用户名: 密码: 验证码:
渗流—应力耦合作用下岩石损伤破裂演化模型与煤层底板突水机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程扰动作用诱发的岩体内部损伤和破裂及其造成的岩体渗流场改变是导致大规模岩体工程失稳和地质灾害的重要原因之一。在采矿工程中,采动矿压和煤层底板承压水压联合作用引发的底板突水灾害一直是威胁我国煤矿安全生产的重大问题之一。本文以煤层底板突水灾害为研究背景,综合运用理论分析、数值模拟和现场微震监测相结合的方法,对渗流-应力耦合作用下岩石损伤破裂演化过程以及煤层底板突水机理进行了深入、系统地研究,取得了如下创新性成果:
     (1)克服了经典的Biot孔隙弹性理论无法描述岩石介质内部结构损伤演化的局限,将微裂纹损伤张量引入到Biot孔隙弹性理论中,构建了基于微裂纹演化的岩石渗流-应力-损伤耦合模型,导出了应力诱导的微裂纹瞬时扩展和时间相关的微裂纹亚临界扩展的演化方程,建立了微裂纹损伤演化与岩石宏观弹性刚度张量、渗透张量、Biot有效应力系数张量、Biot模量以及声发射特征参数之间的联系。结合单个岩石REV分别承受渗流-应力耦合短期和长期作用的两个算例,验证了耦合模型在描述细观损伤引起的岩石宏观各向异性、峰前非线性强化、体积膨胀、声发射活动、渗透率演化以及蠕变行为方面的普适性和有效性。
     (2)提出了以细观单元组合和嵌在其中的随机分布微裂纹群来表征真实岩石介质的双尺度概念模型,据此将已建立的岩石渗流-应力-损伤耦合模型与宏观有限元模型有机结合,同时引入岩石介质的细观非均匀性、细观单元破裂准则以及破裂细观单元的刚度退化表征方法,建立了渗流-应力耦合作用下岩石损伤破裂演化的宏-细观双尺度数值模型,从根本上克服了传统岩石破裂过程数值分析模型中采用唯象估计方法的固有缺陷。将该模型应用于岩石双轴压缩-渗流耦合、岩石蠕变-渗流耦合以及岩石水力压裂等数值试验中,结果表明该模型能够以一种物理真实、可视化的方式有效地模拟出渗流-应力耦合作用下岩石从细观损伤演化至宏观破裂的全过程以及渗流动态演化规律。
     (3)基于建立的宏-细观数值模型,系统研究了承压水体上完整煤层底板和含陷落柱煤层底板的破坏突水过程,分析了工作面推进过程、顶板破断垮落压实作用、底板岩体非均质性、底板承压含水层水压力、时间效应等因素对底板隔水层损伤破裂和渗透性演化以及底板陷落柱损伤活化规律的影响,深入揭示了采动应力和承压水压力联合作用下底板“突水通道”形成与渗流突变机理,为我国承压水体上煤炭安全开采和煤层底板突水防治提供了参考依据。
     (4)采用高精度微震监测技术对某带压开采工作面回采过程中底板破裂的微震事件与微震能量强度进行了连续、动态地监测,并结合建立的宏-细观数值模型对该工作面煤层底板的破裂演化过程进行了数值模拟,准确地查明了底板采动破坏带的具体位置与参数,成功地指导了该带压开采工作面的安全高效生产;据此提出了将高性能微震监测技术和本文开发的岩石破裂过程数值模拟技术有机结合来实现煤层底板突水灾害监测预警的新方法,具有良好的工程应用前景。
Fracturing evolution and its associated permeability change in rock, induced byengineering disturbance, usually result in the instability and geological disasters oflarge-scale rock engineering. In mining engineering, one of the problems which seriouslythreat coal mine production safety in China is the water inrush disaster which results fromthe combined effects of mining-induced stresses and confined aquifer pressure. Theevolution of fracturing and flow in rock under coupled hydraulic and mechanical loadinghas important theoretical and engineering significance in understanding and revealing themechanism of water inrush from coal seam floor and many other related rock engineering.Motivated by the water-inrush disaster in coal mine, the evolution of rock fracturing andthe mechanism of water-inrush from coal seam floor were investigated comprehensively bythe combined method of theoretical analysis, numerical simulation and in-situmicroseismic monitoring. The main conclusions are as follows:
     (1) The limitations of classical Biot poroelastic theory which cannot describe thechange of internal structure with rock media is overcame. The microcrack damage tensorwas introduced into classical Biot poroelastic theory and the microcrack-based coupledhydraulic-mechanical-damage model of rock was established. The governing equations ofstress-induced microcrack critical growth and time-dependent subcritical growth werederived, as well as the equations of elastic stiffness tensor, permeability tensor, Bioteffective stress coefficient tensor and Biot modulus. Two examples of the REV under theshort-term and long-term hydraulic-mechanical coupled loading were used to verify themodel and the results show the universality and effectiveness of the model in describinganisotropy, nonlinear strengthen, volume dilatation, permeability evolution, acousticemission activity and creep behavior of rock medium.
     (2) A two-scale conception model which assumes the macroscopic rock medium arecomposed of a series of microscopic elements in which random microcracks are embedded.Combining the microcrack-based coupled hydraulic-mechanical-damage model with FEMmodel, a combined macroscopic-microscopic numerical model for the analysis of rockfracturing was proposed, in which the heterogeneity of rock, the rupture criterion ofmicroscopic element and the stiffness degradation equation of the failed elements wereincorporated. The verification examples of biaxial compression and flow coupling, creepand flow coupling and hydraulic fracturing of rock specimen were employed to the checkthe model and the results show that the proposed model has the ability to replicate theevolution of fracturing and associated fluid flow within rock medium effectively.
     (3) The developed macroscopic-microscopic model was used to simulate water inrushprocess of the complete coal seam floor and of the coal seam floor containing collapsecolumn above a confined aquifer. The fracturing evolution of water-resisting layer of coalseam floor, permeability change, collapse column activation and the formation process of“water-inrush channel” were investigated and the influence of workface advancing process,roof rupture, heterogeneity of the floor, confined water pressure and time on fracturing andpermeability evolution were revealed. The results provide a significant guidance for safemining above confined water in China.
     (4) High precision microseismic monitoring technology was used to monitor themicroseismic events and energy intensity in a continuous and dynamic way in certain coalmine. Also, the proposed model was used to analyze the mechanism of water inrush fromcoal seam floor. A new method, combining high precision microseismic monitoringtechnology with numerical simulation of rock fracturing, was proposed to predict andforecast the water-inrush disaster of coal seam floor, which has a good prospect ofengineering application.
引文
[1]赵阳升.多孔介质多场耦合作用及其工程响应[M].北京:科学出版社,2010.
    [2]刘仲秋,章青.岩体中饱和渗流应力耦合模型研究进展[J].力学进展,2008,38(5):585-600.
    [3] Bai, M., Elsworth, D. Coupled processes in subsurface deformation, flow, and transport[M]. Reston,VA, United States: American Society of Civil Engineers,2000.
    [4]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [5]杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [6]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
    [7]缪协兴,等.干旱半干旱矿区保水采煤方法与实践[M].徐州:中国矿业大学出版社,2011.
    [8]王连国,宋扬.底板突水的非线性特征及预测[M].北京:煤炭工业出版社,2001.
    [9]谢兴华,速宝玉,高延法,段祥宝.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993.
    [10]乔丽苹,刘建,冯夏庭.砂岩水物理化学损伤机制研究[J].岩石力学与工程学报,2007,26(10):2117-2125.
    [11]杨慧,曹平,江学良.水-岩化学作用等效裂纹扩展细观力学模型[J].岩土力学,2010,31(7):268-277.
    [12] Lomize, G. Flow in fractured rocks[J]. Gosenergoizdat, Moscow,1951,127.
    [13] Louis, C. Rock hydraulics: Report. BRGM, ORLEANS, FRANCE, NO.74SGN035AME,1974[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1975,12(2):59.
    [14]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,1987,14(2):32-33.
    [15]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997,18(4):59-62.
    [16]郑少河,赵阳升.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [17] Jones Jr, F. A laboratory study of the effects of confining pressure on fracture flow and storagecapacity in carbonate rocks[J]. Journal of Petroleum Technology,1975,27(1):21-27.
    [18] Kranzz, R., Frankel, A., Engelder, T., Scholz, C. The permeability of whole and jointed Barregranite[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1979,16(2):225-234.
    [19]李世平,李玉寿.岩石全应力应变过程对应的渗透率—应变方程[J].岩土工程学报,1995,17(2):13-19.
    [20]姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.
    [21]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):381-385.
    [22] Ferfera, F., Sarda, J., Bouteca, M., Vincké, O. Experimental study of monophasic permeabilitychanges under various stress paths[J]. International Journal of Rock Mechanics and MiningSciences,1997,34(3):12.
    [23] Souley, M., Homand, F., Pepa, S., Hoxha, D. Damage-induced permeability changes in granite: acase example at the URL in Canada[J]. International Journal of Rock Mechanics and MiningSciences,2001,38(2):297-310.
    [24] Wang, J.-A., Park, H. Fluid permeability of sedimentary rocks in a complete stress–strainprocess[J]. Engineering Geology,2002,63(3):291-300.
    [25] Xu, W., Wang, R., Wang, W., Zhang, Z., Zhang, J. Creep properties and permeability evolution intriaxial rheological tests of hard rock in dam foundation[J]. Journal of Central South University ofTechnology,2012,19(1):252-261.
    [26]何峰.岩石蠕变-渗流耦合作用规律研究[D].阜新:辽宁工程技术大学,2010.
    [27]阎岩.渗流作用下岩石蠕变试验与变参数蠕变方程的研究[D].北京:清华大学,2009.
    [28] Vinegar, H., De Waal, J., Wellington, S. CT studies of brittle failure in Castlegate sandstone[J].International journal of rock mechanics and mining sciences&geomechanics abstracts,1991,28(3):441-450.
    [29]曹广祝,仵彦卿,丁卫华,王殿武.单轴—三轴和渗透水压条件下砂岩应变特性的CT试验研究[J].岩石力学与工程学报,2005,24(s2):5733-5739.
    [30] Noiriel, C., Renard, F., Doan, M.-L., Gratier, J.-P. Intense fracturing and fracture sealing inducedby mineral growth in porous rocks[J]. Chemical Geology,2010,269(3):197-209.
    [31] Watanabe, N., Ishibashi, T., Ohsaki, Y., Tsuchiya, Y., Tamagawa, T., Hirano, N., Okabe, H.,Tsuchiya, N. X-ray CT based numerical analysis of fracture flow for core samples under variousconfining pressures[J]. Engineering Geology,2011,123(4):338-346.
    [32] Oda, M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rockmasses[J]. Water Resources Research,1986,22(13):1845-1856.
    [33] Oda, M., Katsube, T., Takemura, T. Microcrack evolution and brittle failure of Inada granite intriaxial compression tests at140MPa[J]. Journal of Geophysical Research,2002,107(B10).
    [34] Oda, M., Takemura, T., Aoki, T. Damage growth and permeability change in triaxial compressiontests of Inada granite[J]. Mechanics of Materials,2002,34(6):313-331.
    [35]仵彦卿,曹广祝,丁卫华. CT尺度砂岩渗流与应力关系试验研究[J].岩石力学与工程学报,2005,24(23):4204-4209.
    [36]李根,唐春安,李连崇.水岩耦合变形破坏过程及机理研究进展[J].力学进展,2012,42(5):593-619.
    [37] Tsang, C.-F., Jing, L., Stephansson, O., Kautsky, F. The DECOVALEX III project: A summary ofactivities and lessons learned[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(5):593-610.
    [38] Tsang, C.-F., Stephansson, O., Jing, L., Kautsky, F. DECOVALEX Project: from1992to2007[J].Environmental Geology,2009,57(6):1221-1237.
    [39] Rutqvist, J., Tsang, C.-F. Analysis of thermal–hydrologic–mechanical behavior near anemplacement drift at Yucca Mountain[J]. Journal of Contaminant Hydrology,2003,62:637-652.
    [40] Rutqvist, J., Freifeld, B., Min, K.-B., Elsworth, D., Tsang, Y. Analysis of thermally inducedchanges in fractured rock permeability during8years of heating and cooling at the Yucca MountainDrift Scale Test[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1373-1389.
    [41] Martino, J., Chandler, N. Excavation-induced damage studies at the underground researchlaboratory[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1413-1426.
    [42] Read, R.20years of excavation response studies at AECL's Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275.
    [43] Martin, C. Characterizing in situ stress domains at the AECL Underground Research Laboratory[J].Canadian Geotechnical Journal,1990,27(5):631-646.
    [44]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].沈阳:东北大学,2001.
    [45]盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学,1998,19(002):92-98.
    [46]仵彦卿.岩体结构类型与水力学模型[J].岩石力学与工程学报,2000,19(6):687-691.
    [47] Long, J.C. Porous media equivalents for networks of discontinuous fractures[J]. Water ResourcesResearch,1982,18(3):645-658.
    [48]张有天,张武功.裂隙岩石渗透特性渗流数学模型及系数量测[J].岩石力学,1982,8:41-52.
    [49]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [50] Wittke, W. Rock mechanics: theory and applications, with case histories[M]. Berlin and New YorkSpringer-Verlag,1990.
    [51] Nordqvist, A.W., Tsang, Y., Tsang, C., Dverstorp, B., andersson, J. A variable aperture fracturenetwork model for flow and transport in fractured rocks[J]. Water Resources Research,1992,28(6):1703-1713.
    [52] Dershowitz, W., Gordon, B., Kafritsas, J., Herda, H.A new three-dimensional model for flow infractured rock. in Proceedings,17th International Congress of the International Association ofHydrogeologists, Tucson.1985.
    [53]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4):338-344.
    [54]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质,1992,19(1):12-14.
    [55] Barenblatt, G., Zheltov, I.P., Kochina, I. Basic concepts in the theory of seepage of homogeneousliquids in fissured rocks[J]. J. Appl. Math. Mech,1960,24(5):1286-1303.
    [56] Warren, J.E., Root, P.J. The behavior of naturally fractured reservoirs[J]. Old SPE Journal,1963,3(3):245-255.
    [57]仵彦卿.岩体水力学基础(六)—岩体渗流场与应力场耦合的双重介质模型[J].水文地质工程地质,1998,25(1):43-46.
    [58]柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型[J].岩石力学与工程学报,2000,19(6):712-717.
    [59] Aifantis, E. On the problem of diffusion in solids[J]. Acta Mechanica,1980,37(3):265-296.
    [60] Zhao, Y., Chen, M. Fully coupled dual-porosity model for anisotropic formations[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2006,43:1128-1133.
    [61] Zhou, J., Shao, J.F., Xu, W. Coupled modeling of damage growth and permeability variation inbrittle rocks[J]. Mechanics Research Communications,2006,33(4):450-459.
    [62] Vandamme, L., Roegiers, J.-C. Poroelasticity in hydraulic fracturing simulators[J]. Journal ofPetroleum Technology,1990,42(9):1199-1203.
    [63] Bruno, M., Nakagawa, F. Pore pressure influence on tensile fracture propagation in sedimentaryrock[J]. International journal of rock mechanics and mining sciences&geomechanics abstracts,1991,28(2):261-273.
    [64] Simpson, G., Guéguen, Y., Schneider, F. Permeability enhancement due to microcrack dilatancy inthe damage regime[J]. Journal of Geophysical Research,2001,106(B3):3999-4016.
    [65]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337-3341.
    [66]谢兴华.岩体水力劈裂机理试验及数值模拟研究[J].2004.
    [67]唐红侠.水力劈裂条件下裂隙介质水力特性研究[D][D].南京:河海大学,2005.
    [68]连志龙,张劲,吴恒安,王秀喜,薛炳.水力压裂扩展的流固耦合数值模拟研究[J].岩土力学,2008,29(11):3021-3026.
    [69] Yuan, S.C., Harrison, J.P. A review of the state of the art in modelling progressive mechanicalbreakdown and associated fluid flow in intact heterogeneous rocks[J]. International Journal of RockMechanics and Mining Sciences,2006,43(7):1001-1022.
    [70]冯西桥,余寿文.准脆性材料细观损伤力学[M].高等教育出版社,2002.
    [71] Kuna-Ciska, H., Skrzypek, J.J. CDM based modelling of damage and fracture mechanisms inconcrete under tension and compression[J]. Engineering Fracture Mechanics,2004,71(4):681-698.
    [72] Contrafatto, L., Cuomo, M. A framework of elastic–plastic damaging model for concrete undermultiaxial stress states[J]. International Journal of Plasticity,2006,22(12):2272-2300.
    [73]曹文贵,张升,赵明华.软化与硬化特性转化的岩石损伤统计本构模型之研究[J].工程力学,2006,23(11):110-115.
    [74]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.
    [75]张毅,廖华林,李根生.岩石连续损伤统计本构模型[J].石油大学学报:自然科学版,2004,28(3):37-39.
    [76]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003,22(1):30-34.
    [77] Challamel, N., Lanos, C., Casandjian, C. Strain-based anisotropic damage modelling and unilateraleffects[J]. International Journal of Mechanical Sciences,2005,47(3):459-473.
    [78] Feng, X.Q., Yu, S.W. Micromechanical modelling of tensile response of elastic-brittle materials[J].International Journal of Solids and Structures,1995,32(22):3359-3372.
    [79] Basista, M., Gross, D. Internal Variable Representation of Microcrack Induced Inelasticity inBrittle Materials[J]. International Journal of Damage Mechanics,1997,6(3):300-316.
    [80] Feng, X.Q., Yu, S.W. Damage Micromechanics for Constitutive Relations and Failure ofMicrocracked Quasi-Brittle Materials[J]. International Journal of Damage Mechanics,2010,19(8):911-948.
    [81] Golshani, A., Okui, Y., Oda, M., Takemura, T. A micromechanical model for brittle failure of rockand its relation to crack growth observed in triaxial compression tests of granite[J]. Mechanics ofMaterials,2006,38(4):287-303.
    [82] Ju, J., Lee, X. Micromechanical damage models for brittle solids. Part I: tensile loadings[J]. Journalof engineering mechanics,1991,117(7):1495-1514.
    [83] Lee, X., Ju, J. Micromechanical damage models for brittle solids. Part II: Compressive loadings[J].Journal of engineering mechanics,1991,117(7):1515-1536.
    [84] Lu, Y., Shao, J. Modelling of anisotropic damage in brittle rocks under compression dominatedstresses[J]. International Journal for Numerical and Analytical Methods In Geomechanics,2002,26(10):945-961.
    [85] Krajcinovic, D. Damage mechanics[M]. Netherlands: North Holland,1996.
    [86]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [87] Costin, L. A microcrack model for the deformation and failure of brittle rock[J]. Journal ofGeophysical Research,1983,88(B11):9485-9492.
    [88] Shao, J.F., Rudnicki, J. A microcrack-based continuous damage model for brittle geomaterials[J].Mechanics of Materials,2000,32(10):607-619.
    [89] Zhou, J.W., Xu, W.Y., Yang, X.G. A microcrack damage model for brittle rocks under uniaxialcompression[J]. Mechanics Research Communications,2010,37(4):399-405.
    [90] Valkó, P., Economides, M. Propagation of hydraulically induced fractures—a continuum damagemechanics approach[J]. International Journal of Rock Mechanics and Mining Sciences,1994,31(3):221-229.
    [91] Lyakhovsky, V., Hamiel, Y. Damage evolution and fluid flow in poroelastic rock[J]. Izvestiya,Physics of the Solid Earth,2007,43(1):13-23.
    [92]卞康,肖明.水工隧洞衬砌水压致裂过程的渗流–损伤–应力耦合分析[J].岩石力学与工程学报,2010,29(A02):3769-3776.
    [93]贾善坡,陈卫忠,于洪丹,李香玲.泥岩隧道施工过程中渗流场与应力场全耦合损伤模型研究[J].岩土力学,2009,30(1):19-26.
    [94] Shao, J.F. Poroelastic behaviour of brittle rock materials with anisotropic damage[J]. Mechanics ofMaterials,1998,30(1):41-53.
    [95] Shao, J.F., Zhou, H., Chau, K. Coupling between anisotropic damage and permeability variation inbrittle rocks[J]. International Journal for Numerical and Analytical Methods In Geomechanics,2005,29(12):1231-1247.
    [96] Shao, J.F., Lu, Y., Lydzba, D. Damage modeling of saturated rocks in drained and undrainedconditions[J]. Journal of engineering mechanics,2004,130:733.
    [97] Hu, D., Zhou, H., Zhang, F., Shao, J.F. Evolution of poroelastic properties and permeability indamaged sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(6):962-973.
    [98] Arson, C., Pereira, J.M. Influence of damage on pore size distribution and permeability of rocks[J].International Journal for Numerical and Analytical Methods In Geomechanics,2012,(3).
    [99]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水利学报,1991,5:19-27.
    [100]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [101]郑少河,姚海林,葛修润.裂隙岩体渗流场与损伤场的耦合分析[J].岩石力学与工程学报,2004,23(9):1.
    [102]朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究[J].河海大学学报:自然科学版,2003,31(2):156-160.
    [103]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场耦合分析模型[J].四川联合大学学报:工程科学版,1999,3(4):73-80.
    [104]朱珍德,孙钧.裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用[J].长江科学院院报,1999,16(005):22-27.
    [105]朱珍德,胡定.渗流损伤耦合模型在三峡工程中的初步应用[J].武汉水利电力大学(宜昌)学报,1999,21(001):1-6.
    [106]曹林卫.基于椭圆形微裂纹变形与扩展的准脆性岩石细观损伤—渗流耦合本构模型[D].重庆:重庆大学,2010.
    [107]褚卫江.低孔隙度岩石细观本构模型及损伤-渗流耦合研究[D].南京:河海大学,2007.
    [108]江涛.基于细观力学的脆性岩石损伤–渗流耦合本构模型研究[D].南京:南京:河海大学,2006.
    [109]卢应发,刘德富,吴延春,邵建富.岩石与水相互作用的正交各向异性损伤数值模拟[J].岩石力学与工程学报,2007,26(2):323-330.
    [110]陈红江.裂隙岩体应力-损伤-渗流耦合理论、试验及工程应用研究[D].长沙:中南大学,2010.
    [111]赵延林.裂隙岩体渗流损伤断裂耦合理论及应用研究[D].长沙:中南大学,2009.
    [112]韦立德,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅰ):理论模型[J].岩土力学,2006,27(003):428-434.
    [113]梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005.
    [114]白以龙,汪海英,夏蒙棼,柯孚久.固体的统计细观力学—连接多个耦合的时空尺度[J].力学进展,2006,36(2):286-305.
    [115] Cook, N.G. The failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1965,2(1):389-403.
    [116] Bieniawski, Z.T., Denkhaus, H., Vogler, U. Failure of fractured rock[J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1969,6(1):323-341.
    [117] Wawersik, W., Fairhurst, C. A study of brittle rock fracture in laboratory compressionexperiments[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1970,7(5):561-575.
    [118] Zang, A., Wagner, C.F., Dresen, G. Acoustic emission, microstructure, and damage model of dryand wet sandstone stressed to failure[J]. Journal of Geophysical Research-Solid Earth,1996,101(B8):17507-17521.
    [119] Scholz, C. Experimental study of the fracturing process in brittle rock[J]. Journal of GeophysicalResearch,1968,73(4):1447-1454.
    [120] Tang, C.A. Numerical simulation of progressive rock failure and associated seismicity[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(2):249-261.
    [121] Tang, C.A., Kaiser, P.K. Numerical simulation of cumulative damage and seismic energy releaseduring brittle rock failure-Part I: Fundamentals[J]. International Journal of Rock Mechanics andMining Sciences,1998,35(2):113-121.
    [122]陈忠辉,唐春安,徐小荷,李春林.岩石声发射Kaiser效应的理论和实验研究[J].中国有色金属学报,1997,7(1):9-12.
    [123]赵永红.受单轴压缩大理岩填充割缝周围的微裂纹生长[J].岩石力学与工程学报,2004,23(15):2504-2509.
    [124] Wong, T.F. MICROMECHANICS OF FAULTING IN WESTERLY GRANITE[J]. InternationalJournal of Rock Mechanics and Mining Sciences,1982,19(2):49-64.
    [125] Fredrich, J.T., Evans, B., Wong, T.F. Micromechanics of the brittle to plastic transition in Carraramarble[J]. Journal of Geophysical Research,1989,94(B4):4129-4145.
    [126] Nolen-Hoeksema, R., Gordon, R. Optical detection of crack patterns in the opening-mode fractureof marble[J]. International Journal of Rock Mechanics and Mining Sciences,1987,24(2):135-144.
    [127]朱珍德,渠文平,蒋志坚.岩石细观结构量化试验研究[J].岩石力学与工程学报,2007,26(7):1313-1324.
    [128]朱珍德,李道伟,李术才,施毅,冯夏庭.基于数字图像技术的深埋隧洞围岩卸荷劣化破坏机制研究[J].岩石力学与工程学报,2008,27(7):1396-1401.
    [129]左建平,谢和平,周宏伟,彭苏萍.不同温度作用下砂岩热开裂的实验研究[J].地球物理学报,2007,50(4):1150-1155.
    [130] Feng, X.-T., Chen, S., Zhou, H. Real-time computerized tomography (CT) experiments onsandstone damage evolution during triaxial compression with chemical corrosion[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2004,41(2):181-192.
    [131]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    [132]葛修润.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [133]仵彦卿,丁卫华.压缩条件下岩石密度损伤增量的CT动态观测[J].自然科学进展:国家重点实验室通讯,2000,10(9):830-835.
    [134]任建喜,惠兴田.裂隙岩石单轴压缩损伤扩展细观机理CT分析初探[J].岩土力学,2005,26(S1):48-52.
    [135]康志勤,赵阳升,孟巧荣,杨栋,郁保平.油页岩热破裂规律显微CT实验研究[J].地球物理学报,2009,52(3):842-848.
    [136] Hoek, E., Brown, E.T. Empirical strength criterion for rock masses[J]. Journal of Geotechnicaland Geoenvironmental Engineering,1980,106(GT9):1013-1035.
    [137]俞茂宏.工程强度理论[M].北京:高等教育出版社,1999.
    [138] Mazars, J., Pijaudier-Cabot, G. From damage to fracture mechanics and conversely: a combinedapproach[J]. International Journal of Solids and Structures,1996,33(20):3327-3342.
    [139] Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rockmechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(3):283-353.
    [140]周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005.
    [141] Potyondy, D.O., Cundall, P.A. A bonded-particle model for rock[J]. International Journal of RockMechanics and Mining Sciences,2004,41(8):1329-1364.
    [142] Schlangen, E., Garboczi, E. Fracture simulations of concrete using lattice models: computationalaspects[J]. Engineering Fracture Mechanics,1997,57(2-3):319-332.
    [143] Schlangen, E., Garboczi, E.J. New method for simulating fracture using an elastically uniformrandom geometry lattice[J]. International Journal of Engineering Science,1996,34(10):1131-1144.
    [144]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟[J].工程力学,2003,20(1):117-126.
    [145]邢纪波.梁-颗粒模型导论[M].北京:地震出版社,1999.
    [146]张振南,葛修润.基于VMIB的非均质岩石材料破坏的数值模拟初探[J].岩石力学与工程学报,2007,26(7):1426-1431.
    [147]张振南,葛修润.多维虚内键模型(VMIB)及其在岩体数值模拟中的应用[J].中国科学: E辑,2007,37(5):605-612.
    [148]张振南,葛修润,张孟喜.基于VMIB的岩石围压破坏二维多尺度数值模拟[J].岩土力学,2008,29(1):219-224.
    [149] Zhao, G.F., Fang, J., Zhao, J. A3D distinct lattice spring model for elasticity and dynamicfailure[J]. International Journal for Numerical and Analytical Methods In Geomechanics,2010,35(8):859-885.
    [150] Katsman, R., Aharonov, E., Scher, H. Numerical simulation of compaction bands in high-porositysedimentary rock[J]. Mechanics of Materials,2005,37(1):143-162.
    [151] Blair, S.C., Cook, N.G.W. Analysis of compressive fracture in rock using statistical techniques:Part I. A non-linear rule-based model[J]. International Journal of Rock Mechanics and MiningSciences,1998,35(7):837-848.
    [152] Blair, S.C., Cook, N.G.W. Analysis of compressive fracture in rock using statistical techniques:Part II. Effect of microscale heterogeneity on macroscopic deformation[J]. International Journal ofRock Mechanics and Mining Sciences,1998,35(7):849-861.
    [153] Tang, C.A., Wang, W.T., Fu, Y.F., Xu, X.H. A new approach to numerical method of modellinggeological processes and rock engineering problems-continuum to discontinuum and linearity tononlinearity[J]. Engineering Geology,1998,49(3-4):207-214.
    [154] Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C. Coupled analysis of flow, stress anddamage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [155]李连崇,杨天鸿,唐春安,黄小兰,李夕兵.岩石破裂过程TMD耦合数值模型研究[J].岩土力学,2006,27(10):1727-1732.
    [156]李连崇,徐涛,唐春安,朱立凯.单轴压缩下岩石蠕变失稳破坏过程数值模拟[J].岩土力学,2007,28(9):1978-1982.
    [157] Liu, H., Kou, S., Lindqvist, P.A., Tang, C. Numerical studies on the failure process and associatedmicroseismicity in rock under triaxial compression[J]. Tectonophysics,2004,384(1):149-174.
    [158] Fang, Z., Harrison, J. Application of a local degradation model to the analysis of brittle fracture oflaboratory scale rock specimens under triaxial conditions[J]. International Journal of RockMechanics and Mining Sciences,2002,39(4):459-476.
    [159] Fang, Z., Harrison, J.P. Development of a local degradation approach to the modelling of brittlefracture in heterogeneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):443-457.
    [160] Yuan, S.C., Harrison, J.P. Development of a hydro-mechanical local degradation approach and itsapplication to modelling fluid flow during progressive fracturing of heterogeneous rocks[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(7-8):961-984.
    [161]潘鹏志.岩石破裂过程及其渗流—应力耦合特性研究的弹塑性细胞自动机模型[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
    [162]张楚汉.论岩石,混凝土离散–接触–断裂分析[J].岩石力学与工程学报,2008,27(2):217-235.
    [163]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999,18(4):11-18.
    [164]虎维岳,朱开鹏,黄选明.非均布高压水对采煤工作面底板隔水岩层破坏特征及其突水条件研究[J].煤炭学报,2010,35(7):1109-1114.
    [165]虎维岳,田干,李抗抗.煤层底板隔水层阻抗高压水侵入机理及其控制因素[J].煤田地质与勘探,2009,36(6):38-41.
    [166]王国际,杨腾飞,王公忠,彭聚云.基于“下三带”理论的底板隔水层破坏机理研究[J].中州煤炭,2012,(11):4-5.
    [167]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993.
    [168]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J].煤田地质与勘探,1997,25(A00):33-36.
    [169]张金才,张玉卓.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [170]张金才,王建学.岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报,2006,25(10):1981-1989.
    [171]王经明.承压水沿煤层底板递进导升突水机理的模拟与观测[J].岩土工程学报,1999,21(5):546-549.
    [172]高延法.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999.
    [173]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,17(6):55-62.
    [174]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [175]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [176]浦海.保水采煤的隔水关键层理论与应用研究[J].中国矿业大学学报,2010,(4):631-631.
    [177]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[J].岩石力学与工程学报,2011,30(6).
    [178]王连国,缪协兴.岩石渗透率与应力,应变关系的尖点突变模型[J].岩石力学与工程学报,2005,24(23):4210-4214.
    [179]王连国,宋扬.煤层底板突水自组织临界特性研究[J].岩石力学与工程学报,2002,21(8):1205-1208.
    [180]王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,2003,22(4):573-577.
    [181]王延福,庞西岐.岩溶矿井煤层底板突水的非线性动力学模型[J].中国岩溶,2000,19(1):81-89.
    [182] Yang, T., Liu, J., Zhu, W., Elsworth, D., Tham, L., Tang, C. A coupled flow-stress-damage modelfor groundwater outbursts from an underlying aquifer into mining excavations[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2007,44(1):87-97.
    [183] Yang, T., Zhu, W., Yu, Q., Liu, H. The role of pore pressure during hydraulic fracturing andimplications for groundwater outbursts in mining and tunnelling[J]. Hydrogeology Journal,2011:1-14.
    [184] Wang, J.A., Park, H. Coal mining above a confined aquifer[J]. International Journal of RockMechanics and Mining Sciences,2003,40(4):537-551.
    [185]王金安,魏现昊,陈绍杰.承压水体上开采底板岩层破断及渗流特征[J].中国矿业大学学报,2012,41(004):536-542.
    [186]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报,2000,19(4):421-424.
    [187]曹吉胜.高承压水作用下工作面突水机理数值模拟研究[D].青岛:山东科技大学,2006.
    [188]胡耀青,严国超,石秀伟.承压水上采煤突水监测预报理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):9-15.
    [189]王兴.固液耦合作用下底板突水过程的数值模拟研究[D].淮南:安徽理工大学,2011.
    [190]于小鸽.采场损伤底板破坏深度研究[D].青岛:山东科技大学,2011.
    [191] Suckale, J. Induced seismicity in hydrocarbon fields[J]. Advances In Geophysics,2009,51:55-106.
    [192]杨道庆.地震目标勘探实现奥灰水研究的可能性[J].煤炭学报,2002,27(001):36-40.
    [193]姜福兴,刘伟建,叶根喜,李伟.构造活化的微震监测与数值模拟耦合研究[J].岩石力学与工程学报,2010,29(A02):3590-3597.
    [194]姜福兴,叶根喜,王存文,张党育,关永强.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):1932-1938.
    [195] Zoback, M.D., Byerlee, J.D. The effect of microcrack dilatancy on the permeability of Westerlygranite[J]. Journal of Geophysical Research B: Solid Earth,1975,80(5):751-755.
    [196] Yang, T., Xu, T., Liu, H., Tang, C., Shi, B., Yu, Q. Stress-damage-flow coupling model and itsapplication to pressure relief coal bed methane in deep coal seam[J]. International Journal of CoalGeology,2011,86(4):357-366.
    [197] Kemeny, J.M. A model for non-linear rock deformation under compression due to sub-criticalcrack growth[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1991,28(6):459-467.
    [198] Shao, J.F., Chau, K., Feng, X. Modeling of anisotropic damage and creep deformation in brittlerocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(4):582-592.
    [199]周维垣,剡公瑞.岩石,混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):1-9.
    [200]刘建,李鹏,乔丽苹,朱杰兵.砂岩蠕变特性的水物理化学作用效应试验研究[J].岩石力学与工程学报,2008,27(12):2540-2550.
    [201]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319.
    [202]李世愚,尹祥础.岩石断裂力学[M].北京:科学出版社,2006.
    [203] Biot, M.A. General theory of three‐dimensional consolidation[J]. Journal of Applied Physics,1941,12(2):155-164.
    [204] Cheng, A.H.D. Material coefficients of anisotropic poroelasticity[J]. International Journal of RockMechanics and Mining Sciences,1997,34(2):199-205.
    [205] Homand-Etienne, F., Hoxha, D., Shao, J.F. A continuum damage constitutive law for brittlerocks[J]. Computers and Geotechnics,1998,22(2):135-151.
    [206] Shao, J.F., Hoxha, D., Bart, M., Homand, F., Duveau, G., Souley, M., Hoteit, N. Modelling ofinduced anisotropic damage in granites[J]. International Journal of Rock Mechanics and MiningSciences,1999,36(8):1001-1012.
    [207] Horii, H., Nematnasser, S. Brittle failure in compression: splitting, faulting and brittle-ductiletransition[J]. Philosophical Transactions of the Royal Society of London Series a-MathematicalPhysical and Engineering Sciences,1986,319(1549):337-374.
    [208] Horii, H., Nemat-Nasser, S. Overall moduli of solids with microcracks: load-inducedanisotropy[J]. Journal of The Mechanics and Physics of Solids,1983,31(2):155-171.
    [209] Horii, H., Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids: axialsplitting and shear failure[J]. Journal of Geophysical Research,1985,90(B4):3105-3125.
    [210] Ashby, M.F., Hallam, S.D. THE FAILURE OF BRITTLE SOLIDS CONTAINING SMALLCRACKS UNDER COMPRESSIVE STRESS STATES[J]. Acta Metallurgica,1986,34(3):497-510.
    [211] Basista, M., Gross, D. The sliding crack model of brittle deformation: An internal variableapproach[J]. International Journal of Solids and Structures,1998,35(5-6):487-509.
    [212] Fanella, D., Krajcinovic, D. A micromechanical model for concrete in compression[J].Engineering Fracture Mechanics,1988,29(1):49-66.
    [213] Moss, W.C., Gupta, Y.M. A CONSTITUTIVE MODEL DESCRIBING DILATANCY ANDCRACKING IN BRITTLE ROCKS[J]. Journal of Geophysical Research,1982,87(NB4):2985-2998.
    [214] Krajcinovic, D., Fanella, D. A MICROMECHANICAL DAMAGE MODEL FOR CONCRETE[J].Engineering Fracture Mechanics,1986,25(5-6):585-596.
    [215] Yu, S.W., Feng, X.Q. A MICROMECHANICS-BASED DAMAGE MODEL FORMICROCRACK-WEAKENED BRITTLE SOLIDS[J]. Mechanics of Materials,1995,20(1):59-76.
    [216] Atkinson, B.K. Subcritical crack growth in geological materials[J]. Journal of GeophysicalResearch,1984,89(B6):4077-4114.
    [217] Charles, R. Static fatigue of glass. I[J]. Journal of Applied Physics,1958,29(11):1549-1553.
    [218] Charles, R. Static fatigue of glass. II[J]. Journal of Applied Physics,1958,29(11):1554-1560.
    [219] Yoshida, H., Horii, H. A micromechanics-based model for creep behavior of rock[J]. AppliedMechanics Review,1992,45(8):294-303.
    [220] Nur, A., Byerlee, J. An exact effective stress law for elastic deformation of rock with fluids[J].Journal of Geophysical Research,1971,76(26):6414-6419.
    [221] Kachanov, M. Elastic solids with many cracks and related problems[J]. Advances In AppliedMechanics,1994,30:260-446.
    [222] Halm, D., Dragon, A. A model of anisotropic damage by mesocrack growth; unilateral effect[J].International Journal of Damage Mechanics,1996,5(4):384-402.
    [223] Shao, J.F., Jia, Y., Kondo, D., Chiarelli, A.S. A coupled elastoplastic damage model forsemi-brittle materials and extension to unsaturated conditions[J]. Mechanics of Materials,2006,38(3):218-232.
    [224] Snow, D.T. Rock fracture spacings, openings, and porosities[J]. Journal of Soil Mechanics&Foundations Div,1968.
    [225] Lockner, D. The role of acoustic emission in the study of rock fracture[J]. International Journal ofRock Mechanics and Mining Sciences and Geomechanics Abstracts,1993,30(7):883-899.
    [226] Tang, C., Fu, Y., Kou, S., Lindqvist, P.A. Numerical simulation of loading inhomogeneousrocks[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):1001-1007.
    [227]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [228]李晓.岩石峰后应变软化力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学,1995.
    [229] Okui, Y., Horii, H. Stress and time-dependent failure of brittle rocks under compression: Atheoretical prediction[J]. Journal of Geophysical Research,1997,102(B7):14869-14814,14881.
    [230] Heap, M., Baud, P., Meredith, P., Bell, A., Main, I. Time-dependent brittle creep in Darley Dalesandstone[J]. Journal of Geophysical Research,2009,114(B7): B07203.
    [231] Heap, M., Baud, P., Meredith, P., Vinciguerra, S., Bell, A., Main, I. Brittle creep in basalt and itsapplication to time-dependent volcano deformation[J]. Earth and Planetary Science Letters,2011,307(1):71-82.
    [232] Li, Y., Wang, Z., Tang, M., Wang, Y. Relations of complete creep processes and triaxialstress-strain curves of rock[J]. Journal of Central South University of Technology,2008,15:311-315.
    [233]郭臣业,鲜学福,姜永东,唐红梅,姚伟静.破裂砂岩蠕变试验研究[J].岩石力学与工程学报,2010,29(5):990-995.
    [234] Golshani, A., Oda, M., Okui, Y., Takemura, T., Munkhtogoo, E. Numerical simulation of theexcavation damaged zone around an opening in brittle rock[J]. International Journal of RockMechanics and Mining Sciences,2007,44(6):835-845.
    [235] Konietzky, H., Heftenberger, A., Feige, M. Life-time prediction for rocks under static compressiveand tensile loads: a new simulation approach[J]. Acta Geotechnica,2009,4(1):73-78.
    [236]何峰,王来贵,王振伟,姚再兴.煤岩蠕变-渗流耦合规律实验研究[J].煤炭学报,2011,36(6):930-933.
    [237] Jobmann, M., Wilsnack, T., Voigt, H.D. Investigation of damage-induced permeability ofOpalinus clay[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):279-285.
    [238]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [239]唐春安,朱万成.混凝土损伤与断裂-数值试验[M].北京:科学出版社,2003.
    [240] Kassner, M.E., Nemat-Nasser, S., Suo, Z., Bao, G., Barbour, J.C., Brinson, L.C., Espinosa, H.,Gao, H., Granick, S., Gumbsch, P. New directions in mechanics[J]. Mechanics of Materials,2005,37(2):231-259.
    [241]陈永强.非均匀材料有效力学性能和破坏过程的数值模拟[D].北京:清华大学,2001.
    [242] Costin, L.S. Damage mechanics in the post-failure regime[J]. Mechanics of Materials,1985,4(2):149-160.
    [243] Feng, X.-Q., Qin, Q.-H., Yu, S.-W. Quasi-micromechanical damage model for brittle solids withinteracting microcracks[J]. Mechanics of Materials,2004,36(3):261-273.
    [244] Zhu, W.C., Tang, C.A. Micromechanical Model for Simulating the Fracture Process of Rock[J].Rock Mechanics and Rock Engineering,2004,37(1):25-56.
    [245] Ba ant, Z.P., Oh, B. Crack band theory for fracture of concrete[J]. Materials and Structures,1983,16(3):155-177.
    [246] Tham, L.G., Li, L., Tsui, Y., Lee, P.K.K. A replica method for observing microcracks on rocksurfaces[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(5):785-794.
    [247] Weibull, W. A statistical distribution function of wide applicability[J]. Journal of appliedmechanics,1951,18(3):293-297.
    [248] Wong, T., Wong, R.H.C., Chau, K., Tang, C. Microcrack statistics, Weibull distribution andmicromechanical modeling of compressive failure in rock[J]. Mechanics of Materials,2006,38(7):664-681.
    [249] Ravichandran, G., Subhash, G. A micromechanical model for high strain rate behavior ofceramics[J]. International Journal of Solids and Structures,1995,32(17):2627-2646.
    [250] Hazell, P.J., Iremonger, M.J. The numerical analysis of dynamically loaded ceramic: a cracksoftening approach[J]. International Journal for Numerical Methods In Engineering,2000,48:1037-1053.
    [251] Rashid, Y. Ultimate strength analysis of prestressed concrete pressure vessels[J]. NuclearEngineering and Design,1968,7(4):334-344.
    [252]张楚汉,金峰,周元德.岩石和混凝土离散一接触一断裂分析[M].北京:清华大学出版社,2008.
    [253]朱万成,唐春安,杨天鸿.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29.
    [254] Reuschle, T. A network approach to fracture: The effect of heterogeneity and loading conditions[J].Pure and Applied Geophysics,1998,152(4):641-665.
    [255] Potyondy, D.O., Cundall, P.A., Lee, C.A. Modelling rock using bonded assemblies of circularparticles[J]. Rock Mechanics Tools and Techniques,1996,1(2):1937-1944.
    [256] Schlangen, E., Garboczi, E. New method for simulating fracture using an elastically uniformrandom geometry lattice[J]. International Journal of Engineering Science,1996,34(10):1131-1144.
    [257] Krajcinovic, D. Damage mechaincs[J]. Mechanics of Materials,1989,8(2-3):117-197.
    [258] Wang, J.A., Park, H. Fluid permeability of sedimentary rocks in a complete stress–strainprocess[J]. Engineering Geology,2002,63(3):291-300.
    [259] Broberg, K. On crack paths[J]. Engineering Fracture Mechanics,1987,28(5-6):663-679.
    [260] Zhu, W.L., Wong, T.F. Network modeling of the evolution of permeability and dilatancy incompact rock[J]. Journal of Geophysical Research-Solid Earth,1999,104(B2):2963-2971.
    [261] Yang, T.H., Tham, L.G., Tang, C.A., Liang, Z.Z., Tsui, Y. Influence of heterogeneity ofmechanical properties on hydraulic fracturing in permeable rocks[J]. Rock Mechanics and RockEngineering,2004,37(4):251-275.
    [262] Detournay, E. Propagation regimes of fluid-driven fractures in impermeable rocks[J].International Journal of Geomechanics,2004,4(1):35-45.
    [263] Adachi, J., Siebrits, E., Peirce, A., Desroches, J. Computer simulation of hydraulic fractures[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(5):739-757.
    [264] Detournay, E., Cheng, A.H.D. Poroelastic response of a borehole in a non-hydrostatic stressfield[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1988,25(3):171-182.
    [265] Haimson, B., Fairhurst, C. Initiation and extension of hydraulic fractures in rocks[J]. Old SPEJournal,1967,7(3):310-318.
    [266] Hubbert, M.K., Willis, D.G. Mechanics of hydraulic fracturing[J]. AIME Petroleum Transaction,1957,210:153-168.
    [267] Garagash, D., Detournay, E. An analysis of the influence of the pressurization rate on the boreholebreakdown pressure[J]. International Journal of Solids and Structures,1997,34(24):3099-3118.
    [268] Ito, T. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media:Rock[J]. Engineering Fracture Mechanics,2008,75(7):1753-1762.
    [269] Haimson, B., Fairhurst, C.In-situ stress determination at great depth by means of hydraulicfracturing. in Proceedings of the Eleventh US Symposium on Rock Mechanics, Berkeley.1969.
    [270] Zoback, M., Rummel, F., Jung, R., Raleigh, C. Laboratory hydraulic fracturing experiments inintact and pre-fractured rock[J]. Int J Rock Mech Min Sci,1977,14:49-58.
    [271] Detournay, E., Cheng, A.Influence of pressurization rate on the magnitude of the breakdownpressure. in Proceedings of33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam.1992.
    [272]武强,张志龙,马积福.煤层底板突水评价的新型实用方法I:主控指标体系的建设[J].煤炭学报,2007,32(1):42-47.
    [273]李利平,李术才,张庆松,许振浩,石少帅.地下工程突水机理及其研究最新进展[J].山东大学学报(工学版),2010,40(3):104-112.
    [274]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004.
    [275]尹立明.深部煤层开采底板突水机理基础实验研究[D].青岛:山东科技大学,2011.
    [276]徐智敏.深部开采底板破坏及高承压突水模式、前兆与防治[D].徐州:中国矿业大学,2010.
    [277]张渊.开采矿压对底板的损伤破坏及其对突水的诱发作用[J].太原理工大学学报,2002,33(3):252-256.
    [278]何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007,15(3):1-14.
    [279]杨新安,郭鑫禾.矿井突水过程中的动力现象分析[J].矿山压力与顶板管理,1995,(001):12-15.
    [280]刘洪磊,杨天鸿,陈仕阔,于庆磊,王培涛.岩体破坏突水失稳的水压致裂机理及工程应用分析[J].采矿与安全工程学报,2010,27(003):356-362.
    [281]张西民,马培智.采煤工作面顶板来压和底板突水关系的数值模拟研究[J].陕西煤炭技术,1998,(1):24-27.
    [282]刘伟韬,武强.深部开采断裂滞后突水机理及数值仿真技术[M].北京:煤炭工业出版社,2010.
    [283]李子林.大采深条件下徐,奥灰突水机理及防治技术研究[D].青岛:山东科技大学,2007.
    [284]尹尚先,王尚旭,武强.陷落柱突水模式及理论判据[J].岩石力学与工程学报,2004,23(6):964-968.
    [285]许进鹏.陷落柱活化导水机理研究[D].青岛:山东科技大学,2006.
    [286] Junhua, T., Haibo, B., Banghua, Y., Yu, W. Theoretical analysis on water-inrush mechanism ofconcealed collapse pillars in floor[J]. Mining Science and Technology (China),2011,21(1):57-60.
    [287]姚邦华.破碎岩体变质量流固耦合动力学理论及应用研究[D].徐州:中国矿业大学,2012.
    [288] Zhu, W., Wei, C. Numerical simulation on mining-induced water inrushes related to geologicstructures using a damage-based hydromechanical model[J]. Environmental Earth Sciences,2011,62(1):43-54.
    [289]杨天鸿,陈仕阔,朱万成,孟召平,高延法.矿井岩体破坏突水机制及非线性渗流模型初探[J].岩石力学与工程学报,2008,27(7):1411-1416.
    [290]李连崇,唐春安,梁正召,马天辉,张永彬.煤层底板陷落柱活化突水过程的数值模拟[J].采矿与安全工程学报,2009,26(2):158-162.
    [291]李连崇,唐春安,左宇军,李根,刘超.煤层底板下隐伏陷落柱的滞后突水机理[J].煤炭学报,2009,34(9):62-66.
    [292]王家臣,杨胜利.采动影响对陷落柱活化导水机理数值模拟研究[J].采矿与安全工程学报,2009,26(2):140-144.
    [293]刘志军,熊崇山.陷落柱突水机制的数值模拟研究[J].岩石力学与工程学报,2007,26(2):4013-4018.
    [294]尹尚先,王尚旭.陷落柱影响采场围岩破坏和底板突水的数值模拟分析[J].煤炭学报,2003,28(3):264-269.
    [295]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].徐州:中国矿业大学,2008.
    [296]窦林名,何江,巩思园,宋云飞,刘辉.采空区突水动力灾害的微震监测案例研究[J].中国矿业大学学报,2012,41(001):20-25.
    [297]孙建.倾斜煤层底板破坏特征及突水机理研究[D].徐州:中国矿业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700