用户名: 密码: 验证码:
常温空气无焰燃气锅炉的强化换热和污染物减排研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常温空气无焰燃烧不仅与传统的有焰燃烧不同,而且其实现方式与以往的无焰燃烧也有所不同。它利用常温高速燃料射流、空气旋流和燃烧搅拌反应器实现无明显火焰前沿的燃烧,能够明显改善工业炉内的热工状态并大幅度节能,能够降低温室气体排放(单位能耗的CO2排放)和氮氧化物(NOx)等污染物排放,并且减小燃烧设备尺寸。对常温空气无焰燃烧技术的研究将有助于无焰燃烧理论的发展和该技术在冶金炉、锅炉和窑炉等行业的应用。本文结合数值模拟和实验测量研究了常温空气无焰燃烧的反应特征、常温空气无焰燃气锅炉炉膛的强化换热和污染物(氮氧化物)生成控制。
     搭建了一台立式燃气试验锅炉,以天然气为燃料,通过非预混的方式进行了常温空气无焰燃烧实验,进行了温度场采样、热效率测试和烟气排放测试。分别采用基于混合物分数的概率密度函数燃烧模型和耦合骨架化学反应机理的涡耗散概念(EDC)燃烧模型,对常温空气无焰锅炉炉膛的燃烧进行了三维准稳态数值模拟。通过对流场、氧浓度分布和温度场的分析,研究了常温空气无焰燃烧特征。结果表明,基于混合物分数的概率密度函数燃烧模型由于采用了即混即燃的假设,忽略了化学反应速率的影响,因而模拟的温度场与实测结果有较大的失真,特别是在锥形射流混合区域。这也说明,常温空气无焰燃烧在这个区域并非即混即燃,必须考虑湍流与化学反应过程之间的相互作用。而实测结果与EDC模型模拟结果基本一致,验证了该模型进行常温空气无焰燃烧模拟的正确性。对模拟结果的分析表明,常温空气无焰燃烧首先通过高速射流和旋流的方式提高入射反应物动量,配合入射反应流的常温条件,使得反应物在燃烧之前能卷吸更多的烟气,形成了一个相对低温的射流混合区;第二,借助燃烧搅拌器结构,提高了烟气循环量和热再循环量,保证了反应物浓度的降低和温度的提升;最终在射流下游的一个宽厚的空间里发生了化学反应,形成了无焰燃烧。
     通过简化分析的方式,对比了普通燃气锅炉和常温空气无焰燃气锅炉的换热情况,对常温空气无焰燃气锅炉辐射壁和水冷壁的热流密度分布进行了数值模拟分析,进行了锅炉热效率测试。结果表明,相比于普通燃气锅炉,常温空气无焰燃烧炉通过在其内部安置燃烧搅拌反应器,延长了烟气在炉膛中的流动回程,增加了燃烧搅拌反应器辐射壁与水冷壁之间的辐射传热,使锅炉水冷壁受到的辐射传热占其全部传热的80%以上,而且水冷壁受热均匀,锅炉的热效率高于现有同吨位的燃气锅炉,表明常温空气无焰燃烧方式确实强化了炉内换热过程。
     应用甲烷氧化过程的骨架化学反应机理,对常温空气无焰燃气锅炉的污染物浓度分布和生成速率进行了数值模拟分析,进行了污染物排放测试,研究了NOx的生成区域和浓度分布,分析了NOx的各种生成途径以及减排机理。结果表明,采用常温空气无焰燃烧可以实现超低NOx排放,NOx排放的质量浓度低于20×10-6 kg·m-3,NOx主要在射流下游周围一个较宽广的空间生成,亦即高温低氧的无焰反应区,由于消除了传统有焰燃烧的火焰锋面,热力型NO锐减,快速型NO极低,N2O转化型NO成为主要的NOx生成途径,NOx排放的实测结果与数值计算结果符合良好。
Normal Temperature Air Flameless Combustion (NTAFC) is not only different from flame combustion, but also different from flameless combustion in its realization approach。NTAFC employs high speed jet flow of normal temperature reactants and stirred reactor to achieve combustion without a noticeable flame front. NTAFC is able to improve the heat transfer condition in industry boilers, save energy significantly, reduce green house gas and NOx emission, and reduce size of combustion facilities. Using numerical and experimental methods, the characteristics of NTAFC and heat transfer enhancement in NTAFC furnace and control of pollutant production were studied.
     A gas-burned experimental boiler was built for NTAFC using nonpremixed natural gas and air in normal temperature. Temperature was sampled and thermal efficiency as well as pollutant emission was tested. Using Probability Density Function (PDF) model based on mixture fraction and Eddy Concept (EDC) model simulated the quasi-steady 3D combustion in the furnace. The results indicated that mixture fraction model made a distortion in the simulation of conical jet flow area due to the assumption of "Mixed is burnt" and neglect of chemical reaction rate. This also indicated that the interaction of the turbulent and chemical processes must be considered in NTAFC. While the experimental results agreed well with EDC model results basically. The analysis showed that NTAFC boiler firstly employed high speed jet flow of reactants to increase the momentum, and on the condition that the reactants were in normal temperature, the jet engulfed and entrained more flue gas, and made a relatively low temperature mixing area; secondly, it took advantage of the stirred reactor to increase flue gas circulation and thermal circulation, ensured the concentration reduction and temperature increase of the reactants. Finally, a wild and thick reaction area around the downstream of the jet flow was formed, which is the flameless combustion region.
     The heat transfer in traditional gas-burned boiler furnace and NTAFC furnace was compared in a simplified analysis. The heat flux of the radiant plate of the stirred reactor as well as the water wall of the boiler was simulated and investigated. Thermal efficiency was tested experimentally. The result illustrated that, compared to traditional gas-burned boiler, the stirred reactor in the NTAFC boiler prolonged the journey of flue gas in the boiler furnace, increased the radiation by the radiant plates of the stirred reactor, and the proportion of radiation to the total heat transfer of the water wall was up to 80%, and the water wall was heated uniformly. The thermal efficiency of NTAFC boiler was higher than traditional gas-burned boiler for the same evaporation capacity, which corroborated the enhancement of heat transfer in NTAFC furnace.
     Coupling with reduced chemical kinetic reaction mechanisms of methane oxidation, the simulation of pollutants formation in NTAFC furnace was conducted and the exhaust gas at the outlet was tested and analyzed. The simulation results showed that NOx formed in a wide and broad region around the jet downstream, namely the flameless combustion region, and NOx emission at the outlet was below 20x10-6 kg-m-3. Due to the broadened reaction area, the maximum temperature was lower than 1700K and thermal NO formation was significantly suppressed compared with flame combustion. Prompt NO formation was minute, and N20->NO mechanism became the major route of NOx. And the results were agreed well with experiment.
引文
[1]艾元方,蒋绍坚,周孑民,等.2001.高风温无焰燃烧及其火焰特性的实验研究[J].热能动力工程,16:615-617.
    [2]杜军,饶文涛,朱彤.2002.CFD在蓄热式烧嘴设计上的应用[J].工业加热,3:29-31.
    [3]傅庆云,刘伟,张迎新,等.2004.各国能源概况[M].北京:中国大地出版社.
    [4]黄素逸,高伟.2004.能源概论[M].北京:高等教育出版社.
    [5]蒋勇,邱榕,董刚,等.2006.基于一维全尺度湍流模型的氢气射流扩散火焰结构数值模拟[J].燃烧科学与技术,12(5):401-407.
    [6]康志忠,张伟,郭永红,等.2006.高温空气煤粉直燃技术的数值模拟[J].工程热物理学报,27(S2):163-166.
    [7]李灿,唐文武,梁卫民,等.2003.高温空气燃烧技术在我国的应用现状与发展前景[J].冶金能源,22(2):41-46.
    [8]李宇红,祁海鹰,苑皎,等.2001.预热温度影响甲烷高温空气燃烧特性的数值分析[J].工程热物理学报,22(2):257-260.
    [9]刘赵淼,马重芳,武立云,等.2002.逆向式高温蓄热空气燃烧过程的数值研究[J].工业炉,24(2):1-4.
    [10]马晓茜,张凌.1999.HTAC的关键技术及其高效低污染特性分析[J].钢铁,34(10):60-63.
    [11]欧俭平,萧泽强,蒋绍坚,等.2003.高温空气燃烧技术在钢包烘烤中的应用效果分析[J].工业加热,6:23-25.
    [12]欧俭平.2004.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D]:[博士].长沙:中南大学,1-146.
    [13]欧阳德刚,肖坤伟,周明石,等.1995.蜂窝陶瓷辐射体非稳态传热特性研究[J].钢铁研究,(2):55-59.
    [14]祁海鹰,李宇红,由长福,等.2002.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术,8(1):17-22
    [15]祁海鹰,李宇红,由长福,等.2003.高温空气燃烧技术的国际发展动态[J].工业加热,1:1-7.
    [16]石秀勇,李国祥.2007.基于拟序火焰模型的柴油机燃烧过程数值模拟[J].车用发动 机,(4):31-36.
    [17]史俊瑞,解茂昭.2006.考虑弥散效应的多孔介质中超绝热燃烧的数值模拟[J].工程热物理学报,27(3):515-518.
    [18]苏正川,朱彤.2003.均热炉燃烧系统改造方案的数值模拟研究[J].热能动力工程,18(6):636-638.
    [19]唐志国,程建萍,马培勇,等.2007.新型常温空气无焰燃烧实现技术及特性分析[J].工业加热,36(1):48-51.
    [20]王爱华,蔡九菊,王连勇,等.2004.新型高效蓄热式燃烧系统设计研究[J].工业加热,33(2):1-4.
    [21]王关晴,程乐鸣,骆仲泱,等.2007.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程,27(1):81-89.
    [22]王皆腾,祁海鹰,李宇红,等.2003.蜂巢蓄热体换热性能的实验研究[J].工程热物理学报,24(5):897-899.
    [23]王金南,曹东,杨金田,等.2004.能源与环境:中国2020[M].北京:中国环境科学出版社.
    [24]王力军,蔡九菊,邹宗树,等.2003.高温低氧燃烧炉内等温流场特性的数值分析[J].东北大学学报:自然科学版,24(2):159-161.
    [25]王力军,蔡九菊,邹宗树,等.2004.高温空气燃烧炉内湍流混合特性的数值研究[J].计算物理,21(3):357-361.
    [26]吴道洪,阎承沛,萧琦,等.2004.高温空气燃烧技术蓄热式燃气辐射管燃烧器的研制开发和应用[J].工业加热,33(2):22-25.
    [27]解茂昭,杜礼明,孙文策.2002.多孔介质中往复流动下超绝热燃烧技术的进展与前景[J].燃烧科学与技术,8(6):520-524.
    [28]邢献军.2006.常温空气无焰燃烧研究及其在燃煤锅炉煤改气中的应用[D].合肥:中国科学技术大学.
    [29]杨迪.1998.一种新的拟序火焰模型及其KPP分析[J].西安交通大学学报,32(8):31-34.
    [30]杨占春,陈峨,村上弘二,等.2007.高温空气燃烧技术中换向时间对炉内工况的影响[J].钢铁研究学报,19(6):48-51.
    [31]张福宝,罗永浩,胡瓅元,等.2006.高温空气燃烧若干因素对NOx生成量的影响[J]. 热能动力工程,21(2):115-118.
    [32]赵黛青,夏亮,山下博史.2007.旋转流中预混合火焰的高速传播现象[J].过程工程学报,7(3):457-461.
    [33]赵增武,苍大强,武文斐,等.2006.高温空气平焰燃烧过程的数值模拟[J].工业加热,35:5-8.
    [34]钟水库,马宪国,赵无非,等.2004.高温低氧燃烧过程中NOx排放规律研究[J].热能动力工程,19(5):483-486.
    [35]朱建国.2008.煤粉的高温低氧空气燃烧和氮氧化物生成特性研究[D]:[博士].北京:中国科学院研究生院工程热物理研究所,1-149.
    [36]朱彤,吴家正,冯良,等.2005.高温空气低燃气浓度燃烧过程的数值模拟研究[J].工程热物理学报,26(S):277-279.
    [37]朱彤,张毅勐,刘敏飞,等.2002.低热值煤气高温空气燃烧数值模拟[J].同济大学学报,30(8):932-937.
    [38]Ahn J, Eastwood C, Sitzki L, et al.2005. Gas-phase and catalytic combustion in heat-recirculating burners [J]. Proceedings of the Combustion Institute,30:2463-2472.
    [39]Aldushin A P, Matkowsky B J, Volpert V A.1995. Stoichiometric Flames and Their Stability [J]. Combustion and Flame,101:15-25.
    [40]Cavaliere A, de Joannon M.2004. Mild Combustion [J]. Progress in Energy and Combustion Science,30:329-366
    [41]Cavigiolo A, Galbiati M A, Effuggi A, et al.2003. Mild Combustion in a Laboratory-Scale Apparatus [J]. Combustion Science and Technology,175:1347-1367.
    [42]Coelho P J, Peters N.2001. Numerical Simulation of a Mild Combustion Burner [J]. Combustion and Flame,124:503-518.
    [43]Cuoci A, Frassoldati A, Buzzi Ferraris G, et al.2007. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2:Fluid dynamics and kinetic aspects of syngas combustion [J]. International Journal of Hydrogen Energy,32:3486-3500.
    [44]Dally B B, Riesmeier E, Peters N.2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion [J]. Combustion and Flame,137:418-431.
    [45]de Joannon M, Cavaliere A, Donnarumma R, et al.2002. Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin [J]. Proceedings of the Combustion Institute,29(1):1139-1146.
    [46]de Joannon M, Cavaliere A, Faravelli T, et al.2005. Analysis of process parameters for steady operations in methane mild combustion technology [J]. Proceedings of the Combustion Institute,30(2):2605-2612.
    [47]de Joannon M, Matarazzo A, Sabia P, et al.2007. Mild Combustion in Homogeneous Charge Diffusion Ignition (HCDI) regime[J]. Proceedings of the Combustion Institute,31(2): 3409-3416.
    [48]de Joannon M, Sabia P, Sorrentino G, et al.2009. Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime [J]. Proceedings of the Combustion Institute, 32(2):3147-3154.
    [49]de Joannon M, Saponaro A, Cavaliere A 2000. Zero-Dimensional Analysis of Diluted Oxidation of Methane in Rich Conditions [J]. Proceedings of the Combustion Institute,28: 1639-1646.
    [50]Derudi M, Villani A, Rota R.2007. Sustainability of mild combustion of hydrogen-containing hybrid fuels [J]. Proceedings of the Combustion Institute,31:3393-3400.
    [51]Diez L I, Cortes C, Pallares J.2008. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation [J]. Fuel,87: 1259-1269.
    [52]Ditaranto M, Hals J.2006. Combustion instabilities in sudden expansion oxy-fuel flames [J]. Combustion and Flame,146:493-512.
    [53]El bakali A, Pillier L, Desgroux P, et al.2006. NO prediction in natural gas flames using GDF-Kin(?) 3.0 mechanism NCN and HCN contribution to prompt-NO formation [J]. Fuel,85: 896-909.
    [54]Flamme M.2001. Low NOx combustion technologies for high temperature applications [J]. Energy Conversion and Management,42:1919-1935.
    [55]Flamme M.2004. New combustion systems for gas turbines (NGT) [J]. Applied Thermal Engineering,24:1551-1559.
    [56]Fortsch D, Kluger F, Schnell U, et al.1998. A Kinetic Model for the Prediction of NO Emissions from Staged Combustion of Pulverized Coal [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,27(2): 3037-3044.
    [57]Fotache C G, Sung C J, Sun C J, et al.1998. Mild oxidation regimes and multiple criticality in nonpremixed hydrogen-air counterflow [J]. Combustion and Flame,112:457-471.
    [58]Fritsche D, Furi M, Boulouchos K.2007. An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame [J]. Combustion and Flame,151:29-36.
    [59]Galbiati M A; Cavigiolo A; Effuggi A; et al.2004. Mild Combustion for Fuel-NOx Reduction [J]. Combustion Science and Technology,176(7):1035-1054
    [60]Galletti C, Parente A, Tognotti L.2007. Numerical and experimental investigation of a mild combustion burner [J]. Combustion and Flame,151:649-664.
    [61]Gupta A K, Bolz S, Hasegawa T.1999. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission [J]. Journal of Energy Resources Technology, 121:209-216.
    [62]Gupta AK.2000. Flame characteristic and challenges with high temperature air combustion [C]. Proceedings of Second International Seminar on High Temperature Combustion in Industrial Furnaces, Jernkontoret-KTH, Stockholm, Sweden.
    [63]Habib M A, Elshafei M, Dajani M.2008. Influence of combustion parameters on NOx production in an industrial boiler [J]. Computers & Fluids,37:12-23.
    [64]Hayashi S, Yamada H, Makida M.2005. Extending low-NOx operating range of a lean premixed-prevaporized gas turbine combustor by reaction of secondary mixtures injected into primary stage burned gas. Proceedings of the Combustion Institute,30:2903-2911.
    [65]He R, Suda T, Takafuji M, et al.2004. Analysis of low NO emission in high temperature air combustion for pulverized coal [J]. Fuel,83:1133-1141.
    [66]Ishiguro T, Tsuge S, Furuhata T, et al.1998. Homogenization and Stabilization during Combustion of Hydrocarbons with Preheated Air [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,27(2):3205-3213.
    [67]Johnson C E., Neumeier Y, Lieuwen T C, et al.2000. Experimental Determination of the Stability Margin of a Combustor Using Exhaust Flow and Fuel Injection Rate Modulations [J]. Proceedings of the Combustion Institute,28:757-763.
    [68]Katsuki M, Hasegawa T.1998. The science and technology of combustion in highly preheated air [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,27(2):3135-3146.
    [69]Kawai K, Yoshikawa K, Kobayashi H.2002. High temperature air combustion boiler for low BTU gas [J]. Energy Conversion and Management,43:1563-1570.
    [70]Kim J P, Schnell U, Scheffknecht, G.2008. Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas [J]. Combustion Science and Technology, 180(4):565-592
    [71]Kim S H, Huh K Y, Dally B.2005. Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow [J]. Proceedings of the Combustion Institute, 30(1):751-757.
    [72]Kjaldman L, Brink A, Hupa M.2000. Micro Mixing Time in the Eddy Dissipation Concept [J]. Combustion Science and Technology,154(1):207-227.
    [73]Krishnamurthy N, Paul P J, Blasiak W.2009. Studies on low-intensity oxy-fuel burner [J]. Proceedings of the Combustion Institute,32(2):3139-3146.
    [74]Kumar S, Paul P J, Mukunda H S.2002. Studies on a new high-intensity low-emission burner [J]. Proceedings of the Combustion Institute,29(1):1131-1137.
    [75]Kumar S, Paul P J, Mukunda H S.2005. Investigations of the scaling criteria for a mild combustion burner [J]. Proceedings of the Combustion Institute 30:2613-2621
    [76]Levy Y, Sherbaum V, Arfi P.2004. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor [J]. Applied Thermal Engineering,24:1593-1605.
    [77]Lock A, Briones A M, Aggarwal S K.2007. Liftoff and extinction characteristics of fuel-and air-stream-diluted methane-air flames [J]. Combustion and Flame,149:340-352.
    [78]Magel H C, Schnell U, Hein K R G.1996. Simulation of Detailed Chemistry in a Turbulent Combustor Flow [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,26(1):67-74.
    [79]Mancini M, Schwoppe P, Weber R, et al.2007. On mathematical modelling of flameless combustion [J]. Combustion and Flame,150:54-59.
    [80]Mancini M, Weber R, Bollettini U.2002. Predicting NOx emissions of a burner operated in flameless oxidation mode [J]. Proceedings of the Combustion Institute,29(1):1155-1163.
    [81]Mansour M, Peters N, Schrader L-U.2008. Experimental study of turbulent flame kernel propagation [J]. Experimental Thermal and Fluid Science,32:1396-1404.
    [82]Maruta K, Kataoka T, Kim N I, et al.2005. Characteristics of combustion in a narrow channel with a temperature gradient [J]. Proceedings of the Combustion Institute,30: 2429-2436.
    [83]Maruta K, Muso K, Takeda K, et al.2000. Reaction Zone Structure In Flameless Combustion [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,28(2):2117-2123.
    [84]Medwell P R, Kalt P A M, Dally B B.2008. Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner [J]. Combustion and Flame,152:100-113.
    [85]Nicoli C, Haldenwang P, Suard S.2007. Effects of substituting fuel spray for fuel gas on flame stability in lean premixtures [J]. Combustion and Flame,149:295-313.
    [86]Nicolle A, Dagaut P.2006. Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling [J]. Fuel,85:2469-2478.
    [87]Norton D G, Vlachos DG 2004. A CFD study of propane/air microflame stability [J]. Combustion and Flame,138:97-107.
    [88]Ozdemir IB, Peters N.2001. Characteristics of the reaction zone in a combustor operating at mild combustion [J]. Experiments in Fluids,30:683-695.
    [89]Plessing T, Peters N, Wiinning J G 1998. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,27(2):3197-3204.
    [90]Rafidi N, Blasiak W.2006. Heat transfer characteristics of HiTAC heating furnace using regenerative burners [J]. Applied Thermal Engineering,26:2027-2034.
    [91]Schutz H, Luckerath R, Kretschmer T, et al.2008. Analysis of the Pollutant Formation in the FLOX(?) Combustion [J]. Journal of Engineering for Gas Turbines and Power,130:1-9.
    [92]Shimo, N.2000. Fundamental research of oil combustion with highly preheated air [C]. Proceedings of 2nd Int. Seminar on High Temperature Combustion in Industrial Furnaces, Stockholm, Sweden.
    [93]Smooke M D.1991. Reduced kinetic mechanisms and asymptotic approximations for methane-Air flames [M]. Berlin:Springer Verlag.
    [94]Szego G G, Dally B B, Nathan G J.2008. Scaling of NOx emissions from a laboratory-scale mild combustion furnace [J]. Combustion and Flame,154:281-295.
    [95]Tabacco D, Innarella C, Bruno C.2002. Theoretical and Numerical Investigation on Flameless Combustion [J]. Combustion Science and Technology,174(7):1-35.
    [96]Takahashi F, Katta V R.2000. A Reaction Kernel Hypothesis for the Stability Limit of Methane Jet Diffusion Flames [J]. Proceedings of the Combustion Institute,28:2071-2078.
    [97]Tsuboi Y, Yokomori T, Maruta K.2009. Lower limit of weak flame in a heated channel [J]. Proceedings of the Combustion Institute,32(2):3075-3081.
    [98]Tsuji H, Gupta A K, Hasegawa T, et al.2003. High Temperature Air Combustion [M]. Boca Raton:CRC Press.
    [99]Van den Schoor F, Hermanns R T E, van Oijen J A, et al.2008. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures [J]. Journal of Hazardous Materials,150:573-581.
    [100]Wang H Y, Chen W H, Law C K.2007. Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers [J]. Combustion and Flame,148:100-116.
    [101]Wang H, Chen Y. PDF Modeling of Local Extinction and Re-ignition within Turbulent Non-Premixed Flame [J]. Chinese Journal of Computational Physics,21(6):471-476.
    [102]Weber R, Smart J P, Kamp W.2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute,30: 2623-2629.
    [103]Weinberg F J.1971. Combustion Temperatures:The Future? [J]. Nature,233:239-241.
    [104]Wiinning J A, Wunning J G. 1997. Flameless Oxidation to Reduce Thermal NO-Formation [J]. Progress in Energy and Combustion Science,23:81-94.
    [105]Yang W, Blasiak W.2005. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism [J]. Fuel Processing Technology, 86:943-957.
    [106]Yang W, Blasiak W.2005. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air [J]. Energy,30:385-398.
    [107]Yetter R A., Glassman I, Gabler H. C.2000. Asymmetric Whirl Combustion:A New Low NOx Approach [J]. Proceedings of the Combustion Institute,28:1265-1272.
    [108]Yoo C S, Chen J H, Frank J H.2008. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow [J]. Combustion and Flame, 156(1):140-151.
    [109]Yoshida A, Naito H, Mishra D P.2008. Turbulent combustion of preheated natural gas-air mixture [J]. Fuel,87:605-611.
    [110]Yuan J, Tse S D, Law C K.2002. Dynamics of flame-ball formation from localized ignition:Effects of elevated pressure and temperature [J]. Proceedings of the Combustion Institute,29(2):2501-2507.
    [1]岑可法,姚强,骆仲泱,等.2002.高等燃烧学[M].杭州:浙江大学出版社.
    [2]陈义良.2003.湍流燃烧[M].合肥:中国科学技术大学出版社.
    [3]董刚,黄鹰,陈义良.2000.不同化学反应机理对甲烷射流湍流扩散火焰计算结果影响的研究[J].燃料化学学报,28(1):50-54.
    [4]董刚,任祝寅,陈义良.2003.CH4/空气含氮燃烧的14步简化机理[J].燃料化学学报,31(1):39-43.
    [5]杜军,饶文涛,朱彤.2002.CFD在蓄热式烧嘴设计上的应用[J].工业加热,3:29-31.
    [6]范从振.1986.锅炉原理[M].北京:中国电力出版社.
    [7]范维澄,陈义良,洪茂玲.1987.计算燃烧学[M].合肥:安徽科学技术出版社.
    [8]范维澄,万跃鹏.1992.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社.
    [9]冯俊凯,沈幼庭,杨瑞昌.2003.锅炉原理及计算[M].第3版.北京:科学出版社.
    [10]葛新石,王义方,郭宽良.1985.传热的基本原理[M].合肥:中国科学技术大学出版社.
    [11]郭宽良.1988.计算传热学[M].合肥:中国科学技术大学出版社.
    [12]何学良,李疏松.1990.内燃机燃烧学[M].北京:机械工业出版社.
    [13]蒋绍坚,彭好义,艾元方,等.2000.高温低氧气氛中气体燃料的火焰特性[J].中南工业大学学报,31(3):228-231.
    [14]蒋勇,邱榕,董刚,等.2005.耦合天然气详细反应机理的三维湍流预混火焰结构数值预测[J].燃烧科学与技术,11(2):109-115.
    [15]康志忠,张伟,郭永红,等.2006.高温空气煤粉直燃技术的数值模拟[J].工程热物理学报,27(S2):163-166.
    [16]李宇红,祁海鹰,苑皎,等.2001.预热温度影响甲烷高温空气燃烧特性的数值分析[J].工程热物理学报,22(2):257-260.
    [17]刘联胜,王恩宇,吴晋湘.2008.燃烧理论与技术[M].北京:化学工业出版社.
    [18]刘赵淼,马重芳,武立云,等.2002.逆向式高温蓄热空气燃烧过程的数值研究[J].工业炉,24(2):1-4.
    [19]欧俭平.2004.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D]:[博士].长沙:中南大学,1-146.
    [20]沈坤全,吴国江.2005.天然气无焰氧化燃烧器燃烧特性的数值模拟[J].上海电力学院学报,21(1):1-4.
    [21]石秀勇,李国祥.2007.基于拟序火焰模型的柴油机燃烧过程数值模拟[J].车用发动机,(4):31-36.
    [22]苏正川,朱彤.2003.均热炉燃烧系统改造方案的数值模拟研究[J].热能动力工程,18(6):636-638.
    [23]陶文铨.1998.数值传热学[M].西安:西安交通大学出版社.
    [24]王爱华,蔡九菊,王连勇,等.2004.新型高效蓄热式燃烧系统设计研究[J].工业加热,33(2):1-4.
    [25]王海峰,陈义良.2004.湍流扩散火焰的非稳态火焰面模拟[J].工程热物理学报,25(2):329-332.
    [26]王力军,蔡九菊,邹宗树,等.2003.高温低氧燃烧炉内等温流场特性的数值分析[J].东北大学学报:自然科学版,24(2):159-161.
    [27]王力军,蔡九菊,邹宗树,等.2004.高温空气燃烧炉内湍流混合特性的数值研究[J].计算物理,21(3):357-361.
    [28]吴道洪,阎承沛,萧琦,等.2004.高温空气燃烧技术蓄热式燃气辐射管燃烧器的研制开发和应用[J].工业加热,33(2):22-25.
    [29]邢献军.2006.常温空气无焰燃烧研究及其在燃煤锅炉煤改气中的应用[D].合肥:中国科学技术大学.
    [30]严传俊,范玮.2005.燃烧学[M].西安:西北工业大学出版社.
    [31]杨迪.1998.一种新的拟序火焰模型及其KPP分析[J].西安交通大学学报,32(8):31-34.
    [32]杨占春,陈峨,村上弘二,等.2007.高温空气燃烧技术中换向时间对炉内工况的影 响[J].钢铁研究学报,19(6):48-51.
    [33]张俊霞.2007.化学动力学机理耦合EDC燃烧模型对湍流扩散火焰的数值模拟[J].工业炉,29(1):41-44.
    [34]赵黛青,夏亮,山下博史.2007.旋转流中预混合火焰的高速传播现象[J].过程工程学报,7(3):457-461.
    [35]赵增武,苍大强,武文斐,等.2006.高温空气平焰燃烧过程的数值模拟[J].工业加热,35:5-8.
    [36]朱彤,吴家正,冯良,等.2005.高温空气低燃气浓度燃烧过程的数值模拟研究[J].工程热物理学报,26(S):277-279.
    [37]朱彤,张毅勐,刘敏飞,等.2002.低热值煤气高温空气燃烧数值模拟[J].同济大学学报,30(8):932-937.
    [38]Bourlioux A, Cuenot B, Poinsot T.2000. Asymptotic and Numerical Study of the Stabilization of Diffusion Flames by Hot Gas [J]. Combustion and Flame,120:143-159.
    [39]Cavaliere A, de Joannon M.2004. Mild Combustion [J]. Progress in Energy and Combustion Science,30:329-366
    [40]Cavigiolo A, Galbiati M A, Effuggi A, et al.2003. Mild Combustion in a Laboratory-Scale Apparatus [J]. Combustion Science and Technology,175:1347-1367.
    [41]Coelho P J, Peters N.2001. Numerical Simulation of a Mild Combustion Burner [J]. Combustion and Flame,124:503-518.
    [42]Cuoci A, Frassoldati A, Buzzi Ferraris G, et al.2007. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2:Fluid dynamics and kinetic aspects of syngas combustion [J]. International Journal of Hydrogen Energy,32:3486-3500.
    [43]Dally B B, Riesmeier E, Peters N.2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion [J]. Combustion and Flame,137:418-431.
    [44]Flamme M.2004. New combustion systems for gas turbines (NGT) [J]. Applied Thermal Engineering,24:1551-1559.
    [45]Fotache C G, Sung C J, Sun C J, et al.1998. Mild oxidation regimes and multiple criticality in nonpremixed hydrogen-air counterflow [J]. Combustion and Flame,112:457-471.
    [46]Fritsche D, Furi M, Boulouchos K.2007. An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame [J]. Combustion and Flame,151:29-36.
    [47]Galletti C, Parente A, Tognotti L.2007. Numerical and experimental investigation of a mild combustion burner [J]. Combustion and Flame,151:649-664.
    [48]Glassman I.1996. Combustion[M].3rd ed. New York:Academic Press.
    [49]Gupta A K, Bolz S, Hasegawa T.1999. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission [J]. Journal of Energy Resources Technology, 121:209-216.
    [50]Gupta AK.2000. Flame characteristic and challenges with high temperature air combustion [C]. Proceedings of Second International Seminar on High Temperature Combustion in Industrial Furnaces, Jernkontoret-KTH, Stockholm, Sweden.
    [51]Ishiguro T, Tsuge S, Furuhata T, et al.1998. Homogenization and Stabilization during Combustion of Hydrocarbons with Preheated Air [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,27(2):3205-3213.
    [52]Katsuki M, Hasegawa T.1998. The science and technology of combustion in highly preheated air [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,27(2):3135-3146.
    [53]Kawai K, Yoshikawa K, Kobayashi H.2002. High temperature air combustion boiler for low BTU gas [J]. Energy Conversion and Management,43:1563-1570.
    [54]Kim J P, Schnell U, Scheffknecht, G.2008. Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas [J]. Combustion Science and Technology, 180(4):565-592
    [55]Kim S H, Huh K Y, Dally B.2005. Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow [J]. Proceedings of the Combustion Institute, 30(1):751-757.
    [56]Kjaldman L, Brink A, Hupa M.2000. Micro Mixing Time in the Eddy Dissipation Concept [J]. Combustion Science and Technology,154(1):207-227.
    [57]Krishnamurthy N, Paul P J, Blasiak W.2009. Studies on low-intensity oxy-fuel burner [J]. Proceedings of the Combustion Institute,32(2):3139-3146.
    [58]Kumar S, Paul P J, Mukunda H S.2002. Studies on a new high-intensity low-emission burner [J]. Proceedings of the Combustion Institute,29(1):1131-1137.
    [59]Kumar S, Paul P J, Mukunda H S.2005. Investigations of the scaling criteria for a mild combustion burner [J]. Proceedings of the Combustion Institute 30:2613-2621
    [60]Levy Y, Sherbaum V, Arfi P.2004. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor [J]. Applied Thermal Engineering,24:1593-1605.
    [61]Magel H C, Schnell U, Hein K R G.1996. Simulation of Detailed Chemistry in a Turbulent Combustor Flow [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,26(1):67-74.
    [62]Mancini M, Schwoppe P, Weber R, et al.2007. On mathematical modelling of flameless combustion [J]. Combustion and Flame,150:54-59.
    [63]Mansour M, Peters N, Schrader L-U.2008. Experimental study of turbulent flame kernel propagation [J]. Experimental Thermal and Fluid Science,32:1396-1404.
    [64]Maruta K, Kataoka T, Kim N I, et al.2005. Characteristics of combustion in a narrow channel with a temperature gradient [J]. Proceedings of the Combustion Institute,30: 2429-2436.
    [65]Maruta K, Muso K, Takeda K, et al.2000. Reaction Zone Structure In Flameless Combustion [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,28(2):2117-2123.
    [66]Medwell P R, Kalt P A M, Dally B B.2008. Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner [J]. Combustion and Flame,152:100-113.
    [67]Ozdemir IB, Peters N.2001. Characteristics of the reaction zone in a combustor operating at mild combustion [J]. Experiments in Fluids,30:683-695.
    [68]Peters N.1992. Fifteen Lectures on Laminar and Turbulent Combustion [EB/OL]. http://www.itv.rwth-aachen.de/fileadmin/LehreSeminar/Combustion/SummerSchool.pdf
    [69]Plessing T, Peters N, Wunning J G 1998. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,27(2):3197-3204.
    [70]Rafidi N, Blasiak W.2006. Heat transfer characteristics of HiTAC heating furnace using regenerative burners [J]. Applied Thermal Engineering,26:2027-2034.
    [71]Schutz H, Luckerath R, Kretschmer T, et al.2008. Analysis of the Pollutant Formation in the FLOX(?) Combustion [J]. Journal of Engineering for Gas Turbines and Power,130:1-9.
    [72]Shimo, N.2000. Fundamental research of oil combustion with highly preheated air [C]. Proceedings of 2nd Int. Seminar on High Temperature Combustion in Industrial Furnaces, Stockholm, Sweden.
    [73]Tabacco D, Innarella C, Bruno C.2002. Theoretical and Numerical Investigation on Flameless Combustion [J]. Combustion Science and Technology,174(7):1-35.
    [74]Tsuboi Y, Yokomori T, Maruta K.2009. Lower limit of weak flame in a heated channel [J]. Proceedings of the Combustion Institute,32(2):3075-3081.
    [75]Tsuji H, Gupta A K, Hasegawa T, et al.2003. High Temperature Air Combustion [M]. Boca Raton:CRC Press.
    [76]Van den Schoor F, Hermanns R T E, van Oijen J A, et al.2008. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures [J]. Journal of Hazardous Materials,150:573-581.
    [77]Wang H Y, Chen W H, Law C K.2007. Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers [J]. Combustion and Flame,148:100-116.
    [78]Wang H, Chen Y. PDF Modeling of Local Extinction and Re-ignition within Turbulent Non-Premixed Flame [J]. Chinese Journal of Computational Physics,21(6):471-476.
    [79]Weber R, Smart J P, Kamp W.2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute,30: 2623-2629.
    [80]Yang W, Blasiak W.2005. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air [J]. Energy,30:385-398.
    [81]Yoo C S, Chen J H, Frank J H.2008. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow [J]. Combustion and Flame, 156(1):140-151.
    [82]Yoshida A, Naito H, Mishra D P.2008. Turbulent combustion of preheated natural gas-air mixture [J]. Fuel,87:605-611.
    [83]Yuan J, Tse S D, Law C K.2002. Dynamics of flame-ball formation from localized ignition:Effects of elevated pressure and temperature [J]. Proceedings of the Combustion Institute,29(2):2501-2507.
    [1]范从振.1986.锅炉原理[M].北京:中国电力出版社.
    [2]范维澄,陈义良,洪茂玲.1987.计算燃烧学[M].合肥:安徽科学技术出版社.
    [3]冯俊凯,沈幼庭,杨瑞昌.2003.锅炉原理及计算[M].第3版.北京:科学出版社.
    [4]葛新石,王义方,郭宽良.1985.传热的基本原理[M].合肥:中国科学技术大学出版社.
    [5]郭宽良.1988.计算传热学[M].合肥:中国科学技术大学出版社.
    [6]李伟,祁海鹰,李宇红,等.2002.几何结构与高温空气燃烧特性的关系[J].工业加热,6:14-16.
    [7]李伟,祁海鹰,由长福,等.2001.蜂巢蓄热体传热性能的数值研究[J].工程热物理学报,22(5):657-660.
    [8]马晓茜,张凌.1999.HTAC的关键技术及其高效低污染特性分析[J].钢铁,34(10):60-63.
    [9]欧阳德刚,肖坤伟,周明石,等.1995.蜂窝陶瓷辐射体非稳态传热特性研究[J].钢铁研究,(2):55-59.
    [10]宋贵良.1999.锅炉计算手册[M].辽宁:辽宁科学技术出版社.
    [11]唐铁驯,孙龙.1992.蜂窝体中对流、辐射复合换热效应[J].东北大学学报:自然科学版,13(2):146-151.
    [12]唐铁驯,邢桂菊.2001.高温炉壁面在辐射传热中的作用[J].钢铁,36(10):57-60.
    [13]唐铁驯.1989.蜂窝陶瓷热辐射特性的研究[J].东北大学学报:自然科学版,(1):98-102.
    [14]王皆腾,祁海鹰,李宇红,等.2003.蜂巢蓄热体换热性能的实验研究[J].工程热物理学报,24(5):897-899.
    [15]邢桂菊,唐铁驯,李文忠.2000.辐射多孔体传热特性的研究[J].冶金能源,19(1):23~26.
    [16]邢桂菊.1994.日本对多孔辐射壁的研究应用[J].节能,(2):3-5.
    [17]张福利,蔡简元,卢向党.2005.高效节能高风温大型球式热风炉的开发应用与热平衡测定[J].炼铁,24(2):1-6.
    [18]Cavigiolo A, Galbiati M A, Effuggi A, et al.2003. Mild Combustion in a Laboratory-Scale Apparatus [J]. Combustion Science and Technology,175:1347-1367.
    [19]Coelho P J, Peters N.2001. Numerical Simulation of a Mild Combustion Burner [J]. Combustion and Flame,124:503-518.
    [20]Galletti C, Parente A, Tognotti L.2007. Numerical and experimental investigation of a mild combustion burner [J]. Combustion and Flame,151:649-664.
    [21]Gupta A K, Bolz S, Hasegawa T.1999. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission [J]. Journal of Energy Resources Technology, 121:209-216.
    [22]Gupta AK.2000. Flame characteristic and challenges with high temperature air combustion [C]. Proceedings of Second International Seminar on High Temperature Combustion in Industrial Furnaces, Jernkontoret-KTH, Stockholm, Sweden.
    [23]Ishiguro T, Tsuge S, Furuhata T, et al.1998. Homogenization and Stabilization during Combustion of Hydrocarbons with Preheated Air [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,27(2):3205-3213.
    [24]Katsuki M, Hasegawa T.1998. The science and technology of combustion in highly preheated air [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,27(2):3135-3146.
    [25]Kawai K, Yoshikawa K, Kobayashi H.2002. High temperature air combustion boiler for low BTU gas [J]. Energy Conversion and Management,43:1563-1570.
    [26]Kim J P, Schnell U, Scheffknecht, G 2008. Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas [J]. Combustion Science and Technology, 180(4):565-592
    [27]Kim S H, Huh K Y, Dally B.2005. Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow [J]. Proceedings of the Combustion Institute, 30(1):751-757.
    [28]Kjaldman L, Brink A, Hupa M.2000. Micro Mixing Time in the Eddy Dissipation Concept [J]. Combustion Science and Technology,154(1):207-227.
    [29]Krishnamurthy N, Paul P J, Blasiak W.2009. Studies on low-intensity oxy-fuel burner [J]. Proceedings of the Combustion Institute,32(2):3139-3146.
    [30]Kumar S, Paul P J, Mukunda H S.2002. Studies on a new high-intensity low-emission burner [J]. Proceedings of the Combustion Institute,29(1):1131-1137.
    [31]Kumar S, Paul P J, Mukunda H S.2005. Investigations of the scaling criteria for a mild combustion burner [J]. Proceedings of the Combustion Institute 30:2613-2621
    [32]Lock A, Briones A M, Aggarwal S K.2007. Liftoff and extinction characteristics of fuel-and air-stream-diluted methane-air flames [J]. Combustion and Flame,149:340-352.
    [33]Magel H C, Schnell U, Hein K R G.1996. Simulation of Detailed Chemistry in a Turbulent Combustor Flow [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,26(1):67-74.
    [34]Mansour M, Peters N, Schrader L-U.2008. Experimental study of turbulent flame kernel propagation [J]. Experimental Thermal and Fluid Science,32:1396-1404.
    [35]Maruta K, Kataoka T, Kim N I, et al.2005. Characteristics of combustion in a narrow channel with a temperature gradient [J]. Proceedings of the Combustion Institute,30: 2429-2436.
    [36]Maruta K, Muso K, Takeda K, et al.2000. Reaction Zone Structure In Flameless Combustion [C]//The Combustion Institute. Symposium (International) On Combustion. Pittsburgh:The Combustion Institute,28(2):2117-2123.
    [37]Medwell P R, Kalt P A M, Dally B B.2008. Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner [J]. Combustion and Flame,152:100-113.
    [38]Ozdemir IB, Peters N.2001. Characteristics of the reaction zone in a combustor operating at mild combustion [J]. Experiments in Fluids,30:683-695.
    [39]Rafidi N, Blasiak W.2006. Heat transfer characteristics of HiTAC heating furnace using regenerative burners [J]. Applied Thermal Engineering,26:2027-2034.
    [40]Shimo, N.2000. Fundamental research of oil combustion with highly preheated air [C]. Proceedings of 2nd Int. Seminar on High Temperature Combustion in Industrial Furnaces, Stockholm, Sweden.
    [41]Van den Schoor F, Hermanns R T E, van Oijen J A, et al.2008. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures [J]. Journal of Hazardous Materials,150:573-581.
    [42]Weber R, Smart J P, Kamp W.2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute,30: 2623-2629.
    [43]Yang W, Blasiak W.2005. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air [J]. Energy,30:385-398.
    [44]Yoo C S, Chen J H, Frank J H.2008. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow [J]. Combustion and Flame, 156(1):140-151.
    [45]Yuan J, Tse S D, Law C K.2002. Dynamics of flame-ball formation from localized ignition:Effects of elevated pressure and temperature [J]. Proceedings of the Combustion Institute,29(2):2501-2507.
    [1]岑可法,姚强,骆仲泱,等.2004.燃烧理论与污染控制[M].北京:机械工业出版社.
    [2]董刚,任祝寅,陈义良.2003.CH4/空气含氮燃烧的14步简化机理[J].燃料化学学报,31(1):39-43.
    [3]郭治民,张会强,王希麟,等.2002.简化的联合PDF模型模拟湍流燃烧中NO生成[J].清华大学学报:自然科学版,42(11):1504-1507.
    [4]蒋勇,邱榕,董刚,等.2005.耦合天然气详细反应机理的三维湍流预混火焰结构数值预测[J].燃烧科学与技术,11(2):109-115.
    [5]刘传李,马凡华,蒋德明.1996.火花点火发动机着火延迟期、燃烧持续期及NO_x排放的数值模拟预测[J].内燃机学报,14(3):241-248.
    [6]刘联胜,王恩宇,吴晋湘.2008.燃烧理论与技术[M].北京:化学工业出版社.
    [7]刘赵淼,马重芳,武立云,等.2002.逆向式高温蓄热空气燃烧过程的数值研究[J].工业炉,24(2):1-4.
    [8]马晓茜,张凌.1999.HTAC的关键技术及其高效低污染特性分析[J].钢铁,34(10):60-63.
    [9]祁海鹰,李宇红,由长福,等.2002.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术,8(1):17-22
    [10]邢献军.2006.常温空气无焰燃烧研究及其在燃煤锅炉煤改气中的应用[D].合肥:中国科学技术大学.
    [11]邢献军,林其钊.2006.常温空气无焰燃烧中CO生成的研究[J].热能动力工程,21(6):612-617.
    [12]邢献军,林其钊.2006.常温空气无焰燃烧中NOx生成的研究[J].环境科学学报,26(10):1671-1676.
    [13]张福宝,罗永浩,胡瓅元,等.2006.高温空气燃烧若干因素对NOx生成量的影响[J].热能动力工程,21(2):115-118.
    [14]张俊霞.2007.化学动力学机理耦合EDC燃烧模型对湍流扩散火焰的数值模拟[J].工业炉,29(1):41-44.
    [15]钟水库,马宪国,赵无非,等.2004.高温低氧燃烧过程中NOx排放规律研究[J].热能动力工程,19(5):483-486.
    [16]朱建国.2008.煤粉的高温低氧空气燃烧和氮氧化物生成特性研究[D]:[博士].北京:中国科学院研究生院工程热物理研究所,1-149.
    [17]Aida N, Nishijima T, Hayashi S, et al.2005. Combustion of lean prevaporized fuel-air mixtures mixed with hot burned gas for low-NOx emissions over an extended range of fuel-air ratios [J]. Proceedings of the Combustion Institute,30:2885-2892.
    [18]Cavaliere A, de Joannon M.2004. Mild Combustion [J]. Progress in Energy and Combustion Science,30:329-366
    [19]Cavigiolo A, Galbiati M A, Effuggi A, et al.2003. Mild Combustion in a Laboratory-Scale Apparatus [J]. Combustion Science and Technology,175:1347-1367.
    [20]Choi G M, Katsuki M.2001. Advanced low NOx combustion using highly preheated air [J]. Energy Conversion and Management,42:639-652.
    [21]de Joannon M, Saponaro A, Cavaliere A 2000. Zero-Dimensional Analysis of Diluted Oxidation of Methane in Rich Conditions [J]. Proceedings of the Combustion Institute,28: 1639-1646.
    [22]Diez L I, Cortes C, Pallares J.2008. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation [J]. Fuel,87: 1259-1269.
    [23]El bakali A, Pillier L, Desgroux P, et al.2006. NO prediction in natural gas flames using GDF-Kin(?) 3.0 mechanism NCN and HCN contribution to prompt-NO formation [J]. Fuel,85: 896-909.
    [24]Flamme M.2001. Low NOx combustion technologies for high temperature applications [J]. Energy Conversion and Management,42:1919-1935.
    [25]Fortsch D, Kluger F, Schnell U, et al.1998. A Kinetic Model for the Prediction of NO Emissions from Staged Combustion of Pulverized Coal [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,27(2): 3037-3044.
    [26]Galbiati M A; Cavigiolo A; Effuggi A; et al.2004. Mild Combustion for Fuel-NOx Reduction [J]. Combustion Science and Technology,176(7):1035-1054
    [27]Glassman I.1996. Combustion[M].3rd ed. New York:Academic Press.
    [28]Habib M A, Elshafei M, Dajani M.2008. Influence of combustion parameters on NOx production in an industrial boiler [J]. Computers & Fluids,37:12-23.
    [29]Hayashi S, Yamada H, Makida M.2005. Extending low-NOx operating range of a lean premixed-prevaporized gas turbine combustor by reaction of secondary mixtures injected into primary stage burned gas. Proceedings of the Combustion Institute,30:2903-2911.
    [30]He R, Suda T, Takafuji M, et al.2004. Analysis of low NO emission in high temperature air combustion for pulverized coal [J]. Fuel,83:1133-1141.
    [31]Kim J P, Schnell U, Scheffknecht, G. 2008. Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas [J]. Combustion Science and Technology, 180(4):565-592
    [32]Kjaldman L, Brink A, Hupa M.2000. Micro Mixing Time in the Eddy Dissipation Concept [J]. Combustion Science and Technology,154(1):207-227.
    [33]Kumar S, Paul P J, Mukunda H S.2002. Studies on a new high-intensity low-emission burner [J]. Proceedings of the Combustion Institute,29(1):1131-1137.
    [34]Levy Y, Sherbaum V, Arfi P.2004. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor [J]. Applied Thermal Engineering,24:1593-1605.
    [35]Magel H C, Schnell U, Hein K R G.1996. Simulation of Detailed Chemistry in a Turbulent Combustor Flow [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,26(1):67-74.
    [36]Mancini M, Weber R, Bollettini U.2002. Predicting NOx emissions of a burner operated in flameless oxidation mode [J]. Proceedings of the Combustion Institute,29(1):1155-1163.
    [37]Maruta K, Kataoka T, Kim N I, et al.2005. Characteristics of combustion in a narrow channel with a temperature gradient [J]. Proceedings of the Combustion Institute,30: 2429-2436.
    [38]Nicolle A, Dagaut P.2006. Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling [J]. Fuel,85:2469-2478.
    [39]Plessing T, Peters N, Wunning J G 1998. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation [C]//The Combustion Institute. Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,27(2):3197-3204.
    [40]Rafidi N, Blasiak W.2006. Heat transfer characteristics of HiTAC heating furnace using regenerative burners [J]. Applied Thermal Engineering,26:2027-2034.
    [41]Schutz H, Luckerath R, Kretschmer T, et al.2008. Analysis of the Pollutant Formation in the FLOX(?) Combustion [J]. Journal of Engineering for Gas Turbines and Power,130:1-9.
    [42]Shimo, N.2000. Fundamental research of oil combustion with highly preheated air [C]. Proceedings of 2nd Int. Seminar on High Temperature Combustion in Industrial Furnaces, Stockholm, Sweden.
    [43]Smooke M D.1991. Reduced kinetic mechanisms and asymptotic approximations for methane-Air flames [M]. Berlin:Springer Verlag.
    [44]Szego G G, Dally B B, Nathan G J.2008. Scaling of NOx emissions from a laboratory-scale mild combustion furnace [J]. Combustion and Flame,154:281-295.
    [45]Tabacco D, Innarella C, Bruno C.2002. Theoretical and Numerical Investigation on Flameless Combustion [J]. Combustion Science and Technology,174(7):1-35.
    [46]Tsuboi Y, Yokomori T, Maruta K. 2009. Lower limit of weak flame in a heated channel [J]. Proceedings of the Combustion Institute,32(2):3075-3081.
    [47]Tsuji H, Gupta A K, Hasegawa T, et al.2003. High Temperature Air Combustion [M]. Boca Raton:CRC Press.
    [48]Van den Schoor F, Hermanns R T E, van Oijen J A, et al.2008. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures [J]. Journal of Hazardous Materials,150:573-581.
    [49]Weber R, Smart J P, Kamp W.2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute,30: 2623-2629.
    [50]Wunning J A, Wunning J G 1997. Flameless Oxidation to Reduce Thermal NO-Formation [J]. Progress in Energy and Combustion Science,23:81-94.
    [51]Yang W, Blasiak W.2005. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism [J]. Fuel Processing Technology, 86:943-957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700