度特征.生态学报, 2001, 21((12): 2089~2095
    133.陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征.应用生态学报, 2004, 15(9): 1552~1560
    134.崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展.生态学报, 2001, 21(2): 315~325
    135.戴新宾,翟虎渠,张红生,等.土壤干旱对水稻叶片光合速率和碳酸酐酶活性的影响.植物生理学报, 2000, 26(2): 133~136
    136.刁一伟,郑循华,王跃思,等.开放式空气CO2浓度增高条件下旱地土壤气体CO2浓度廓线测定.应用生态学报, 2002, 13(10): 1249~1252
    137.董云社,齐玉春,刘纪远,等.不同降水强度四种草地群落土壤呼吸通量变化特征.科学通报, 2005, 50(5): 473~480
    138.杜睿,王庚辰,吕达仁,等.静态箱法原位观测草原CO2通量的探讨.生态学报, 2002, 22(12): 2167~2174
    139.高志球,卞林根,陆龙骅.水稻不同生长期稻田能量收支、CO2通量模拟研究.应用气象学报, 2004, 15(2): 129~140
    140.耿元波,董云社,孟维齐.陆地碳循环研究进展.地理科学进展, 2000, 19(4): 297~ 306
    141.关德新,吴家兵,王安志.长白山阔叶红松林生长季热量平衡变化特征.应用生态学报, 2004, 15(10): 1828~183
    142.黄昌勇主编.土壤学.北京:中国农业出版社. 2000
    143.黄妙芬.地表通量研究进展.干旱区地理, 2003, 26(2): 159~165
    144.季本华,焦德茂.光抑制条件下不同水稻品种叶片的PSⅡ光化学效率和CO2交换特性的差异.中国水稻科学, 1998, 12(2): 109~114
    145.李克让主编.土地利用变化和温室气体排放与陆地生态系统碳循环.北京:气象出版社. 2002
    146.李明峰,董云社,耿元波,等.温带草原生态系统CO2排放对环境因子变化的响应.中国农业科学, 2004, 37(11): 1722~1727
    147.李英年,赵亮,古松.海北高寒草甸地区能量平衡特征.草地学报, 2003, 11(4): 289~ 295
    148.李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环.地学前缘, 2002, 9(2): 351~357
    149.李兆富,吕宪国,杨青.湿地土壤CO2通量研究进展.生态学杂志, 2002, 21(6): 47~ 50
    150.李正泉,于贵瑞,温学发,等.中国能量观测网络(ChinaFLUX)能量平衡闭合状况的评价.中国科学, D辑, 2004, 34(增刊Ⅱ): 46~56
    151.李忠佩,李德成,张桃林,等.红壤水稻土肥力状况的演变特征.土壤学报, 2003, 40 (6): 870~878
    152.李忠佩,张桃林,陈碧云,等.红壤稻田土壤有机质的积累过程特征分析.土壤学报, 2003, 40(3): 344~352
    153.廖铁,陈根云,张海波,等.水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应.应用生态学报, 2002, 13(10): 1205~1209
    154.林伟宏,白克智,匡廷云.大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响.植物学报, 1999, 41(6): 624~628
    155.林贤青,周伟军,朱德峰,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响.中国水稻科学, 2004, 18(4): 333~338
    156.刘强,刘嘉麟,贺环宇.温室气体浓度变化及其源与汇研究进展.地球科学进展, 2000, 15(4): 453~460
    157.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报, 1997, 17(5): 469~476
    158.刘树华,麻益民.农田近地面层CO2和湍流通量特征研究.气象学报, 1997, 55(2): 187~199
    159.刘允芬,欧阳华,曹广民,等.青藏高原东部生态系统土壤碳排放.自然资源学报, 2001, 16(2): 152~160
    160.刘允芬,欧阳华,张宪洲,等.青藏高原生态系统碳平衡.土壤学报, 2002, 39(5): 636~ 642
    161.刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林CO2通量季节变化及其环境因子的影响.中国科学, D辑, 2004, 34(增刊Ⅱ): 109~117
    162.刘允芬,于贵瑞,李家永,等.红壤丘陵地区双季稻光合特性初步研究.资源科学, 2001, 23(6): 49~53
    163.刘允芬,于贵瑞,王利军,等.红壤丘陵区双季稻表观光合量子效率的研究.中国生态农业学报, 2004, 12(4): 49~52
    164.刘允芬,张宪洲,周允华,等.西藏高原田间冬小麦的表观光合量子效率.生态学报, 2000, 20(1): 35~38
    165.刘允芬.中国农业系统碳汇功能.农业环境保护, 1998, 17(5): 197~202
    166.娄运生,李忠佩,张桃林.不同利用方式对红壤CO2排放的影响.生态学报, 2004, 24 (5): 978~ 983
    167.陆龙骅,程彦杰,卞林根,等.长江三角洲典型稻作区近地层二氧化碳等湍流通量的观测研究.地球物理学报, 2003, 46(6): 751~759
    168.莫兴国,陈丹,林忠辉,等.不同水分条件麦田能量与CO2通量变化特征研究.中国生态农业学报, 2003, 11(4): 77~81
    169.莫兴国,刘苏峡,于沪宁,等.能量平衡及蒸散分配的季节变化分析.地理学报, 1997, 52(6): 536~541
    170.莫兴国,刘苏峡.麦田能量转化和水分传输特征.地理学报, 1997, 52(1): 37~43
    171.莫兴国.引入平流影响的蒸散估算.生态农业研究, 1995, 3(4): 39~43
    172.潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题-兼开展中国水稻土有机碳固定研究的建议.南京农业大学学报, 2002, 25(3): 100~109
    173.彭长连,林植芳,孙梓健,等.水稻光合作用对加富CO2的响应.植物生理学报, 1998, 24(3): 272~278
    174.彭少麟,李跃林,任海,等.全球变化条件下的土壤呼吸效应.地球科学进展, 2002, 17(5): 705~ 713
    175.秦钟,于强,许守华,等.华北平原农田水热通量与作物水分利用效率的特征与模拟.中国科学, D辑, 2004, 34(增刊Ⅱ): 183~192
    176.邱国雄.植物光合作用的效率.植物生理学和分子生物学(余淑文主编).北京:科学出版社, 1992: 236~243
    177.沙丽清,郑征,唐建维,等.西双版纳热带季节雨林的土壤呼吸研究.中国科学, D辑, 2004, 34(增刊Ⅱ): 175~182
    178.上官周平.小麦叶片光合作用对不同干旱方式的反应.西北植物学报, 1997, 6(4): 38~41
    179.沈彦俊,刘昌明,莫兴国,等.麦田能量平衡及潜热分配特征分析.生态农业研究, 1997, 5(1): 12~17
    180.石培礼,张宪洲,钟志明.西藏高原低大气压下冬小麦表观光合量子产额及其对温度和胞间CO2浓度变化的响应.中国科学, D辑, 2004, 34(增刊Ⅱ): 161~166
    181.宋文质,王少彬,苏维翰,等.我国农田土壤的主要温室气体CO2、CH4和N2O排放研究.环境科学, 1996, 17(1): 85~92
    182.宋霞,于贵瑞,刘允芬,等.开路与闭路涡度相关系统通量观测比较研究.中国科学, D辑, 2004, 34(增刊Ⅱ): 67~76
    183.孙睿,刘昌明.地表水热通量研究进展.应用生态学报, 2003, 14(3): 434~438
    184.孙晓敏.张仁华,苏红波,等.作物群体CO2通量和水分利用效率的快速测定.应用生态学报, 2004, 15(9): 1684~1686
    185.汪瑛,卞林根,谌志刚. CO2湍流通量误差的修正和不确定性研究进展.应用气象学报, 2004, 15(2): 234~244
    186.王安志,刘建梅,关德新,等.长白山阔叶红松林显热和潜热通量测算的对比研究.林业科学, 2003, 39(6): 21~25
    187.王庚辰.陆地生态系统温室气体排放(吸收)测定方法简评.气候与环境研究, 1997, 2(3): 251~263
    188.王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理.大气科学, 1998, 22 (4): 601~612
    189.王培娟,朱启疆,吴门新,等.冬小麦冠层的FAPAR、LAI、VIs之间关系的研究.遥感信息, 2003, 3: 19~22
    190.王勤学,渡边正孝,欧阳竹,等.不同类型生态系统水热碳通量的监测与研究.地理学报, 2004, 59(1): 13~24
    191.王树森,朱治林,孙晓敏,等.拉萨地区农田能量物质交换特征.中国科学, D辑, 1996, 26(4): 359~364
    192.王彦辉, Rademacher P, F?lster H.环境因子对挪威云杉林土壤有机质分解过程中重量和碳的气态损失影响及模型.生态学报, 1999, 19(5): 641~646
    193.王跃思,王长科,郭雪清.北京大气CO2浓度日变化及长期趋势.科学通报, 2002, 47(14): 1108~1112
    194.王跃思,王明星,胡玉琼,等.半干旱草原温室气体排放/吸收与环境因子的关系研究.气候与环境研究, 2002, 7(3): 295~310
    195.王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响.中国水稻科学, 1996, 10(4): 235~240
    196.温学发,于贵瑞,孙晓敏,等.复杂地形条件下森林植被湍流通量测定分析.中国科学, D辑, 2004, 34(增刊Ⅱ): 57~66
    197.温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被-大气间净CO2交换量中的不确定性.地球科学进展, 2004, 19(4): 658~663
    198.翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节.浙江大学学报(农业与生命科学), 2002, 28(4): 287~391
    199.吴海宝.气候变暖与稻谷生产的相互影响及对策.生态学报, 1997, 17(2): 216~219
    200.谢艳兵,梁文举,王跃思,等.下辽河平原稻田非生长季碳排放观测研究.生态学杂志, 2004, 23(2): 11~14
    201.徐玲玲,张宪洲,石培礼,等.青藏高原高寒草甸生态系统表观量子产额与表观最大光合速率的确定.中国科学, D辑, 2004, 34(增刊Ⅱ): 125~130
    202.许大全.光合作用效率.植物生理学通讯, 1988, 5: 1~7
    203.杨长明,杨林章.有机-无机肥配施对水稻剑叶光合特性的影响.生态学杂志, 2003, 22(1): 1~4
    204.杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态.中国农业气象, 1996, 17(1): 48~50
    205.杨晓光,于沪宁.农田生态系统二氧化碳通量与群体水分利用率研究.地理科学进展, 1998, 17(4): 16~24
    206.于贵瑞,温学发,李庆康,等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征.中国科学, D辑, 2004, 34(增刊Ⅱ): 84~94
    207.于贵瑞主编.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社. 2003
    208.余锦华,刘晶森,任健.长江三角洲常熟地区近地层湍流特征的研究.南京气象学院学报, 2001, 24(4): 536~544
    209.曾翔,李阳生,谢小立,等.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学, 2003, 17(4): 355~359
    210.张金霞,曹广民,周党卫,等.退化草地暗沃寒冻雏形土CO2释放的日变化和季节动态.土壤学报, 2001, 38(1): 32~39
    211.张薇,司徒淞.稻田土壤水分优化调控技术研究.中国水稻科学, 1995, 9(4): 211~216
    212.张永强,刘昌明,沈彦俊,等.农田生态系统CO2通量的转换计算.应用生态学报, 2001, 12(5): 726~730
    213.张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO2通量的测定.地理学报, 2002, 57(3): 333~342
    214.郑循华,王明星,王跃思,等.华东稻田CH4和N2O排放.大气科学, 1997, 21(2): 231 ~237
    215.郑循华,徐仲均,王跃思,等.开放式空气CO2浓度增高影响稻田-大气CO2净交换的静态暗箱法观测研究.应用生态学报, 2002, 13(10): 1240~1244
    216.周存宇,周国逸,张德强,等.鼎湖山森林地表CO2通量及其影响因子的研究.中国科学, D辑, 2004, 34(增刊Ⅱ): 161~166
    217.周志田,成升魁,刘允芬.中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探.资源科学, 2002, 24(2): 83~87
    218.朱咏莉,童成立,吴金水,等.透明箱法监测稻田生态系统CO2通量的研究.环境科学, 2005, 25(5)
    219.朱咏莉,吴金水,周卫军,等.亚热带稻田生态系统CO2排放及影响因素.中国环境科学, 2005, 25(2): 151~154
    220.朱治林,孙晓敏,张仁华,等.内蒙古半干旱草原能量物质交换的微气象方法估算.气候与环境研究, 2002, 7(3): 351~358
    221.邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统-大气CO2净交换估算.科学通报, 2004, 49(3): 258~264
    222.邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报, 2003, 23(6): 758~764
    223.邹君,杨玉蓉,谢小立.不同水分灌溉下的水稻生态效应研究.湖南农业大学学报(自然科学版), 2004, 30(3): 212~215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700