用户名: 密码: 验证码:
基于GIS的防震减灾信息系统的功能扩展与升级
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是危及人民生命财产的突发式自然灾害。在大地震发生后,快速获取灾情信息、形成救灾决策、部署应急救援对减轻灾害有重要意义。地理信息系统(Geographic Information System,GIS)技术的发展为实现这一减灾目的提供了技术手段。我国近二十年来已经建立了数十个城市和大型企业的基于GIS的防震减灾及辅助决策系统,投入了大量的人力、物力。本文从系统维护和升级的角度,研究此类系统如何快速估计地震灾害,为减灾发挥切实有效的作用,从软件层面和技术层面做深入探讨。
     2008年的5.12汶川地震是对现有减灾技术手段的一次验证。本文从汶川地震的实际震例中,分析上述防震减灾系统功能的局限,急需增加新的处理模块、配合新的信息源,评估震害。提出、研究了增加多源信息修正等震线模块、基于减灾需求的中巴卫星图像分景索引、考虑云及其阴影的遮挡提取山地灾害的模块。
     本文结合多个实际震例,对系统评估震害做深入分析,指出了系统准确评估震害分布的关键在于提高对地震动影响场的估计精度,为了快速提高精度,需要引入新的信息源。
     遥感和互联网所包含的信息在空间上分布范围都比较广,而且能够在一定有效期限内实时更新;特别是互联网作为“信息高速公路”,信息的获取成本低,处理信息的工作量小、耗时少,完全可以开发用于减灾。本文以5.12汶川8.0级地震为例,创新性地提出一套基于互联网的描述性信息提取信息烈度、空间插值得到信息烈度预测面、生成信息等震线的方法。发展了人机交互修正等震线的方法,通过平移、放大经验性等震线解决宏观震中与微观震中不吻合、极震区与计算结果不吻合的问题,得到初步修正等震线,然后根据信息烈度和信息等震线的空间分布与修正等震线的空间关系,对其做二次修正;除了考虑随时间变化设置统计节点,还考虑了互联网能搜集到的遥感评估结果,将其转化成烈度,作为修正等震线的辅助信息。与实际调查结果比较看来,随着日期逐渐推移、信息量不断增加,相应的修正精度也越来越好,在震后第12天得到的信息累计结果,对等震线的评估结果已经和随后实际调查得到的烈度分布较为接近。
     在处理遥感信息源的方面,本文首先考虑了数据下载前的筛选过程的自动化。遥感图像文件较大,一景中巴资源卫星的多光谱图像就是百兆以上;按照现有的数据提供方给出的遥感图像的查询方式,搜索、下载图像后,仍然需要筛选、比较得到最需要处理的目标图像,这个过程也很耗费时间。本文以中巴资源卫星图像的筛选下载为例,研究突破网站现有搜索方式,建立面向减灾需求的中巴卫星分景索引模块。首先基于中巴资源卫星网站一定时间、空间范围的卫星景心搜索结果,提取图像信息,包括PATH、ROW、景心坐标、成像时间等,建立景心点群数据库,考虑卫星沿轨道规律成像的特性,从景心点群提取了标准景心点阵;以此为依据,对研究范围内的卫星图像的搜索结果做空间筛选,去除轨道异常点,得到规律成像的图像景心点;另外,考虑变化检测的需求,实现两个时间筛选准则,即震前震后图像成像时间间隔最短、季节相近准则,用Matlab编程实现空间、时间筛选准则;最后,做筛选景心数据和地震影响场的叠加分析,得到位于不同烈度区的卫星图像的下载优先级列表,实现考虑评估地震灾害需求的中巴卫星分景索引。
     针对汶川地震影响范围内时、空准则筛选后的结果,考虑云及其阴影的影响,做变化检测,提取地震引发的山地灾害分布,并给出灾害判定的准确度。首先,根据云及其阴影的波谱特征,用决策树法、支持矢量机(SVM)法及K均值聚类法,确定震前、震后图像中,云及其阴影的分布。用分层随机采样法给出随机点,验证分类精度。比较三者分类精度,决策树法精度好、简单易行。合并震前震后的遮挡区(云及其阴影区),将研究范围分成有一定准确概率的两部分,将震前、震后图像的变化检测结果与其做叠加分析,得到位于地物区的灾害区准确度一般比较大,而落入遮挡区的灾害区真的属于灾害的概率一般比较小。
     最后,对本文的研究工作进行了全面总结,展望了有待进一步深入研究的几个问题。
Earthquake is a very fearful natural disaster that occurs suddenly and endangers people’s life and property. It is imperative for disaster relief agencies and civil protection bodies to evaluate the damage as soon as possible after the event for emergency response. The development of Geographic Information System technology provides a good measure to cope with this disaster mitigation demand. In China, dozens of cities and large enterprises spent a lot of manpower and material resources on building their own Earthquake Prevention and Disaster Reduction System (EPDRS) based on GIS since the beginning of 1990’s. Do these systems are useful or not, and how to improve the validity of those systems are discussed in knowledge and software aspects.
     Wenchuan Earthquake occurred on May 12, 2008 in Sichuan Province of China, which is a validation of our country’s disaster mitigation work. Considering this real earthquake lesson, this paper analyzed the functional limits of EPDRS and the imperative work to improve the capability to face the sudden earthquake damage. Those works included in this paper are as follows: add new information sources and the corresponding new processing modules to assist in modifying the experiential isoseismal calculated by EPDRS; build image index of CBERS satellite on basis of the demand of disaster mitigation; detect the mountain disasters from CBERS satellite image partially overlaid by the clouds and their shadows.
     This paper took several real earthquake experiences as validation cases of EPDRS. The validations with thorough analysis illumined that the precision of isoseismals generated by EPDRS or any other system must be improved for a better estimation of earthquake damage; that need to absorb the new information sources.
     The information included in Remote Sensing and Internet is distributing in a large space scope and that can be almost updated in real time at a certain time limit; especially, being“information highway”, Internet is a cheap information source, collecting information from Internet cost less workload and time consuming, it can be used to assist disaster mitigation. This paper took 5.12 Wenchuan earthquake as example to build a series methods that include: collect the describing information from Internet, get“information intensity”from the collection, interpolate in spatial range to build the prediction surface and get the contours which represent isoseismals. Human-computer interaction method was developed in this paper by move, enlarge the experiential isoseismals to deal with the deviation of the macro- from micro-epicenter, the meizoseismal area from the calculated zone by EPDRS, by which the 1st modification of the experiential isoseismals is completed; and then considering the distribution of the“information intensity”and“information isoseismals”, the 2nd modification can be made. Besides setting different time nodes of information collections, the building damage assessment results of remote sensing image published in the government Webpage was considered to be converted to RS-intensity to be used to modify the isoseismals. By comparing with the ground survey result, the precision of the modification isoseismals is better more and more along with the time changing and the information amount increasing. On the 12th day after earthquake the modification of isoseismals is already similar with that from the survey report.
     In the aspect of RS image processing, this paper considered to realize the automation of choosing image process before downloading. RS images are big files, one scene of CBERS-CCD multi-spectrum image can be more than 100 Mb. The searching methods on the CBERS webpage are limit, and the searching results still need more time to choose the image to study. This paper took the choosing process of CBERS image as example, and broke through the conventional searching methods in, and then built the index module of choosing CBERS images by considering the demand of disaster mitigation.
     Firstly, ordered a certain time and space range in the CBERS Webpage to search image,built a scene-center database from the information of the search results, such as PATH, ROW, longitude, latitude etc., from which the standard scene-center point’s matrix was calculated according to the satellite imaging character. Take the standard scene-center point’s matrix as normal points; pick up the scene-center points in a luminal distance. Secondly, in order to obtain the better result of change detection, two choosing rules about imaging time were founded and actualized by Matlab. In the end, the chosen points were overlaid with the isoseismals, the spatial analysis method“identity”is applied to get the priority download list of CBERS images.
     According to the download list, pick up several images pair (pre- and post-earthquake) to detect mountain disaster. The influence of the clouds and their shadows in the RS images on the change detection of mountain disaster. Three classification methods is carried out to get the distribution of the clouds and their shadows in this paper, the precision of classification is calculated. By comparison, the decision tree built in this paper is simple to apply and had a good precision of classification. Merge the regions of clouds and their shadows in pre- and post- image to get the shielding zone, the else region is ground object zone; the damage located in the shielding zone is false damage, that in the ground object zone is the real damage.
     Finally, all progresses in this dissertation are summarized; the assumptions and prospects for further study are mentioned.
引文
1张培震,中国地震灾害与防震减灾.地震地质. 2008, 30(3):557~583
    2陈天恩.城市震灾模拟空间分析方法.中国海洋大学博士论文. 2006:5~6
    3帅向华,成小平,袁一凡.城市震害高危害小区的研究和GIS的实现技术.地震. 2002,22(3):113~119
    4高杰,冯启民,史承伟等.基于ArcView9.0的城市震害预测及应急对策信息系统研究.世界地震工程. 2006, 22(3):32~39
    5谢礼立,温瑞智.数字减灾系统.自然灾害学报. 2000, 9(2):1~9
    6 A. P. Tang, X. X. Tao and J. P. Ou. Digital System for Natural Disaster Mitigation in China. Proceedings of International Conference of 30th Urban Data Management Symposium, Prague, Republic of Czech, 2000
    7金波.分布式防震减灾信息和辅助决策系统.中国地震局工程力学研究所博士学位论文. 2005:2~6
    8 Y. X. Gao. Suggestions on How to Reduce Earthquake Disasterson Living Buildings in Villages and Towns of China. Chinese Science Abstracts Series B. 1995, 14 (3): 60
    9 Z. Q. Yin. Content of Analysing Earthquake Losses in City and the Process of Countermeasures Decision-making for Disaster Mitigation. Chinese Science Abstracts Series B. 1995, 14 (3): 61
    10 K. T. Shabestari, F. Yamazaki, J. Saita. Estimation of the Spatial Distribution of Ground Motion Parameters for Two Recent Earthquakes in Japan. Tectonophysics. 2004, 390(1/4):193~204.
    11 L. L. Xie, X. X. Tao, R. Z. Wen. A GIS-based Earthquake Losses Assessment and Emergency Response System for Daqing Oilfield. 12th World Conference on Earthquake Engineering, Auckland, 2000, Paper No. 0091.
    12袁一凡.四川汶川8.0级地震损失评估及其教训.中国科学技术协会2008防灾减灾论坛专题报告. 2008:31~57
    13邬伦,刘瑜,张晶等.地理信息系统—原理、方法和应用.科学出版社. 2006:17~26
    14李革平,陈棋福,陈凌等.地理信息系统在地震破坏和损失评估中的应用.地震学报. 1998, 20(6):640~646
    15美国地质调查局USGS网站http://earthquake.usgs.gov/eqcenter/pager/background.php
    16温瑞智,贾兴国.建筑物震害损失快速评估系统.世界地震工程. 1998, 14(2):54
    17姚保华.基于WebGIS的防震减灾系统研究及其实现.中国地震局工程力学研究所博士学位论文. 2002:84~86.
    18 X. X. Tao, H. Q. Zuo, M. Y. Zhang. GIS Application in Seismic Hazard Assessment of China. GSHAP Regional Workshop of the E & S Asia, Beijing, 1994
    19 M. Hosokawa, B. P. Jeong, O. Takizawa. Earthquake Damage Detection Using Remote Sensing Data. Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007, Vol.2:2989~2991
    20帅向华,姜立新,李志强等.国家地震应急快速响应信息系统建设——以首都圈地区为基础.自然灾害学报. 2006, 15(5):132~135
    21 M. Estrada, F. Yamazaki. Use of Landsat Images for the Identification of Damage due to the 1999 Kocaeli, Turkey Earthquake. Proceedings of the 21st Asian Conference on Remote Sensing, Taiwan, 2000:1185~1190
    22 J. Hoffmann. Mapping Damage during the Bam (Iran) Earthquake Using Interferometric Coherence. International Journal of Remote Sensing. 2007, 28(6):1199~1216
    23 M. Kohiyama, H. Hayashi, N. Maki etc. Early Damaged Area Estimation System Using DMSP-OLS Night-Time Imagery. International Journal of Remote Sensing. 2004, 25(11):2015~2036
    24 M. Kohiyama, F. Yamazaki. Image Fluctuation Model for Damage Detection Using Middle-Resolution Satellite Imagery. International Journal of Remote Sensing. 2005, 26(24):5603~5627
    25 H. Miura, F. Yamazaki, M. Matsuoka. Identification of Damaged Areas due to the 2006 Central Java, Indonesia Earthquake Using Satellite Optical Images. Proceedings of the 2007 Urban Remote Sensing Joint Event, Paris, France, 2007:423~466
    26 E. M. Rathje, M. Crawford. Using High Resolution Satellite Imagery to Detect Damage from the 2003 Northern Algeria Earthquake. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004, Paper No.2911
    27 E. Sertel, S. Kaya, P. J. Curran. Use of Semivariograms to Identify EarthquakeDamage in an Urban Area. IEEE Transactions on Geoscience and Remote Sensing. 2007, 45(6):1590~1594
    28 M. Turker, B. T. San. SPOT HRV Data Analysis for Detecting Earthquake-induced Changes in Izmit, Turkey. International Journal of Remote Sensing. 2003, 24(12):2439~2450
    29 M. Turker, B. Cetinkaya. Automatic Detection of Earthquake-damaged Buildings Using Dems Created from Pre- and Post-Earthquake Stereo Aerial Photographs. International Journal of Remote Sensing. 2005, 26(4):823~832
    30 C. Yonezawa, S. Takeuchi. Decorrelation of SAR Data by Urban Damages Caused by the 1995 Hyogoken-nanbu Earthquake. International Journal of Remote Sensing. 2001, 22(8):1585~1600
    31 P. Li, X. X. Tao. Design Human-Computer Interaction System to Build Isoseismal. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 2008, Paper No.01-2008
    32国家减灾网http://www.jianzai.gov.cn/emergenceIndex.shtml?emergence.id=2008
    33空间和重大灾害国际宪章http://www.disasterscharter.org/disasters_e.html
    34崔鹏,韦方强,陈晓清等.汶川地震次生山地灾害及其减灾对策.中国科学院院刊. 2008, 23(4):317~323
    35郭华东,中国科学院汶川地震灾害遥感监测与灾情评估工作组.汶川地震灾害遥感图集.科学出版社,2008:1
    36 K. S. Cheng, C. Wei, S. C. Chang. Locating landslides Using Multi-temporal Satellite Images. Advances in Space Research. 2004, 33(3):296~301
    37 F. Mantovani, R. Soeters, C. J. Vanwesten. Remote Sensing Techniques for Landslide Studies and Hazard Zonation in Europe. Geomorphology. 1996, 15(3-4):213~225
    38 J. E. Nichol,A. Shaker,M. S. Wong. Application of High Resolution Stereo Satellite Images to Detailed Landslide Hazard Assessment. Geomorphology. 2006, 76(1-2):68~75
    39 R. Guillande. Automated Mapping of the Landslide Hazard on the Island of Tahiti based on Digital Satellite Data. Mapping Sciences & Remote Sensing. 1995, 32(1):59~70
    40 V. Singhroy, K. E. Mattar, A. L. Gray. Landslide Characterization in Canada Using Interferometric SAR and Combined SAR and TM Images. Advances in Space Research. 1998, 21(3):465~476
    41 V. Singhroy. SAR Integrated Techniques for Geo-hazard Assessment. Advances in Space Research.1995,15(11):67~78
    42王治华.中国滑坡遥感.国土资源遥感. 2005, 63(1):1~7
    43王治华. RS+GCPs获取滑坡基本信息.中国地质灾害与防治学报. 2004, 15 (1):94~101
    44李铁锋,徐岳仁,潘懋等.基于多期SPOT-5影像的降雨型浅层滑坡遥感解译研究.北京大学学报(自然科学版). 2007, 1(3):1~7.
    45苏凤环,刘洪江,韩用顺.汶川地震山地灾害遥感快速提取及其分布特点分析.遥感学报. 2008, 12(6):956~963
    46崔鹏,韩用顺,陈晓清.汶川地震堰塞湖分布规律与风险评估.四川大学学报(工程科学版). 2009, 41(3):35~42
    47 J. E. Costa, R. L. Schuster. The Formation and Failure of Natural Dams. Geological Society of America Bulletin. 1988, 100(7):1054~1068
    48 L. Ermini, N. Casagli. Prediction of the Behavior of Landslide Dams Using a Geomorphological Dimensionless Index. Earth Surface Processes and Landforms. 2003, 28 (1):31~47
    49 O. Korup. Geomorphometric Characteristics of New Zealand Landslide Dams. Engineering Geology. 2004, 73 (1/2):13~35
    50 S. A. Dunning, D. N. Petley, A. L. Strom. The Morphologies and Sedimentology of Valley Confined Rock-avalanche Deposits and Their Effect on Potential Dam Hazard. Proceeding of the International Conference on Landslide Risk Management. Amsterdam, Balkema, 2005: 601~704.
    51童立强.“5·12”汶川大地震极重灾区地震堰塞湖应急遥感调查.国土资源遥感. 2008, (3):61~64
    52王春振,陈国阶,谭荣志等.“5·12”汶川地震次生山地灾害链(网)的初步研究.四川大学学报(工程科学版). 2009, 41(Supp):84~88
    53魏成阶,刘亚岚,王世新等.四川汶川大地震震害遥感调查与评估.遥感学报. 2008. 12(5):673~612
    54范建容,田兵伟,程根伟等.基于多源遥感数据的5.12汶川地震诱发堰塞体信息提取.山地学报. 2008, 26(3):257~262
    55张继贤,刘正军,刘纪平.汶川大地震灾情综合地理信息遥感监测与信息服务系统.遥感学报. 2008, 12(6):871~876
    56唐川,梁京涛.汶川震区北川9.24暴雨泥石流特征研究.工程地质学报. 2008, 16(6):751~757
    57杨健,赵忠明,黄铁青等.汶川地震遥感图像处理与灾难分析.中国体视学与图像分析. 2008, 13(3):151~157
    58张敏,杨武年,黄瑾等.汶川地震区航空影像地质灾害自动识别技术.地理与地理信息科学. 2008, 24(6):42~45
    59张文,周立江,潘发明等.利用CBERS进行汶川地震区森林资源损失快速评估.山地学报. 2008, 26(6):748~754
    60黄铁青,赵涛,翟金良等.发挥空间信息技术优势,服务汶川抗震救灾决策.遥感技术与应用. 2008, 23(4):486~492
    61李德仁,陈晓玲,蔡晓斌.空间信息技术用于汶川地震救灾.遥感学报. 2008, 12 (6):841~851
    62马建文,顾行发,冯春郭等. CBERS-02卫星图像薄云的去除方法研究.中国科学E辑. 2005, 35(S1):89~96
    63王惠,谭兵,沈志云.多源遥感影像的去云层处理.测绘学院学报. 2001, 18(3):195~198
    64 R. Richter. A Spatially Adaptive Fast Atmospheric Correction Algorithm. International Journal of Remote Sensing. 1996, 17(6):1201~1214
    65赵忠明,朱重光.遥感图像中薄云的去除方法.环境遥感. 1996, 11(3):195 ~199
    66左惠强.基于GIS的地震危险性分析.国家地震局工程力学研究所博士论文. 1996:2~10
    67陶夏新,温瑞智,崔正涛等.基于GIS的防震减灾信息和辅助决策系统.第三届ARC/INFO暨ERDAS中国用户大会论文集.北京,2000:138~144
    68钟江荣,赵振东,余世舟.大庆油田防震减灾信息管理系统建设.世界地震工程. 2004, 20(1):39~44.
    69高杰,冯启民,莫善军.城市地震灾害预测及其信息管理通用程序研究.世界地震工程. 2005, 21(1):75~80
    70高杰,冯启民,史承伟等.基于ArcView9.0的城市震害预测及应急对策信息系统研究.世界地震工程. 2006, 22(3):32~39.
    71陈鲲,高孟潭. SuperMap Object在地震灾害预估中应用浅析.中国地震. 2006, 22(3): 327~331
    72汤爱平.城市灾害管理和震后应急辅助决策研究.中国地震局工程力学研究所博士论文. 1999: 40~45, 117
    73温瑞智.基于GIS的防震减灾系统.中国地震局工程力学研究所博士论文,1999: 10~29, 33~60
    74谢礼立,陶夏新,左惠强等.基于GIS和AI的地震灾害性分析与信息系统.城市与工程减灾基础研究论文集.中国科学技术出版社.北京, 1996: 1~7
    75李闽峰.震害预测快速服务平台的模型与方法及一些相关理论的研究.中国地震局地球物理研究所博士论文. 2003: 56~66
    76雷建成,高孟潭,俞言祥.四川及邻区地震动衰减关系.地震学报. 2007, 29(5): 500~511
    77徐锡伟,张培震,闻学泽等.川西及其邻近地区活动构造基本特征与强震复发模型.地震地质. 2005, 27(3): 446~461
    78李萍,基于遥感技术的2003年2月24日新疆巴楚地震震害快速评估.中国地震局工程力学研究所硕士论文. 2004: 30~42
    79 P. Li, X. X. Tao. Quantitative Earthquake Damage Detection from Changes in Remote Sensing Images–A case study. 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05 Proceedings, Seoul, 2005: 1026~1029
    80吴秀芹,张洪岩,李瑞改等. ArcGIS 9地理信息系统应用与实践(下册).清华大学出版社. 2007:723
    81国家地震局.中国地震烈度区划图(1990)概论.地震出版社. 1996:143
    82范一大,杨思全,王磊等.汶川地震应急监测评估方法研究.遥感学报. 2008, 12(6): 858~864
    83王晓青,王龙,王岩等.汶川8.0级大地震应急遥感震害评估研究.震灾防御技术. 2008, 3(3): 251~258
    84陶和平,刘斌涛,刘淑珍等.遥感在重大自然灾害监测中的应用前景—以5·12汶川地震为例.山地学报. 2008, 26(3): 276~279
    85地震信息网http://www.csi.ac.cn/sichuan/index080512.htm
    86新华网http://news.xinhuanet.com
    87新浪网新闻中心http://news.sina.com.cn/z/08earthquake/index.shtml
    88中国行政区划网http://www.xzqh.org.cn/zlzx_1.asp
    89尹之潜,李树桢,赵直等.地震灾害预测与地震灾害等级.中国地震. 1991, 7(1):9~19
    90 A. P. Tang, L. L. Xie, X. X. Tao. Application of GIS to Build Earthquake Emergency Response System for Urban Area. Journal of Harbin Institute of Technology (New Series). 2002, 9(1): 38~42
    91赵振东,林钧岐,钟江荣等.地震人员伤亡指数与人员伤亡状态函数.自然灾害学报. 1998, 7(3): 90~96
    92晏凤桐.地震灾情的快速评估.地震研究. 2003, 26(04): 382~387
    93尹之潜.城市地震灾害预测的基本内容和减灾决策过程.自然灾害学报. 1995, 4(1): 17~25
    94尹之潜,李树桢,赵直等.地震灾害预测与地震灾害等级.中国地震. 1991, 7(1): 9~19
    95孙林松,蒋能强,张家涛等.冕宁县地震人员伤亡预测.四川地震. 1993, (3): 43~53
    96李海华.震灾最大伤亡率的预测.灾害学. 1987, 2(2): 41~47
    97 K. T. Chang, Spatial Interpolation, Introduction to Geographic Information Systems. Third Edition. Science Press and McGraw-Hill Education (Asia) Co., 2006: 240
    98李小文.汶川震灾中遥感的应急与反思.遥感学报. 2008, 12(6): 2
    99中国航天科技集团公司新闻http://www.spacechina.com/xwzx_zyxw_Details.shtml?recno=55330
    100中央政府门户网站http://www.gov.cn/gzdt/2006-03/20/content_231785.htm
    101 T. M. Lillesand, R.W. Kiefer. Remote Sensing and Image Interpretation. The 4th Edition. Wiley & Sons.,2000: 270
    102赵英时,遥感应用分析原理与方法,科学出版社,第四版,2006: 43, 227~231
    103中国资源卫星应用中心http://211.100.254.235/uss/front/guide/zy02buss1.jsp
    104方洪宾,刘顺喜,杨清华等. CBERS-02B星在轨测试数据国土资源应用评价.国土资源遥感. 2009, (1): 34~47
    105刘林.航天器轨道理论.国防工业出版社,2000: 3~4
    106中国地震局震灾应急救援司http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/08_08/29/1219980517676.html
    107汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程.科学出版社,2006: 202~204, 363~424
    108崔鹏,韦方强,陈晓清等.汶川地震次生山地灾害及其减灾对策.科技赈灾. 2008,23(4): 317~323
    109李德仁,陈晓玲,蔡晓斌.空间信息技术用于汶川地震救灾.遥感学报. 2008, 12 (6): 841~851
    110中国地震台网中心http://www.ceic.ac.cn/ceic/eq.jsp?id=106282
    111谢洪,王士革,孔纪名,“5.12”汶川地震次生山地灾害的分布与特点.山地学报, 2008, 26(4): 396~401
    112 J. E. Costa. Flood from Dam Failures. U. S. Geological Survey Open-File Report, 1985: 85~560:54.
    113 F. C. Dai, C. F. Lee, J. H. Deng etc. The 1786 Earth-quake-triggered Landslide Dam and Subsequent Dam-break Flood on the Dadu River, Southwestern China. Geomorphology. 2005, 65(3/4): 277~278.
    114崔鹏,韦方强,何思明等. 5.12汶川地震诱发的山地灾害及减灾措施.山地学报. 2008, 26(03): 280~282
    115李小娟,宫兆宁,刘晓萌等. ENVI遥感图像处理教程.中国环境科学出版社,北京, 2007: 394~395
    116 J. A. Richards, X. P. Jia. Remote Sensing Digital Image Analysis. The 4th Edition. Springer-Verlag Berlin Heidelberg, 2006: 273~274
    117 R. A. Schowengerdt. Remote Sensing. The 3rd Edition. Elsevier (Academic Press), 2007: 397~398
    118 T. M. Lillesand, R. W. Kiefer. Remote Sensing and Image Interpretation. The 4th Edition. John Wiley & Sons, 2000: 390~400
    119 J. R. Jensen. Introductory Digital Image Processing: A Remote Sensing Perspective. The 3rd Edition. Pearson Education, 2005: 480~490
    120 V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995: 10~20
    121 V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998:11~20
    122 C. Cortes, V. Vapnik. Support-vector Networks. Machine Learning, 1995:273~297
    123 J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167
    124 C. C. Chang, C. J. Lin. LIBSVM: a Library for Support Vector Machines. 2001
    125 S. Kumar. Neural Networks. McGraw-Hill Companies.inc, 2006: 273~304
    126 T. F. Wu, C. J. Lin, R. C. Weng. Probability Estimates for Multi-class Classification by Pairwise Coupling. Journal of Machine Learning Research, 2004: 975~1005
    127 S. Gunn. Surpport Vector Machines of Regression, Classification and Regression. Technical Report. ISIS Group, University of Southampton. 1998
    128 A. Singh, Digital Change Detection Techniques Using Remotely Sensed Data. International Journal of Remote Sensing. 1989, 10(6): 989~1003
    129 J. W. Rouse, R. H. Haas, J. A. Schell etc. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium. NASA SP-351, 1973: 309~ 317
    130 S. K. McFeeters. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing, 1996, 17(7): 1425~1432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700