用户名: 密码: 验证码:
磁流变液制备及动力传动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液(Magnetorheological Fluids, MRF)是一种典型的智能材料,主要由软磁性颗粒、基载液和表面添加剂组成,具有磁场可控特性,已在动力传递、振动控制等领域得到了广泛应用。磁流变传动装置(Magnetorheological Transmission Device,MRTD)是以磁流变液为传动介质开发出的一种新型传动技术,具有众多优点,存在广阔的应用前景。针对目前磁流变液制备及其动力传动研究中存在的问题,本文在以下几个方面进行了深入的研究。
     根据传动用磁流变液的特殊要求,对磁流变液各组分进行了选择和性能分析,采用基液置换法,制备出多种类型的磁流变液,比较了表面活性剂类型、含量等因素对磁流变液沉降稳定性和表观粘度的影响特点,得到单表面活性剂的作用规律。
     根据单表面活性剂的作用效果,提出了表面活性剂复配技术,研究了表面活性剂复配顺序、搅拌工艺(搅拌时间、速度和温度)及复配含量对复配效果的影响规律,得到了较优搅拌工艺及复配含量关系,制备出性能良好的传动用磁流变液,并根据传动用磁流变液的特殊要求,对其各组分热特性、颗粒热磁特性、热氧化特性、磁流变液及硅油热膨胀特性、磁流变液经高温处理后沉降特性进行了研究,得到其性能指标。
     总结了磁流变液屈服应力测试方法,指出了测试过程中面临的问题,研制了一种具有温控功能的圆盘式屈服应力测试仪,并对该仪器的磁路进行了仿真及实验分析;在该磁流变液屈服应力测试仪上,对带有不同径向沟槽数目、沟槽宽度和沟槽密度的传动圆盘开展了壁面特性实验,并根据壁面特性研究结果,采用较优传动壁面,测试了自制磁流变液的常温及高温剪切屈服应力。
     设计并加工出一种带有水流冷却通道的多盘式磁流变传动装置,分析了其电磁场和温度场,并在该装置的基础上,搭建了多盘式动力传动试验台,开展了其传动特性、动态响应性能、温升特性、散热性能等试验研究。研究取得的成果对磁流变液制备及其动力传动技术的深入研究具有指导意义,为磁流变传动装置的设计和磁流变动力传动技术的应用推广提供技术支持。
Magnetorheologcial Fluids (MRF), which is composed of soft magnetic particlessuspended in carrier fluid and stabilizer, is a new type intelligent material with attractiverheological properties upon the application of an external magnetic field, and has awidespread use in the occasions of damping control and power transmission,Magnetorheological Transmission Device (MRTD), with superior transmissionperformance and application prospect, is an important application of MRF. According to theexisting problems, the following aspects are thoroughly researched in the dissertation.
     According to the special requirements of transmission MRF, of which each componentis chosen and the performance is analyzed. A variety of MRF is prepared by the method ofcarrier fluid displacement. The influence rule of surfactant type and content on MRFsedimentation stability and apparent viscosity is researched, and the effect of singlesurfactant is obtained.
     According to the application effect of single surfactant, the surfactant compoundtechnology is put forward, and the influence rule of compound sequence, process andcontent on compound effect is studied, the more excellent preparation process andcompound content relation is obtained, and then, the transmission MRF is prepared by themethod obtained above, the various components of the thermal properties, particle thermalmagnetic properties, thermal oxidation characteristics, MRF and silicone oil thermalexpansion characteristics, sedimental stability of MRF processed by high temperature areall studied.
     The method of testing yield stress of MRF is summarized, and the problems existingin the process of testing yield stress are pointed out. A disk type yield stress measurementinstrument with temperature control function is designed, and the simulation andexperimental analysis on the magnetic circuit of the instrument is performed. What’s more,the wall characteristic of MRF is tested in the instument by the method of yield stressmearsurement for different transmission disks with different groove number, groove widthand groove density. On the basis of research results of wall characteristics, the moreexcellent transmission wall is adopted to test the shear yield stress of MRF in normal andhigher temperature.
     A multiplate MRTD with water flowing channel is designed, of which the magneticcircuit and temperature field are analyzed by the FEM software. And then, the multiplatemagnetorheological transmission experimental set-up is established, the related studies on the transmission characteristic, dynamic response performance, temperature risecharacteristic and heat dissipation of MRTD are developed. The research results play aguiding role in the thorough research on MRF and MRTD technology, and providetechnical support for the design of MRTD and application and popularization of MRTDtechnology.
引文
[1] Carlson J D, Catanzarite D M, Clair K A St. Commercial Magneto-rheological FluidDevices[C].5th Int. Conf. on Electro-Rheological, Magneto-Rheological Suspensions andAssociated Technology, Sheffield,1995:20-28.
    [2] Koichiro Hayashi, Wataru Sakamoto, Toshinobu Yogo. Magnetic and Rheological Propertiesof Monodisperse Fe3O4Nanoparticle/organic hybrid[J]. Journal of Magnetism and MagneticMaterials,2009,321:450-457.
    [3] Bossis G, Volkova O, Lacis S and Meunier A. Magnetorheology: Fluids, Structures andRheology[J]. Lecture Notes in Physics,2003,594:202-230.
    [4] Richter L, Zipser L, Lange U. Properties of Magnetorhologic fluids[J]. Sensors and Materials,2001,13(7):385-397.
    [5] Carlson J D, Catanzarite D M, St.Clair K A. Commercial Magneto-rheological Fluid Devices[J]. International Journal of Modern Physics B,1996,10(23-24):2857-2865.
    [6] Carlson J D, Catanzarite D M. Magnetorheological fluid devices and process of controllingforce in exercise equipment utilizing same [P]. US Patent5816372,1998.
    [7] Carlson J D. Magnetorheological fluid actuators [A]. In:Janocha H. Adaptronics and SmartStructures [C]. Berlin:Springer-Verlag Berlin Heidelberg,1999:180-195.
    [8] Bica I. Magnetorheological suspension electromagnetic brake[J]. Journal of Magnetism andMagnetic Materials,2004,270(3):321-326.
    [9]易成建.磁流变液:制备、性能测试与本构模型[D].重庆:重庆大学,2011.
    [10] Rabinow J. The Magnetic Fluid Clutch[J]. AIEE Transactions,1948,67:1308-1315.
    [11] Rabinow J. Magnetic Fluid Torque and Force Transmitting Device. U.S.2575360[P].1951.
    [12] Carlson J D, Jolly M R, MR Fluid. Foam and Elastomer Devices[J]. Mechatronics2000,10:555-569.
    [13] Carlson J D, Matthis W, Toscano J R. Smart Prosthetics Based on MagnetorheologicalFluids[J]. The International Society for Optical Engineering,2001,4332:308-316.
    [14] Jolly M R, Bender J W, Carlson J D. Properties and Applications of CommercialMagnetorheological Fluids[J]. Journal of Intelligent Material Systems and Structures,1999,10(1):5-13.
    [15] Margida A J, Weiss K D, Carlson J D. Magnetorheological Material Based on Iron AlloyParticles[J]. International Journal of Modern Physics B,1996,10(23-24):3335-3341.
    [16] Goncalves,Fernando D, Ahmadian, Mehdi, Carlson J D. Investigating the MagnetorheologicalEffect at High Flow Velocities[J]. Smart Materials and Structures,2006,15(1):75-85.
    [17] Ginder J M, Davis L C, Elie L D. Rheology of Magnetorheological Fluids: Models andMeasurements[C]. Proceeding of the5th International Conference on Electro-RheologicalFluids, Magento-Rheological Suspensions and Associated Technology, World Scientific,Singapore,1996:504-514.
    [18] Ginder, John M. Behavior of Magnetorheological Fluids[J]. MRS Bulletin,1998,23(8):26-29.
    [19] Ginder J M, Sproston J L. The Performance of Field-Controllable Fluids and Devices[C].5thInternational Conference on New Actuators. AXON Technologie Consult Gmbh, Bremen,Germany,1996:313-319.
    [20] Pawlak A M. Intellectual Property Mapping of Mechatronics[C]. XL Ⅲ InternationalSymposium on Electrical Machines, PTETIS Publishers, Poland,2007:17-20.
    [21] Lyengar, Vardarajan R. Wear Testing of Seals in Magneto-rheological Fluids[J]. TribologyTransactions,2004,47(1):23-28.
    [22] Laun H M, Kormann C, Willenbacher N. Rheometry on Magnetorheological Fluids.1. SteadyShear Flow in Stationary Magnetic Fields[J]. Rheologica Acta,1996,35(5):417-432.
    [23] Kormann C, Laun H M, Richter H J. MR Fluids with Nano-Sized Magnetic Particles[J].International Journal of Modern Physics B,1996,10(23-24):3167-3172.
    [24] Mazlan S A. The behaviour of Magnetorheological Fluids in Squeeze Mode[D]. Dublin CityUniversity,2008.
    [25] Kormann C, Laun H M, Hichter H J. MR Fluids with Nano-sized Magnetic Particles. In:Bullogh W A ed. Proc of the5th International Conference on ER Fluids, MR Suspensions andAssociated Technology[C]. Singapore: World Scientific,1996,363-367.
    [26] Kordonsky W I, Demchuk S A. In: Bullogh W A ed. Proc of the5th Int Conf on ER Fluids,MR Suspensions and Associated Technology[C]. Singapore: World Scientific,1996.613-619.
    [27] Ashour O, Kinder D, Giurgiutiu V, et al. In: Simmons W C ed. Proc of SPIE, Vol3040.Washington: SPIE,1997.174-184.
    [28] Phule P P, Ginder J M. In: Nakano M, Koyama K eds. Proc of the6th Int Conf on ER Fluids,MR Suspensions and their Applications[C]. Singapore: World Scientific,1998.445-453.
    [29] Genc S, Phule P P. Rheological properties of magnetorheological fluids[J]. Smart materialsand structures,2002,11:140-146
    [30] Ginder J M, Elie L D, Davis L C.[P]. U S Patent5549837,1996.
    [31] Ulicny J C, Mance A M. Evaluation of Electroless Nickel Surface Treatment for Iron Powderused in MR Fluids[J]. Materials Science and Engineering,2004,369:309-313.
    [32] Foister R T.[P]. U S Patent5667715,1997.
    [33] Dodbiba G, Park H S, Okaya K, et al. Investigating magnetorheological properties of amixture of two types of carbonyl iron powders suspended in an ionic liquid[J]. Journal ofmagnetism and magnetic materials,2008,320(7):1322-1327.
    [34] Liu Y D, Choi H J. Carbon nanotube-coated silicated soft magnetic carbony iron microspheresand their magnetorheology[J]. Journal of Applied physics,2012,111(7):502-504.
    [35]徐赵东,冉成崧.一种磁流变液的制备方法[P].中国专利,201010113845.3,2010.
    [36]张平,刘奇,王东亚.稳定型磁流变液及制备方法[P].中国专利,02133821.3,2002.
    [37]张平,刘奇,唐龙.磁流变液[P].中国,200410081618.1,2004.
    [38]唐龙,岳恩,刘奇,赵光明,张平.高性能磁流变液[P].中国专利,200910104152.5,2009.
    [39]刘书朋,严壮志.一种磁流变液及其制备方法[P].中国专利,200410025335.5,2004.
    [40]浦鸿汀,蒋峰景,杨正龙.采用聚苯乙烯微球制备磁流变液用空心磁性复合微粒的方法
    [P].中国专利,200410084318.9,2004.
    [41]浦鸿汀,蒋峰景.一种基于碳纳米管的磁流变液用轻质磁性复合微粒及其制备方法[P]中国专利,200410067824.7,2004.
    [42]浦鸿汀,蒋峰景,杨正龙.一种磁流变液用软磁性复合微粒及其制备方法[P].中国专利,200510111827.0,2005.
    [43]浦鸿汀,蒋峰景,杨正龙.一种具有抗氧化性的磁流变液用磁性颗粒及其制备方法[P].中国专利,200510026850.X,2005.
    [44]程海斌,张剑,高为鑫,张清杰,王金铭,袁润章.一种稳定的硅油基磁流变液及其制备方法[P].中国专利,200610124728.0,2006.
    [45]程海斌,张清杰,高为鑫,王金铭,赵文俞,袁润章.一种稳定的水基磁流变液及其制备方法[P].中国专利,200610124727.6,2006.
    [46]官建国,李立春,陶剑青,程海斌,张清杰,王金铭,袁润章.亲水性聚合物包裹的磁性粒子及其制备方法以及由其组成的水基磁流变液[P].中国专利200410060854.5,2004.
    [47]梁锡昌,吕宏展,肖山.一种不沉淀磁流变液[P].中国专利,200810069207.9,2008.
    [48]钢铁研究总院,李红云,柳学全.一种含超细非晶材料的磁流变液[P].中国专利,200510134250.5,2005.
    [49]关新春.磁流变液及其智能结构减振驱动器的理论与试验研究[D],哈尔滨:哈尔滨工业大学,2000.
    [50]杨仕清,彭斌,王豪才.超细Co-Ni合金复合磁流变液的制备及流变性质研究[J].2001,32(2):142-146.
    [51]杨仕清,彭斌,蒋洪川,张文旭,王豪才.复合智能磁流变液的制备及流变性质研究[J].材料工程,2000,(9):21-24.
    [52]金宝炎,包小倩,张茂才,乔祎.表面改性对磁流变液稳定性和磁流变性能的影响[J].磁性材料及器件,2007,38(4):51-54.
    [53]张进秋,张建,贾进峰.悬浮稳定的履带车用磁流变液的配制[J].功能材料,2007,38:1242-1244.
    [54]陈维清,杜成斌,万发学.表面活性剂与触变剂对磁流变液沉降稳定性的影响[J].2010,41(2):55-57.
    [55]唐泳波.磁流变液研究与磁流变柔性夹具结构设计[D].广东:广东工业大学,2011.
    [56]易成建.磁流变液:制备、性能测试与本构模型[D].重庆:重庆大学,2011.
    [57]岳恩,唐龙,罗顺安,张平.高性能磁流变液悬浮相表面改性的研究[J].功能材料,2011,42(8):1433-435.
    [58]李国强,孔亚男,张进秋,张建,基于偶极子理论的磁流变液流变特性模拟分析[J].装甲兵工程学院学报,2010,24(3):77-81.
    [59] Gorodkin S, Zhuravski N. Surface shear stress enhancement under mr fluid deformation[J].International Journal of Modern Physics B,2002,16(17):2745-2750.
    [60] Laun H M, Gabriel C, Kieburg C. Wall material and roughness effects on transmittable shearstresses of magnetorheological fluids in plate-plate magnetorheometry[J]. Rheol Acta,2011,50:141-157.
    [61]胡元.磁流变液屈服应力测试方法的研究[D].徐州:中国矿业大学,2005.
    [62]苗运江.磁流变液屈服应力测试影响因素与磁流变液软启动装置的研究[D].徐州:中国矿业大学,2009.
    [63]田祖织.磁流变液及其传动技术研究[D].徐州:中国矿业大学,2012.
    [64] Kavlicoglu B M, Gordaninejad F, Evrensel C A, et al. A High-Torque MagnetorheologicalFluid Clutch. Proceeding of SPIE Conference on Smart Materials and Structures[C]. SanDiego,2002,4697:1-8.
    [65] Kavlicoglu B, Gordaninejad F, Evrensel C A, Fuchs F, et al. A Multi-plateMagneto-rheological Fluid Limited Slip Differential Clutch [C]. Proceedings SPIE SmartStructures and Materials Conference, Industrial and Commercial Applications,2003,5054:341–349.
    [66] Kikuchi T, Ikeda K, Otsuki K, Kakehashi T, et al. Compact MR Fluid Clutch Device forHuman-friendly Actuator[C].11th Conference on Electrorheological Fluids andMagnetorheological Suspensions, IOP Publishing,2009:1-4.
    [67] G. Routhier, Y. St-Amant. Torque Capacity Enhancement of a Magnetorheological FluidClutch Using the Squeeze-Strengthen Effect[C]. International workshop on Smart Materials,Structures&NDT in Aerospace,2011.
    [68] Swaminathan Gopalswamy, Rochester Hills, Samuel Miller Linzell, Troy, et al.Magnetorheological Fluid Fan Clutch[P]. U.S Patent5896965,1997.
    [69] Eric A, Bansbach, Fayetteville. Torque Transfer Apparatus Using MagnetorheologicalFluids[P]. U.S Patent5845753,1998.
    [70] Swaminathan Gopalswamy, Rochester Hills, Gary Lee Jones, Farmington Hill, et al.Magnetorheological Transmission Clutch[P]. U.S Patent5823309,1997.
    [71] Herbert Steinwender, Raaba. Magnetorheologic clutch[P]. U.S Patent7461731B2,2008.
    [72] James P. Dolan, Manilus. Torque Transfer Coupling with Magnetorheological ClutchActuator[P]. U.S Patent7083030B2,2006.
    [73] James P. Dolan, Manilus. Hydromechanical Coupling with Clutch Assembly andMagnetorheological Clutch Actuator[P]. U.S Patent6811007B2,2004.
    [74] Thomas C. Bowen, Rochester Hills. Torque Transfer Clutch with MagnetorheologicalActuator and Ball Screw Operator[P]. U.S Patent6725990B2,2004.
    [75]蒋建东.磁流变传动技术与器件的研究[D].重庆:重庆大学,2004.
    [76]梁锡昌,蒋建东.磁流变无级调速技术的研究[J].机械工程学报,2005,41(9):146-149.
    [77]梁锡昌,蒋建东.磁流变无级变速器[P].中国专利: CN1523251A,2004.
    [78]郑军.磁流变传动理论与试验研究[D].重庆:重庆大学,2008.
    [79]郑军,张光辉,曹兴进.传动装置中磁流变液的稳态流动分析[J].中南大学学报,2008,39(1):149-154.
    [80]郑军,曹兴进,张光辉.传动装置中磁流变液瞬态流动特性的数值计算[J].西安交通大学学报,2007,41(9):1053-1057.
    [81]郑军,张光辉,曹兴进.磁流变传动装置工作机理分析[J].重庆大学学报,2007,30(11):19-22.
    [82]曹兴进,郑军.磁流变软启动装置[P].中国专利: CN100359198C,2004.
    [83]邹刚.杯状磁流变液离合器的性能测试与优化设计[D].哈尔滨:哈尔滨工业大学,2009.
    [84] H.T. Guo, W, H. Liao. A Novel Multifunctional Rotary Actuator with MagnetorheologicalFluid[J]. Smart Materials and Structures,21(6),2012.
    [85]崔亮.基于磁流变技术的离合器设计、控制及实验研究[D].南京:南京理工大学,2008.
    [86]胡红生,王炅,崔亮,蒋学争等.磁流变风扇离合器结构设计与可控性分析[J].南京理工大学学报,2010,34(3):342-246.
    [87]华文林.磁流变液制动器的设计与研究[D].武汉:武汉理工大学,2002.
    [88]孟维佳.双平板式磁流变液离合器的研究设计[D].哈尔滨:哈尔滨工业大学,2006.
    [89]单慧勇,王太勇.圆盘式磁流变调速风扇离合器的理论研究[J].润滑与密封,2006,(4):78-80.
    [90]黄金,廖林清,林昌华.圆筒式磁流变离合器的设计分析[J].功能材料,2006,37(5):760-764.
    [91]杨绍普,潘存志,申玉良,陈恩利等.磁流变液风扇离合器[P].中国专利: CN1928381A,2006.
    [92]申玉良,藩存治,张军刚.汽车风扇磁流变液离合器模糊智能控制系统研究[J].石家庄铁道学院学报,2005,18(2):49-53.
    [93]肖进新.表面活性剂应用原理[M].北京:化学工业出版社,2003.
    [94]梁文平.表面活性剂在分散体系中的应用[M].北京:中国轻工业出版社,2003.
    [95] BOSSIS G, LACIS S, MEUNIER A, et al. Magnetorheological fluids[J]. Journal ofMagnetism and Magnetic Materials,2002,252:224-228.
    [96] Jeon D, Park C, Park k. Virbration suppression by controlling an MR damper[C]. In: NakanoM, Koyama K. Proceeding of the6th international conference on ER fluids, MR suspensionsand their applications, Singapore: World Scientific,1998:853-860.
    [97] Weiss K D, Duclos T G, Carlson J D, et al. High strength magneto-and electro-rheologicalfluids[J]. Society of Automotive Engineers, SAE Paper,1993.
    [98]吕春续.表面活性剂理论与技术[M].南京:江苏科技出版社,1991.
    [99]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991.
    [100]唐龙,岳恩,罗顺安,赵光明等.磁流变液温度特性研究[J].功能材料,2011,42(6):1065-1067.
    [101]刘加福.磁流变液制备及其性能评价方法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [102]唐泳波.磁流变液研究与磁流变柔性夹具结构设计[D].广州:广东工业大学,2011.
    [103]王金铭.水基磁流变液的制备和性能研究[D].武汉:武汉理工大学,2008.
    [104]顾瑞.磁性液体的优化制备及其流变性能的分子动力学模拟[D].合肥:中国科学技术大学,2010.
    [105]李发胜.水基磁流变液稳定性的研究[D].西南大学,2007.
    [106]汪小惠.烷基ED3A@Fe复合粒子及油基磁流变液的制备和表征[D].武汉:武汉理工大学,2008.
    [107]王大坤.羰基铁粉磁流变液特性及其初步应用研究[D].重庆:重庆大学,2007.
    [108]张剑.噻二唑衍生物的合成及其在磁流变液中的应用研究[D].武汉:武汉理工大学,2007.
    [109]左兰.有机无机复合磁性粒子和水基磁流变液的制备和表征[D].武汉:武汉理工大学,2010.
    [110]苏良碧.羰基铁及羰基铁—环氧树脂复合粒子的研究[D].武汉:武汉理工大学,2002.
    [111]侯鹏.磁流变液稳定性的评价研究[D].武汉:武汉理工大学,2008.
    [112] Foister, R T, Lyengar V R, Yurgelevic S M. Stabilization of magnetorheological fluidsuspensions using a mixture of organoclays[P]. US Patent:20030111634,2003.
    [113] Gorodkin S R, Kordonski W I, Medvedeva E V, et al. Amethod and device for measurementof a sedimentation constant of magnetorheological fluids[J]. Review of scientific instruments,2000,71(6):2476-2480.
    [114]李星,李虹,李奎白.一种研究絮凝过程的新方法—透光脉动检测技术[J].环境科学学报,1997,17(4):429-433.
    [115]江万权,朱春玲,陈祖耀.微米级浓悬浮体系中粒子的沉降稳定性及其表征方法[J].中国科学技术大学学报,2001,31(6):663-667.
    [116] Kordonski W I, Gorokin S R, Novikova Z A. The influence of ferropatical concentration andsize on MR fluid properties[C]. Proceeding of the6th international conference on ER fluids,MR suspensions and their applications, Singapore: world scientific,1998,535-542.
    [117] Podszun W, Halle O, Kijlstra J, Bloodworth R. Magnetorheological liquids, a process forproducing them and their use, and a process for producing magnetizable particles coated withan organic polymer[P]. US Patent:5989447,1999.
    [118] Bednarek S. Magnetic suspensions based on composite particles[J]. Journal of Magnetism andMagnetic Material,1998,183(1-2):195-200.
    [119] Tian Zuzhi, Hou Youfu, Wang Nannan. The temperature field of the instrument for measuringthe yield stress of magnetorheological fluid[C],2011International Conference on Electronic&Mechanical Engineering and Information Technology (EMEIT2011).2011,8:2415-2418.
    [120] W H Li, H Du, G Chen, N Q Guo. Experimental and modeling approaches of MRbehaviorsunder large step strains[J]. Materials Science and Engineering,2003,A340:251-257.
    [121]潘胜,吴建耀,胡林等.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-266.
    [122]胡元.磁流变液屈服应力测试方法的研究[J],矿山机械,2006,10(34):99-101.
    [123]金昀.磁流变液剪切屈服应力的实验测试和理论计算[D].合肥:中国科学技术大学,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700