用户名: 密码: 验证码:
AZ31B镁合金的生物医用表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金作为一种新型可降解植入材料,具有优异的生物相容性和综合力学性能,近年来正吸引着越来越多研究者的关注。但是由于镁及镁合金较差的耐蚀性能导致的局部碱化、氢气释放和局部镁离子浓度过高等问题,会影响到其在临床上的应用。本文针对AZ31B镁合金作为新型生物可降解医用植入材料,在材料表面上成功地制备出稀土转化涂层、氧化锰转化涂层、电镀锌涂层和氟转化涂层,并对各涂层的制备工艺、微观形貌、相组成、成膜机理、耐蚀性能等进行了系统研究。在此基础上,本文选择氟转化涂层作为重点研究对象,对其在体内外的耐蚀性能和生物相容性进行了深入研究。论文得到以下主要研究结果:
     (1)在AZ31B镁合金表面制备了稀土转化涂层,并采用正交试验对涂层制备工艺进行了优化设计。涂层均匀致密,厚度为2-4μm,主要成分为CeO2和MgO。腐蚀实验结果表明,稀土转化处理能够显著改善AZ31B镁合金在生理盐水及SBF溶液中的耐蚀性能。体外凝血实验结果表明,转化处理AZ31B镁合金表现出较好的抗凝血性能,具有与316L不锈钢相当的良好血液相容性。
     (2)在AZ31B镁合金表面制备了氧化锰转化涂层。涂层与基体结合紧密,表面均匀分布有网状微裂纹,涂层厚度为4-6μm,主要成分为MgO、Mg(OH)2、MnO2、Mn2O3和Mn304。耐蚀性能研究结果显示,氧化锰处理能够有效提高AZ31B镁合金在SBF溶液中的耐蚀性能。体外溶血实验结果表明,转化处理能够有效抑制AZ31B镁合金的溶血反应。
     (3)采用脉冲电镀方法,在AZ31B镁合金表面制备了电镀锌涂层。镀锌涂层均匀,与基体结合紧密。电镀锌涂层后的AZ31B镁合金在SBF中浸泡时,表面会不断沉积Ca和P元素,表明涂层具有一定的生物活性。然而浸泡实验与电化学实验结果表明,电镀锌涂层未能有效改善AZ31B镁合金的耐蚀性能,不能作为镁合金表面的防护涂层单独使用,需要进行进一步的复合涂层处理。
     (4)在AZ31B镁合金表面制备了氟转化涂层,并研究了处理工艺对涂层耐蚀性能及厚度的影响。涂层的主要成分为MgO与MgF2。氟转化处理能显著提高AZ31B镁合金在SBF溶液中的耐蚀性能。此外,氟处理将镁合金的主要腐蚀形式由点蚀转变为面腐蚀为主要腐蚀形式,使氟转化处理后的镁合金表现出“滞后”的降解行为。氟转化处理AZ31B镁合金具有优异的细胞相容性、血液相容性及抗菌性能。动物植入实验结果表明氟转化处理能够有效改善AZ31B镁合金样品在动物体内的耐蚀性能,提高植入样品表面的成骨活性,有利于材料在骨组织植入领域的应用。
Recently, magnesium (Mg) and its alloys have attracted much attention as potential biodegradable implant materials owing to their good biocompatibility and better mechanical properties combination such as high strength and the elastic modulus close to that of natural bones, compared with those of biodegradable polymers. However, problems such as alkalization, hydrogen release and high concentration of magnesium ions, caused by high corrosion rate in body's fluid, will affect their clinical applications. Rare earth conversion coating, manganese oxide conversion coating, eletrogalvanizing zinc coating, fluoride conversion coating were respectively prepared on the surfaces of AZ31B magnesium alloy in order to better control the degradation of the alloy and further improve its biocompatibility. Surface characterizations, corrosion resistance and biocompatibility of the different coatings were systematically studied. The corrosion resistance and biocompatibility of fluoride conversion coating were specially studied by both in vitro and in vivo tests. The main conclusions of the dissertation were summarized as following:
     (1) In order to improve the corrosion resistance of biodegradable AZ31B magnesium alloy, a rare earth conversion coating was prepared on the surface of AZ31B alloy. An orthogonal experiment was designed to optimize the processing parameters for formation of dense conversion coating. The SEM study revealed that the thickness of the coating was 2-4μm. The XRD analysis indicated that the composition of the coating was composed of CeO2 and MgO. It was found that the coating prepared from optimized processing possessed good corrosion resistance in both of physiological saline and SBF, as well as good anti-clotting property.
     (2) A manganese oxide contained coating was prepared on biodegradable AZ31B magnesium alloy in order to control the degradation of AZ31B and improve its biocompatibility. Morphology, composition and corrosion resistance of the coating were studied. The SEM observations showed that the coating was approximately 4-6μm in thickness with net-like microcracks. The XPS analysis indicated that the coating was mainly composed of MgO, Mg(OH)2, MnO2, Mn2O3 and Mn3O4. It was found that AZ31B with such coating behaved better corrosion resistance in SBF through electrochemical and immersion tests. The hemolytic assay indicated that the treated AZ31B had no hemolytic effect.
     (3) An eletroglavanizing zinc coating was prepared on the surface of AZ31B alloy by pulse plating treatment. XRD and SEM analyses were used to examine the composition and morphology of the zinc film. The zinc coating was compact and bonding well to the substrate of AZ31B. The deposition of Ca-P on the surface of zinc coating revealed that the coating behaved bioactivity to a certain extent. Immersion and electrochemical tests indicated that the zinc coating could not effectively improve the resistance of AZ31B and not be suitable to be singly used as the protectable coating for magnesium alloy.
     (4) A compact fluoride conversion coating was prepared on AZ31B magnesium alloy by reaction with hydrofluoric acid. The SEM observation showed that a compact film with some irregularly distributed pores was formed on the surface of sample. The TF-XRD and XPS analyses indicated that the coating was mainly composed of MgO and MgF2. The relationship between treatment parameters and anti-corrosion property or thickness of the coating was systematically studied. Electrochemical and immersion tests revealed that the corrosion type of fluoride treated AZ31B was homogenuous corrosion and the fluoride conversion coating could effectively improve the corrosion resistance of AZ31B in SBF. The corrosion type, combined with the anti-corrosion property, could ensure a constant mechanical property of AZ31B in the corrosion environment. In vitro biocompatibility tests showed that fluoride treated AZ31B had superior cell compatibility, blood compatibility and antibacterial capability. In vivo study indicated that fluoride treated AZ31B exhibited better corrosion resistance than the bare one. The pathological examination demonstrated that the fluoride treated AZ31B exhibited significantly good osteogenesis, which would benefit the early healing process of bone tissue.
引文
[1]Williams D F. On the nature of biomaterials [J]. Biomaterials.2009,30:5897-5909
    [2]Narayan R. Biomedical Materials [M]. New York:Springer.2008.
    [3]Ratner B D, Hoffman A S, Schoen S J, Lemons J E. Biomaterials Science:An introduction to materials in medicine [M]. New York:Academic Press.1996
    [4]Park J, Lakes R S. Biomaterials:An introduction [M]. New York:Springer.2007
    [5]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社.2000.
    [6]师昌绪,李恒德,周廉主编.材料科学与工程手册:第12篇生物医用材料[M].北京:化学工业出版社,2004
    [7]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社.2004
    [8]Suga S, Watabe N. Hard tissue mineralization and demineralization [M]. Springer-Verlag,1992,101-105
    [9]顾汉卿.生物医学材料学[M].天津:天津科技翻译出版公司.1993
    [10]浦素云.金属植入材料及其腐蚀[M].北京:北京航空航天大学出版社.1990,23
    [11]Puleo D A, Huh W W. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells [J]. Journal of Applied Biomaterials.1995,6; 109-116
    [12]Jacobs J J, Gilbert J L, Urban R M. Corrosion of metal orthopaedic implants [J]. Jounal of Bone and Joint Surgery.1998,80:268-282
    [13]Witte F, Crostack H A, Beckman F. Characterization of degradable magnesium alloys as orthopaedic implant material by synchrotron-radiation-based microtomography. http://hasyweb.desy.de/science/annual_reports/2001_report/part1/contrib/47/5461.pdf
    [14]Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty [J]. Journal of Shoulder and Elbow Surgery.2003,12:35-39
    [15]Mutoh Y, Korda A A, Miyashita Y, Sadasue T. Stress shielding and fatigue crack growth resistance in ferritic-pearlitic steel [J]. Materials Science and Engineering:A. 2007,468-470:114-119
    [16]Mark P, Staiger, Alexi M, et al. Magnesium and its alloys as orthopedic biomaterials:A review [J]. Biomaterials,2006,27:1728
    [17]Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials. 2006,27:3413-3431
    [181 Lakshmi S N,to T L. Biodegradable polymers as biomaterials [J]. Progress in Polymer Science.2007,32(8-9):301-347
    [19]Wang Y, Pan J, Han X, Sinka C, Ding L F. A phenomenological model for the degradation of biodegradable polymers [J]. Biomaterials.2008,29(23):3393-3401
    [20]Chandra R, Rustgi R. Biodegradable polymers [J]. Progress in Polymer Science. 1998,23(7):1273-1335
    [21]颜廷亭,谭丽丽,熊党生,张炳春,杨柯.医用镁金属材料的研究进展[J].材料导报.2008,1:110-112
    [22]Yaszemski M J, Trantolo D J, Lewandrowski K U, et al. Biomaterials in Orthopedics [M]. New York:Marcel Dekker, Inc.2004
    [23]Thamaraiselvi T V, Rajeswari S. Biological evalustion of bioceramic materials-A review. Trends in Biomaterials and Artificial Organs [J].2004,19:9-17
    [24]HofbauerM H, Delmonte R J, Scripps M L. Autogenous bone grafting. The Journal of Foot and Ankle Surgery [J].1996,35(5):386-390
    [25]Vos M D, Ragoebar G M, Wal J E, et al. Autogenous femoral head as grafting material for mandibular augmentation [J]. International Journal of Oral and Maxillofacial Surgery.2009,38(12):1320-1323
    [26]Nair L S, Laurencin C T. Biodegradable polymers as biomaterials [J]. Progress in Polymer Science.2007,31:762-798
    [27]Erne P, Schier M, Resink T J. The road to bioabsorbable stents:reaching clinical reality? [J]. Cardio Vascular and Interventional Radiology.2006,29:11-16
    [28]Chandra R, Rustgi R. Biodegradable polymers [J]. Progress in Polymer Science. 1998,23:1273-1335
    [29]Hench L L. Biomaterials:a forecast for the future [J]. Biomaterials.1998,19:1419-1423
    [30]Jia W T, Zhang X, Zhang C Q, et al. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite [J]. International Journal of Pharmaceutics,2010,387(1-2):184-186
    [31]Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering [J]. Bone,2010,46(2):386-395
    [32]Middleton J C, Tipton A J. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials.2000,21(23):2335-2346
    [33]Hermawan H, Dube D, Mantovani D. Developments in metallic biodegradable stents [J]. Acta Biomaterialia.2010,6(5):1693-1697
    [34]Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents:Degradation and cell viability studies [J]. Acta Biomaterialia. 2010,6(5):1852-1860
    [35]Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits [J]. Heart.2001,86:563-569
    [36]Hermawan H, Alamdari H, Mantovani D, et al. Iron-manganese:new class of metallic degradable biomaterials prepared by powder metallurgy [J]. Power Metallurgy. 2008,51(1)38-44
    [37]Hermawan H, Dube D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application [J]. Advanced Materials Research.2007,15-17:107-112
    [38]Hermawan H, Moravej M, Dube D, et al. Degradation behavior of metallic biomaterials for degradation stents [J]. Advanced Materials Research.2007,15-17:113-118
    [39]Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta [J]. Biomaterials.2006, 27:4955-4962
    [40]张津,章宗和,等.镁合金及应用[M].北京:化学工业出版社.2004
    [41]许涛,贺春宝.镁与人体健康[J].广东微量元素科学.2003,10(6):11
    [42]Nils-Erik, Saris L, Mervaala E, et al. Magnesium:An update on physiological, clinical and analytical aspects [J]. Clinica Chimica Acta.2000,294:1
    [43]Witte F. The history of biodegradable magnesium implants:A review [J]. Acta Biomaterialia.2010,6:1680-1692
    [44]Lopez H Y, Cortes D A, Escobedo S, Mantovani D. In vitro bioactivity assessment of metallic magnesium [J]. Key Engineering Materials.2006,309-311:453-456
    [45]Yun Y, Dong Z, Yang D, et al. Biodegradable Mg corrosion and osteoblast cell culture studies [J]. Materials Science and Engineering:C.2009,29:1814-1821
    [46]Zreiqat H, Howlett C R, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants [J]. Journal of Biomedical Materials Research:A.2002,62(2):175-184
    [47]Pietak A, Mahoney P, Dias G J. Bone-like matrix formation on magnesium and magnesium alloys [J]. Journal of Materials Science:Materials in Medicine. 2008,19:407-415
    [48]Witte F, Kaese, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response [J]. Biomaterials.2005,26:3557-3563
    [49]Duygulu O, Kaya R A, Oktay G, et al. Investigation on the potential of magnesium alloy AZ31 as bone implant [J]. Materials Science Forum 2007,546-549:421-424
    [50]Huang J J, Ren Y B, Jiang Y, et at. In vivo study of degradable magnesium and magnesium alloy as bone implant [J]. Frontier Materials Science in China. 2007,1(4):405-409
    [51]Hoh N V, Bormann D, Lucas A, et al. Influence of different surface machining treatments of magnesium-based resorbable implants on the degradation behavior in rabbits [J]. Advanced Engineering Materials.2009,11(5):47-54
    [52]Witte F, Reifenrath J, Muller P P, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement [J]. Materialwissenschaft und Werkstofftechnic.2006, 37(6):504-508
    [53]Beet A G, Barnett M R. Microstucture evolution in hot worked and annealed magnesium alloy AZ31 [J]. Materials Science and Engineering:A.2008,485:318-324
    [54]Styczynski A, Hartig C, Bohele J, et al. Cold rolling textures in AZ31 wrought magnesium alloy [J]. Scripta Materialia.2004,50:943-947
    [55]Miao Q, Hu L, Wang X, et al. Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling [J]. Journal of Alloys and Compounds.2010,493:87-90
    [56]Kang F, Wang J T, Peng Y. Deformation and fracture during qual channel angular pressing of AZ31 magnesium alloy [J]. Materials Science and Engineering:A. 2008,487:68-73
    [57]Liang S J, Liu Z Y, Wang E D. Simulation of extrusion process of AZ31 magnesium alloy [J]. Materials Science and Engineering:A.2009,499:221-224
    [58]Yang L F, Mori K, Hirokazu T. Deformation behaviors of magnesium alloy AZ31 sheet in cold deep drawing [J]. Transactions of Noferrous Metals Society of China. 2008,28:86-91
    [59]Yu K, Rui S, Wang X Y, et al. Texuture evolution of etruded AZ31 magnesium alloy sheets [J]. Transactions of Noferrous Metals Society of China.2009,19:511-516
    [60]Iwanaga K, Tasiro H, Okamoto H, et al. Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy [J]. Journal of Materials Processing Technology.2004,155-156:1313-1316
    [61]Prasad Y V, Rao K P. Effect of homogenization on the hot deormatio behavior of cast AZ31 magnesium alloy [J]. Materials and Design.2009,30:3723-3730
    [62]Zarandi F, Seale G, Verma R, et al. Effect of Al and Mn additions on rolling and deformation behavior of AZ series magnesium alloys [J]. Materials Science and Engineering:A.2008,496:159-168
    [63]Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corrosion Science.2008,50:1939-1953
    [64]宋光龄.镁合金腐蚀与防护[M].北京:化学工业出版社.2006,4
    [65]Lunder O, Lein J E, Anue T K, et al. The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91 [J]. Corrosion.1989,45(9):741-748
    [66]梁峰.铝与人类疾病研究现状[J].微量元素与健康研究.2006,23(1):64-66
    [67]王林,苏德昭,王永芳,等.中国居民每日摄铝量及面制食品中铝限量卫生标准研究[J].中国食品卫生杂志.1996,8(12):1-5
    [68]黄晶晶.可降解镁基植入材料的研究[D].沈阳:中国科学院金属研究所.2008
    [69]杨维东.微量元素与健康[M].武汉:华中科技大学出版社.2007.09:40-91
    [70]杨柯,谭丽丽,任伊宾,等.AZ31镁合金的生物降解行为研究[J].中国材料进展.2009,28(12):26-30
    [71]张广道,黄晶晶,杨柯,等.动物体内植入镁合金的早期实验研究[J].金属学报.2007,43(11):1186-1190
    [72]黄晶晶,任伊宾,张炳春.镁及镁合金的生物相容性研究[J].稀有金属材料与工程.2007,36(6):1102-1105
    [73]Lopez M A, Pereda M D, Valle J A, et al. Corrosion behavior of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J]. Acta Biomaterialia. 2010,6:1763-1771
    [74]Wang H, Estrin Y, Zuberova Z. Bio-corrosion of a magnesium alloy with different processing histories [J]. Materials Letters.2008,62:2476-2479
    [75]Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Advanced Engineering Materials.1999,1:11-33
    [76]Makar G L, Kruger J. Corrosion of magnesium [J]. International Materials Review. 1993,38(3):138-154
    [77]Fairman L, West J M. Stress corrosion cracking of a magnesium aluminum alloy [J]. Corrosion Science.1965,5:711-716
    [78]Wearmouth W R, Dean G P, Parkins R N. Role of stress in the stress corrosion cracking of a Mg-Al alloy [J]. Corrosion.1973,29(6):251
    [79]张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护[J].材料保护.2002,35:4-6
    [80]Song G L, Atrens A. Understand magnesium corrosion- A frame work for improved alloy performance [J]. Advanced Engineerig Materials.2003,5(12):837-858
    [81]Song G L, Atrens A, Wu X L, et al. Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corrosion Science.1998,40(10):1769-1792
    [82]Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology? [J]. Heart:2003,89:651
    [83]Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby [J]. Catheterization and Cardiovascular Interventions.2005,66:590.
    [84]Eggebrecht H, Rodermann J, Hunold P, et al. Novel magnetic resonance-compatible coronary stent:The Absorbable Magnesium-Alloy Stent [J]. Circulation.2005,112: 303
    [85]Dimario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent [J]. Journal of Interventional Cardiology.2004,17(6):391
    [86]Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials.2006,27:013-1018
    [87]Dekena B, Witte F, Podolsky C, et al. Degradable implants made of magnesium alloys. Proc. of 5th euspen International Conference- Montpellier- France- May 2005.
    [88]Song G L, Song S Z. A possible biodegradable magnesium implant material [J]. Advanced Engineering Materials.2007,9(4):298-302
    [89]Xu L P, Yu G N, Zhang E L, Yang K, et al. In vitro corrosion behavior of Mg-Mn-Zn alloy for bone implant application [J]. Journal of Biomedical Materials Research:A. 2007,83A(3):703-711
    [90]Zhang E L, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application [J]. Materials Science and Engineering:A.2008,494(1-2):111-118
    [91]Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials.2009,30(4):484-498
    [92]Zhang E L, He W W, Du H, Yang K. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Materials Science and Engineering:A.2008,488(1-2):102-111
    [93]Kanna M B, Raman R K. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials [J].2008,29(15):2306-2314
    [94]Li Z J, Gu X N, Lou S Q, Zheng Y F. The development of binary Mg-Ca alloys for use as biodegradable materials within bone [J]. Biomaterials.2008,29(10):1329-1344
    [95]Abdullat Y A, Tsutsumi S, Nakajima N, et al. Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications [J]. Materials Transactions.2001,42(8):1777-1780
    [96]Gao J C, Xue Y, Qiao L Y, et al. Surface modification of magnesium with rare earth conversion films for biomedical protection [J]. Materials Science Forum. 2007,546-549:601-604
    [97]Thomann M, Krause C, Angisani N, et al. Influence of a magnesium-fluoride coating of magnesium-based implants on degradation in a rabbit model [J]. Journal of Biomedical Materials Research:A. DOI:10.1002/jbm.a.32639
    [98]Chiu K Y, Wong M H, Cheng F T, et al. Characetrization and corrosion studies of fluoride conversion coating on degradable Mg implants [J]. Surface and Coatings Technology.2007,202(3):590-598
    [99]Thomann M, Krause C, Angrisani N, et al. Influence of a magnesium-fluoride coating of magnesium-baed implants(MgCa0.8) on degradation in a rabbit model [J]. Journal of Biomedical Materials Research:A.2010,93(4):1609-1619
    [100]Wang Y, Wei M, Gao J C. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dehydrate coating [J]. Materials Science and Engineering:C.2008,29(4):1311-1316
    [101]Xu L P, Zhang E L, Yang K. Phosphating treatment and corrosion properties on Mg-Mn-Zn alloy for biomedical application [J]. Journal of Materials Science:Materials in Medicine.2009,20:859-867
    [102]Xu L P, Pan F, Yu G N, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy [J]. Biomaterials.2009,30(8):1512-1523
    [103]Geng F, Tan L L, Jin X X, et al. The preparation, cytocompatibility, and in vitro biodegradation study of pureβ-TCP on Magnesium [J]. Journal of Materials Science: Materials in Medicine.2009,20(5):1149-1157
    [104]Geng F, Tan L L, Zhang B C, et al. Study on β-TCP coated porous Mg as a bone tissue engineering scaffold material [J]. Journal of Materials Science and Technology. 2009,25(1):123-129
    [105]Song Y W, Shan D Y, Han E H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application [J]. Materials Letters. 2008,62(17-18):3276-3279
    [106]Song Y, Zhang S X, Li J N, et al. Electrodeposition of Ca-P coatings on biodegradable Mg alloy:in vitro biomineralization behavior [J]. Acta Biomaterialia. 2010,6:1736-1742
    [107]Wang H X, Guan S K, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process [J]. Acta Biomaterialia.2010,6:1743-1748
    [108]Gao Y L, Wang C S, Yao M, et al. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy [J]. Applied Surface Science. 2007,253:5306-5311
    [109]Kuwahara H, Abdullat Y A, Ohta M, et al. Surface reaction of magnesium in Hank's solutions [J]. Materials Science Forum.2000,350-351:349-358
    [110]Kuwahara H, Abdullat Y A, Mazaki N, et al. Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution [J]. Materials Transactions. 2001,42(7):1317-1321
    [111]Tanski T, Dobrzanski L A, Cizek L. Influence of heat treatment on structure andproperties of the cast magnesium alloy [J]. Advanced Materials Research. 2007,15-17:491-496
    [112]Liu C L, Xin Y C, Tang G Y, et al. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid [J]. Materials Science and Engineering:A.2007,456;350-357
    [113]Gu X N, Zheng W, Cheng Y, et al. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate [J]. Acta Biomaterialia.2009,5(7):2790-2799
    [114]Li L C, Gao J C, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid [J]. Surface and Coatings Technology.2007,185:92-98
    [115]Xin Y C, Jiang J, Huo K F, et al. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon [J]. Journal of Biomedical Materials Research:A.2009,89(3):717-726
    [116]Zhang E L, Xu L P, Yang K. Formation by ion plating of Ti-coating on pure Mg for biomedical applicatios [J]. Scripta Materialia.2005,53:523-527
    [117]Song G L. Control of degradation of biocompatible magnesium in a pseudo-physiological environment by a ceramic like anodized coating [J]. Advanced Materials Research.2007,29-30:95-98
    [118]冯乃谦,严建华等.无机抗菌剂\抗菌制品及其测试方法[J].中华预防医学.1998,32(5):316.
    [119]杜连祥,陆福平.微生物学实验技术[M].北京:中国轻工业出版社.2005,8:58-59.
    [120]刘彬,卢荣.物理化学[M].武汉:华中科技大学出版社.2008:326
    [121]Rudd, Breslin C B, Florian Mansfeld. The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corrosion Science.2000,42:275-288
    [122]Lin C S, Fang S K. Formation of cerium conversion coatings on AZ31 magnesium alloys [J]. Journal of the Electrochemical Society.2005,152(2):54-59
    [123]Li L J, Lei J L, Yu S H, et al. Formation and characterization of cerium conversion coatings on magnesium alloy [J]. Journal of Rare Earths.2008,26(3):383-387
    [124]许越,陈湘,吕祖舜,李英杰.AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究[J].中国稀土学报.2005,23(1):40-43
    [125]Yang X W, Wang G X, Dong G J, et al. Rare earth conversion coating on Mg-8.5Li alloys [J]. Journal of Alloys and Compounds.2009,487:64-68
    [126]Montemor M F, Simoes A M, Carmezim M J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection [J]. Applied Surface Science.2007,253:6922-6931
    [127]李晓滨,周爱儒,俞文华.稀土化合物氯化亚铈对人肺癌细胞PG/人胃癌细胞BGC-823的作用[J].中国生物化学与分子生物学报,1999,15(4):651-654
    [128]姬振豫.正交设计[M].天津:天津科技翻译出版公司.1994
    [129]刘光华.稀土固体材料学[M].北京:中国机械出版社,1997:54
    [130]Hayes S A, Yu P, O'Keefe T J, et al. The phase stability of cerium species in aqueous systems [J]. Journal of The Electrochemical Society.2002,149(12):C623
    [131]Have P, Zivia T, Yehudith L, et al, Fusion of intact human erythrocytes and erythrocyte ghosts [J]. Journal of Cell Biology.1974,63:1-11
    [132]张志鸿,朱游洋.pH对人红细胞溶血速率的影响[J].复旦学报.1985,24(4):401-405
    [133]刘勇,罗义辉,魏子栋.脉冲电镀的研究现状[J].电镀与精饰.2005,27(5):25-29
    [134]施莱辛格,庞诺威奇.现代电镀[M].北京:化学工业出版社.2006.8
    [135]Baylink D, Wergedal J, Stauffer M, et al. Effects of fluoride on bone formation, mineralization, and resorption in the rat. In:Fluoride in Medicine [M]. Bern:Hans Huber Publisher, pp.37-69
    [136]Briancon D, Meunier P J. Treatment of osteoporosis with fluoride, calcium, and vitamin D [J]. Orthopedic Clinics of North America.1981,12:629-648
    [137]Eanes E D, Reddi A H. The effect of fluoride on bone mineral apatite [J]. Metabolic Bone Disease and Related Research.1979,2:3-10
    [138]Eriksen E F, Mosekilde L, Melsen F. Effect of sodium fluoride, calcium, phosphate, and Vitamin D2 on trabecular bone balance and remodeling in osteoporotics [J]. Bone. 1985,6:381-389
    [139]Farley J R, Wergedal J E, Baylink D J. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells [J]. Science.1983,222:330-332
    [140]Frost H M. Fluoride and osteopenia. on:ontermediary organization of the skeleton, Boca Raton [M]. Florida:CRC Press.1986,217-224
    [141]Harrison J E, Bayley T A,Josse R G, et al. The Relationship between fluoride effects on bone Histology and bone mass in patients with postmenopausal osteoporosis [J]. Bone Miner.1986,1:321-333
    [142]Kragstrup J. Effects of Fluoride on Bone Remodeling with a Special Reference to Toxicodynamics [D]. Denmark:Royal Dental College.1987
    [143]Kanis J A, Meunier P J. Should we use fluoride to treat osteoporosis:a review. An International Journal of Medicine [J].1984,53:145-164
    [144]Suarez P, Quintana MC, Hernandez L. Determination of bioavailable fluoride from sepiolite by "in vivo" digestibility assays [J]. Food Chemistry Toxicol. 2008,46(2):490-493
    [145]Palmer C, Wolfe S H. Position of the american dietetic association:impact of fluoride on health [J]. Journal American Diet Association.2005,105:1620-1628
    [146]Ellingsen J E, Hohansson C B, Wennerber A, Holmen A, et al. Improved retention and bone-to-implant contact with fluoride-modified titanium implants [J]. International Journal of Oral Implants.2004,19:659-666
    [147]Berglundh T, Abrahamsson I, Albouy J P, Lindhe J. Bone healing at implants with a fluoride-modified surface:an experimental study in dogs [J]. Clinicla Oral Implantation Research.2007,18:147-152
    [148]罗媛.氟元素与人体健康[J].广东微量元素科学.2002,9(11):21-23
    [149]微量元素氟和人体健康.http://www.sfncc.org.cn/Z_Show.asp?ArticleID=2197
    [150]别同玉,许加生.氟与人体健康.微量元素与健康研究[J].2007,24(1):65-66
    [151]张小磊,何宽,马建华.氟元素对人体健康的影响[J].微量元素与健康研究.2006,23(6):66-67
    [152]Wegner M E, Singer L, Ophaug R H, et al. The interrelation of fluoride and iron in anemia. Proceedings of the Society for Experimental Biology and Medicine [J]. Society for Experimental Biology and Medicine.1976,153(3):414-418
    [153]Loveren C, Hoogenkamp M A, Deng D M, et al. Effects of different kinds of fluorides on enolase and ATPase activity of a fluoride-sensitive and fluoride-resistant streptococcus mutans strain [J]. Caries Research.2008,42:429-434
    [154]Scarpa M, Viglino P, Vianello F, Rigo A.19 FNMR study of the interactions of fluoride with superoxide dismutase and hemoglobin in erythrocytes [J]. Biochemical Biophysical Research Communication.1991,174(1):163-168
    [155]中国营养学会.中国居民膳食营养素参考摄入量[M].北京:中国轻工业出版社.2000.234
    [156]白云,刘凤贞.镁与氟相互作用的研究近况[J].环境与健康杂志.2001,18(1):56-58
    [157]Geng F, Tan L L, Jin X X, Yang J Y, Yang K. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium [J]. Journal of Materials Science:Materials in Medicine.2009,20:1149-1157
    [158]Lin F H, Hsu Y S, Lin S H, Sun J S. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel [J]. Biomaterials.2002,23:4029-4038
    [159]Xiao X F, Liu R F, Zheng Y Z. Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal-electrochemical method on titanium [J]. Surface and Coating Technology.2006,200:4406-4413
    [160]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社.2004,4
    [161]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:26-177
    [162]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社.1993,12
    [163]于文江,向亚贞,常建卫,等.Mg-Al系和Mg-RE系合金在NaCl溶液中的腐蚀电化学行为.中国有色金属学报.2009,19(10):1713-1719
    [164]Li J Z, Huang J G, Tian Y W, Liu CS. Corrosion action and passivation mechanism of magnesium alloy in fluoride solution [J]. Transanctions of Nonferrous Metals Society of China.2009,19:50-54.
    [165]刘彬,卢荣.物理化学[M].武汉:华中科技大学出版社.2008:326
    [166]Salem M, Hamza, Samia K, Kientic of dissolution of calcium fluoride crystals in sodium chloride solution:influence of additives [J]. Journal of Physical Chemistry. 1991,95:3149-3152
    [167]Hamza S M. Nancollas G H, Kinetics of Dissolution of Magnesium Fluoride in Aqueous Solution [J]. Langmuir.1985,1:573.
    [168]Amjad Z, Koutsoukos P G, Nancollas G H. The crystallization of hydroxyapatite and fluorapatite in the presence of magnesium ions. Journal of Colloid and Interface [J]. Science.1984,101(1):250-256
    [169]Tenhuisen K S, Brown P W. Effects of magnesium on the formation of calcium-deficient hydroxyapatite from CaHPO4·2H2O and Ca3(PO4)2 [J]. Journal of Biomedical Materials Research.1997,36(3):306-314
    [170]Eanes E D, Rattner S L. The effect of magnesium on apatite formation in seeded supersaturated solutions at pH 7.4 [J]. Journal of Dental Research. 1981,60(9):1719-1723
    [171]Blumenthal N C. Mechanisms of inhibitions of calcification [J]. Clinical Orthopeadics and Related Research.1989,247:279-289
    [172]Nancollas G H, Tomazic B, Tomson M. The precipitation of calcium phosphates in the presence of magnesium [J]. Croatica Chemica Acta.1976,48:431-438
    [173]李恒德.现代材料科学与工程辞典[M].济南:山东科学技术出版社.2001.689.
    [174]Puranen J, Urpo A Y. Biocompatibility evaluation of nickel-titanium shape memory metal alloy [M]. Oulu:Oulu University Press,1999.
    [175]杨逍芳,奚廷斐.生物材料生物相容性评价研究进展[J].生物医学工程学杂志.2001,18(1):123-128
    [176]Hunt J A, Mclaughlin P J, Flanagam B F. Techniques to investigate cellular and molecular interactions in the host reponse to implanted biomaterials. Biomaterials. 1997,18:1449-1459
    [177]胡国栋.聚氨酯的血液相容性评价[J].国外医学生物医学工程分册.2002,25(6):271-273.
    [178]刘欣,史弘道.医用生物材料血液相容性评价研究概况[J].透析与人工器官.2003,14(1):40-44.
    [179]Annarelli C C, Fornazero J, Cohen R, et al. Colloidal protein solutions as a new standard sensor for adhesive wettability measurements [J]. Journal of Colloid and Interface Science.1999,213(2):386-394
    [180]Ruckenstein E, Gourisankar S V. A surface energetic criterion of blood compatibility of foreign surfaces [J]. Journal of Colloid and Interface Science.1984,101:436-451
    [181]杨明京,周成飞,乐以伦.生物材料血液相容性的表面能量观[J].生物医学工程学杂志.1990,7(1):59-69.
    [182]Bagnall R D, Arundel P A. A method for the prediction of protein adsorption on implant surfaces [J]. Journal of Biomedical Materials Research.1983,17:459-466
    [183]Nyilas E, Morton W A, Cumming R D, et al. Effects of polymer surface molecular structure and force-field characteristics on blood interfacial phenomenal [J]. Journal of Biomedical Materials Research.1977,11:51-68
    [184]Kaeble D H, Moacania J. A surface energy analysis of bioadhesion [J]. Polymer. 1977,18:475-482
    [185]郝和平.医疗器械生物学评价标准实施指南[M].北京:中国标准出版社2000:100-101.
    [186]Richardson R R, Miller J A, Reichert M W. Polyimide as biomaterials:Preliminary biocompatibility testing [J]. Biomaterials.1993,14(8):627-635.
    [187]Pittenger M F, Mackay A M, Beck S C, et al. Multlineage potential of adult human mesenchymal stem cells [J]. Science.1999;284:143-147
    [188]金丹,裴国献,王前,等.骨髓基质细胞体内外成骨的实验研究[J].中华显微外科杂志.2001,24:195-197.
    [189]余希志,杨志明.马俊荣.成骨细胞的细胞社会学特性[J].中国修复重建外科杂志.1998,12(6):350-353
    [190]利特瓦克.人体生物化学与疾病[M].北京:科学出版社.2008
    [191]Euler H V, Soderstedt A, Thorne A, et al. Cellular toxicity induced by different pH levels on the R3230AC rat Mammary tumour cell line. An in vitro model for investigation of the tumour destructive properties of electrochemical treatment of tumours [J]. Biolectrochemistry.2002,58:163-170
    [192]朱大年.生理学[M].北京:人民卫生出版社.2008,47.
    [193]Gorbet M B, Sefton M V. Biomaterial-associated thrombosis:roles of coagulation factors, complement, platelets and leukocytes [J]. Biomaterials.2004,25:5481-5703
    [194]李津婴,万树栋.溶血性疾病[M].上海:复旦大学出版社.2008.
    [195]Hemolysis. http://dictionary.reference.com/browse/hemolysis
    [196]Cheng Y, Li M, Ting C, Yuan T. Preparation of titanium substrate biomaterials by using microarc oxidation and measurement of blood compatibility [J]. Journal of Clinical Rehabilitative Tissue Engineering Research.2007,11(31):6315-6317
    [197]Sanchez L, Martinez V, Infante M R, et al. Hemolysis and antihemolysis induced by amino acid-based surfactants [J]. Toxicology Letters.2007,169:177-184
    [198]Ali I, Naseem I. Hemolysis of human red blood cells by combination of riboflavin and aminophylline [J]. Life Sciences.2002,70:2013-2022
    [199]Sharma P, Sharma J D. In vitro hemolysis of human erythrocytes- by plant extracts with antiplasmodial activity [J]. Journal of Ethnopharmacology.2001,74:239-243
    [200]Sowemimo S O. Red blood cell hemolysis during processing [J]. Transfusion Medicine Reviews.2002,16(1):46-60
    [201]孙皎,顾国珍,钱云芳.生物材料不同接触方式和条件对溶血作用影响的研究[J].生物医学工程学杂志.2003,20(1):8-10
    [202]Kang I K, Kwon O H, Lee Y M, Sung Y K. Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge [J]. Biomaterials.1996,17:841-847.
    [203]Kim Y H, Park K D, Han D K. Blood compatible polymers. In:Salamone JC, editor. Encyclopedia of polymeric materials [M]. Chicago, IL:CRC Press LLC,1998.825-35
    [204]Montanaro L, Arciola C R, Cenni E, et al. Cytotoxity, blood compatibility ad antimicrobial activity of two cyanoacrylte glues for surgical use [J]. Biomaterials. 2001,22:59-66
    [205]Wang Z M, Li L, Zheng Z B, et al. Preparation and anticoagulation activity of sodium cellulose sulfate [J]. International Journal of Biological Macromolecules. 2007,41:376-382
    [206]Christensen K, Larsson R, Emanuelsson H, et al. Improved blood compatibility of a stent graft by combining heparin coating and abciximab [J]. Thrombosis Research. 2005,115:245-253
    [207]魏文佳.血小板与生物材料互相作用的研究进展[J].国外医学生物医学工程分册.2004,27(1):22-26
    [208]孟浩.生物材料与血液相互作用的研究进展[J].生物医学工程学杂志.2005,22(6):1271-1274.
    [209]汪钟,郑植荃.现代血栓病学[M].北京:北京大学,中国协和医科大学联合出版社.1997
    [210]Goodman S L, Grasel T G, Cooper S L, Albert R M. Platelet shape change and cytoskeletal reorganization on polyurethaneureas [J]. Journal of Biomedical Materials Research.1989,23:105-123
    [211]Birmingham Platelet Group, http://www.platelet.bham.ac.uk/index.shtml
    [212]Kanno M, Kawakami H, Nagaoka S. Biocompatibility of fluorinated plyimide [J]. Journal of Biomedical Material Research.2002,60(1):53
    [213]Ratnoff O D. Hemostsis and blood coagulation [M]. Physiology.3rd. St. Louis:Mosby Year Book.1993.327-57
    [214]Norris L A. Blood coagulation [J]. Best Practice and Research Clinical Obstetrics and Gynaecology.2003,17(3):369-383
    [215]Pokhilko A V. Intrinsic coagulation pathway:an activation threshold [J]. Thrombosis Research.2000,99:285-293
    [216]Kalousek F, Konigsberg W, Nemerson Y. Activation of factor IX by activated factor X: a link between the extrinsic and intrinsic coagulation systems [J]. Febs Letters. 1975,50(3):382-385
    [217]Khrenov A V, Ananyeva N M, Griffin J H, Saenko E L. Coagulation pathways in atherothrombosis [J]. Trends in Cardiovascular Medicine.2002,12(7):317-324
    [218]上海太阳生物技术公司PT试剂盒说明书
    [219]Dieijen Q Tans G, Rosing J, Hemker H C.The role of phospholipid and factor Ⅷa in the activation of bovine factor X [J]. Journal of Biological Chemistry. 1981,256:3433-41
    [220]Rosing J, Tans G, Govers-Riemslag J W, Zwaal R F, Hemker HC. The role of phospholipid and factor Va in the prothrombinase complex [J]. Journal of Biological Chemstry.1980,255:274-283
    [221]王春仁.生物材料表面血浆蛋白的吸附[J].国外医学生物医学工程分册.1995,18(6):334-339
    [222]Baier R E. Adhesion in biological systems [M]. New York:Academic Press.1970
    [223]Davis F E, Kenyon K, Kirk J. A rapid titrimetric method for determing the water content of human blood [J]. Science.1953,118:276-227
    [224]Andrade J D. Interfacial phenomena and biomaterials [J]. Medical Instrumment. 1973,7:110-119
    [225]Cottonaro C N, Roohk H V, Bartlett R H, et al. A new nonthrombogenic surface [J]. Transaction American Society for Artificial Internal Organs.1982,128:478-481
    [226]张安兄,吕德龙,钟伟,程为庄,杜强国.生物材料的血液相容性[J].上海生物医学工程.2004,25(3):53-58
    [227]Owens D K. Wendt R G. Estimation of the surface free energy of polymers [J]. Journal of Applied Polymer Science.1969,13:1741-1747
    [228]Hamil H F, Adams L M, Harlowe W W, et al. Irradiation-grafted polymeric films. I. Preparation and properties of acrylic acid-grafted polyethylene films [J]. Journal of Applied Polymer Science.1971,9:363
    [229]Rudawska A, Jacniacka E. Analysis for determining surface free energy uncertainty by the Owen-Wendt method [J]. International Journal of Adhesion & Adhesives. 2009,29:451-457
    [230]Miller C A, Neogi P著,杨承志,金静芷译.界面现象-平衡和动态效应[M].北京:石油工业出版社,1992
    [231]Comelle J, Estevez M, Martinez E, Samitier J. The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion [J]. Nanomedicine: Nanotechnology, Biology, and Medicine.2010,6:44-51
    [232]Yang M R, Chen K S, He J J. The interaction between blood and the surface characteristics of plasma polymerized films [J]. Materials Chemistry and Physiscs. 1997,48:71-75
    [233]周成飞.医用高分子表面及其血液相容性[J].高分子通报.1989,3:44-47
    [234]Maheshwari R, Bhavani R, Dhathathreyan A. Solid-liquid interfacial energy as a tool to estimate shifts in isoelectric points of adsorbed proteins on solid surfaces [J]. Journal of Colloid and Interface Science.2006,293:500-504
    [235]Groos E, Walke L, John RW. Intravesical chemotherapy studies on the relationship between pH and cytotoxicity [J]. Cancer.1986,58:1199-1203.
    [236]Bradshaw D J, Mckee A S, Marsh P D. Prevention of population shifts in oral microbial communities in vitro by low fluoride concentrations [J]. Journal of Dentistry Research. 1990,69:436-441.
    [237]Hamilton I R. Biochemical effects of fluoride on oral bacteria [J]. Journal of Dentistry Research.1990,69:660-667.
    [238]Marquis R E. Antimicrobial actions of fluoride for oral bacteria [J]. Cannadian Journal of Microbiology.1995,41:955-964.
    [239]Cox S D, Lassiter M O, Miller B S, Doyle R J. A new mechanism of action of fluoride on streptococci [J]. Biochimical et Biophysical Acta.1999,1428:415-423
    [240]Florian L. Cerklewski. Fluoride bioavailability- nutritional and clinical aspects [J]. Nutrition Research.1997,17(5):907-929
    [241]Shani S, Friedman M, Steinberg D. Relation between surface activity and antibacterial activity of amine-fluorides [J]. International Journal of Pharmaceutics.1996,131:33-39
    [242]Naorungroj S, Wei H H, Arnold R R, et al. Antibacterial surface properties of fluoride-containing resin-based sealants [J]. Journal of Dentistry.2010,38(5):387-391
    [243]Yoshinari M, Oda Y, Kato T, Okuda K. Influence of surface modifications to titanium on antibacterial activity in vitro [J]. Biomaterials.2001,22:2043-2048.
    [244]Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms:a common cause of persistent infections [J]. Science.1999,284:1318-1322
    [245]Lellouche J, Kahana E, Elias S, et al Antibiofilm activity of nanosized magnesium fluoride [J]. Biomaterials.2009,30:5969-5978
    [246]Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application [J]. Journal of Biomedical Materials Research.2007,83(A):703-711
    [247]Mertz W. The essential trace elements [J]. Science.1981,213:1332-1338.
    [248]刘增辉主编.病理染色技术[M].北京:人民卫生出版社,2000.1
    [249]李溪.影响糖尿病大鼠骨折愈合相关因素及BMP-2/IGF-Ⅰ干预治疗的实验研究 [D].昆明:昆明医学院.2009
    [250]Cho T J, Gersteneld L C, Einhom T A, et al. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing [J]. Journal of Bone Mineral Research.2002,5:13
    [251]Rose F R, Oreffo R O. Bone tissue engineering:hope vs hype [J]. Biochemical and Biophysical Research Communications.2002,14(7):2921
    [252]Urist M R. Bone:formation by autoinduction [J]. Science.1965,150:893-899
    [253]Linkhart T A, Mohan S, Baylink D J. Growth factor for bone growth and repair:IGF, TGF-β and BMP [J]. Bone.1996,19(1):1-12
    [254]Hirata K, Tsuazaki T, Kadowaki A, et al. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2 [J]. Bone. 2003,32:502-512
    [255]Cao X, Chen D. The BMP signaling and in vivo bone formation [J]. Gene. 2005,357:1-8
    [256]Tzaphlidou M. The role of collagen in bone structure:an image processing approach [J]. Micron.2005,36:593-601
    [257]姜福全,赵铁军,沈洪兴.胶原蛋白与骨折愈合的关系[J].中国骨伤.2002,15(8):505-507
    [258]Ignatius A, Blessing H, Liedert A, et al. Tissue engineering of bone:effects of mechanical strain on osteoblastic cells in type Ⅰ collagen matrices [J]. Biomaterials. 2005,26:311-318
    [259]Shi S, Kirk M, Kahn A J. The role of type Ⅰ collagen in the regulation of osteoblast phenotype [J]. Journal of Bone Mineral Research.1996,11(8):1139
    [260]杨志明,余希杰,黄富国.外源性Ⅰ型胶原对人胚骨膜成骨细胞生物学特性的影响[J].华西医大学报.2001,31(1):1-4
    [261]Owe T A, Aronow M, Shalhoub V, et al. Progressive development of rat osteoblast phenotype in vitro:reciprocal relationship in expression of genes associated with osteoblast proliferation and expression of genes associated with osteoblast proliferation and differentiation during formation of bone ECM. Journal of Cell Physiology [J]. 1990,143(3):420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700