用户名: 密码: 验证码:
寒区大跨径混凝土箱梁桥温度场及温度效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度作用是混凝土箱梁桥发生裂缝的主要原因之一,目前不同国家、不同地区对混凝土箱梁桥的温度梯度模式及取值没有取得共识。东北寒冷地区是我国纬度最高、经度最偏东地区,独特的地理位置造成该区特殊的气候条件:冬季严寒漫长,气温较同纬度其他地区低10℃以上,夏季温热多雨,春季干旱多风,秋季降温急剧。寒冷地区大跨混凝土箱梁桥温度场分布有别于其他地区,温度裂缝对桥梁结构安全性和耐久性危害程度更大,因此开展寒冷地区大跨径混凝土箱梁桥温度场分布及温度效应的研究,确定更加符合寒冷地区实际情况的混凝土箱梁桥温度梯度分布模式,具有非常重要的意义。
     本文在对寒冷地区混凝土箱梁桥温度场长期观测的基础上,研究大跨径混凝土箱梁桥温度场分布及温度效应特点,确定寒冷地区混凝土箱梁桥的温度梯度分布模式。主要研究内容和成果概括如下:
     对黑龙江省同时期建设的三座混凝土箱梁桥温度场进行了一年多的连续观测,观测期涵盖主梁施工期及两个月左右的运营期,获得了大量详实可靠的箱梁温度数据。通过对实测温度数据分析得到在太阳辐射升温、环境骤然降温及冬季寒冷环境下大跨混凝土箱梁顶板、底板及腹板温度的分布规律及其随时间变化规律。
     采用有限元程序ANSYS对箱梁温度场进行了计算,并将计算值和现场实测值进行了对比分析,表明利用有限元程序ANSYS进行箱梁日照温度场分析,可以得到工程上足够精确的结果。根据有限元分析结果对实测的混凝土箱梁温度场分布进行了补充完善。
     利用前面的有限元模型,适当变换气象条件、材料热工性质、截面形状等参数数值,计算得到混凝土箱梁温度场随太阳辐射强度、大气温度、截面高度、混凝土导热系数及混凝土比热等参数的变化规律。并对公路桥梁经常采用的桥面铺装结构,分升温及降温两种情况,研究了桥面铺装对箱梁温度场的影响。结果表明太阳辐射强度及桥面铺装是影响混凝土箱梁温度场的主要因素。
     采用二维模型分析依托工程箱梁横向、竖向及纵向温度应力的分布规律。同时采用三维模型及平面杆系程序进行混凝土箱梁温度应力的对比分析,得到采用不同模型计算温度应力的差别。以依托工程6×150m混凝土连续箱梁桥为研究对象,对比分析了不同“规范”的竖向温度梯度模式及混凝土箱梁纵向温度应力。结果表明,在太阳辐射下,箱梁顶板下缘横向拉应力较大;箱梁下缘负温差在截面下缘产生较大的纵向拉应力,在进行桥梁设计时不考虑截面下缘负温差对结构安全不利。
     通过对齐齐哈尔地区两座大桥实测温度数据的分析,参考有限元计算结果,得到了位于齐齐哈尔滨市的大跨混凝土箱梁桥无桥面铺装时竖向温度梯度模式及箱梁板件温度梯度模式。结合混凝土箱梁日照温度场影响因素及混凝土箱梁温度效应的研究结论,考虑桥梁所处地理纬度、桥梁腹板方位角及桥面铺装的影响,提出了适合于寒冷地区的大跨混凝土箱梁桥竖向温度梯度模式及板件温度梯度模式。
Temperature effect is one of the main causes of cracks in concrete box-girderbridge, the temperature gradient mode and value on concrete box-girder did not gainconsensus in different countries and different regions. Northeast cold areas is thehighest latitude and the most easterly longitude area in our country, the uniquegeographical position causes the special climate, winter is cold and long,temperature is10℃lower compared with other parts of same latitude, summer iswarm and rainy, spring is drought and windy, autumn is cool sharp. Temperaturedistribution of large span concrete box-girder bridge in cold areas is different fromother regions, influence of temperature cracks on structure safety and durability isbigger, so research on temperature distribution and temperature effect of long spanbox-girder bridge, in which the temperature gradient mode which is more suitable incold region is determined, has very important significance.
     In this paper, based on the long term observation of temperature field ofconcrete bridges in cold region, combined with finite element analysis, thetemperature field and temperature effect features of large span concrete box-girderbridge is studied deeply, the temperature gradient mode in cold region is determined,The main research contents and achievements are summed up as follows:
     The temperature field is observed continuously for more than one year in threelarge span concrete box-girder bridge in Heilongjiang province on the same period,based on the massive measured data, temperature field distribution characteristics inconcrete box-girder, caused by solar radiation and cooling, resulting from wintercold environmen, is analysis in detail.
     Temperature field of box-girder is calculated using ANSYS program, and thecomparative analysis of calculated value and measured value indicates that thetemperature field which is precise enough in engineering could be got using ANSYSprogram. According to the results of finite element analysis, the measuredtemperature distribution is complemented and perfected.
     Using the finite element model, transforming parameter values ofmeteorological conditions, the material thermal physical properties and cross sectionshape, temperature field of box-girder is calculated. The rule of temperature fieldchanging with the solar radiation intensity, air temperature, cross section height,coefficient of thermal conductivity, concrete specific heat etc. is obtained. For thepavement which is often used in bridge deck structure, the influence to temperaturefield is researched in cases of heating and cooling. The results showed that theintensity of solar radiation and the deck pavement is the main factor of concrete box girder temperature field.
     The cross, vertical and longitudinal temperature stress distribution of theproject box-girder is analyzed using2D model. At the same time, temperature stresswere compared using3D model and plane rod system program, and the difference oftemperature stress using different model is got. Using a6x150m continuousbox-girder bridge as the research object, the vertical temperature gradient mode andthe longitudinal temperature stress according to the different regulation is comparedand analyzed. The results show that the transverse tensile stress at lower edge of theroof caused by the sun radiation is bigger, larger longitudinal tensile stress couldbeen caused by negative temperature difference at lower edge of section.
     Based on the measured data of two bridge in qiqihar area and the results offinite element calculation, a temperature gradient mode which is suitable for qiqihararea is obtained. Combined with the conclusions of the study about the influencefactors of box-girder temperature field and temperature effect of box-girder, atemperature gradient mode which is suitable for cold regions is put forwardconsidering the bridge geographical latitude, bridge web azimuth and deckpavement correction.
引文
[1]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991:2-60.
    [2] AASHTO.美国桥梁设计规范-荷载与抗力系数设计法[S].北京:人民交通出版社,1994:95-97.
    [3]中华人民共和国交通部标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023-85)[S].北京:人民交通出版社,1985:120-121.
    [4]中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004:34-35.
    [5]中华人民共和国行业标准.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-2005)[S].北京:中国铁道出版社,2005:93-99.
    [6]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986,19(1):44-54.
    [7]管敏鑫.混凝土箱形梁温度场、温度应力和温度位移的计算方法[J].桥梁建设,1985,15(1):40-49.
    [8]方先金.中国大气透明度系数的研究[J].南京气象学院学报,1985,8(3):293-305.
    [9]赵毅强,林才奎,汪徐送,等.太平大桥混凝土箱体的温度场[J].中南汽车运输,1999,15(1):36-39.
    [10]贾琳.太阳辐射作用下混凝土箱梁的温度分布及温度应力研究[D].南京:东南大学硕士学位论文,2001.
    [11]康为江,方志,邹银生.钢筋混凝土连续箱梁日照温差应力的试验研究[J].湖南交通科技,2001,27(1):63-64.
    [12]李全林.日照下混凝土箱梁温度场和温度应力研究[D].长沙:湖南大学硕士学位论文,2004.
    [13]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004,17(1):49-52.
    [14]李宏江.广东虎门辅航道桥上部结构混凝土箱梁在日照温差作用下的温度分布及结构分析[R].交通部公路工程检测中心,2004.
    [15]郭河.大跨径预应力混凝土箱梁桥的空间温度场研究[D].北京:北京科技大学硕士学位论文,2005.
    [16]陈衡治,谢旭,张治成.预应力混凝土箱梁桥的温度场和应力场[J].浙江大学学报(工学版),2005,50(12):1885-1890.
    [17]卢文良,季文玉,杜进生.铁路混凝土箱梁温度场及温度效应[J].中国铁道科学,2006,28(6):49-54.
    [18]刘其伟,丁峰,朱俊,等.钢混凝土组合箱梁沥青摊铺温度场试验[J].东南大学学报(自然科学版),2006,52(4):572-575.
    [19]李前名.预应力混凝土箱梁桥温度场及温度应力的分析与研究[D].成都:西南交通大学硕士学位论文,2006.
    [20]陈保国,丁锐,郑俊杰,等.预应力混凝土箱梁温度场及温度应力现场测试研究[J].华中科技大学学报(城市科学版),2007,25(4):83-87.
    [21]陈国雄.混凝土箱梁温度场的ANSYS模拟[J].广州建筑,2007,35(3):10-12.
    [22]刘扬,杨继,张建仁.砼斜拉桥箱梁施工阶段温度场的ANSYS分析[J].公路与汽运,2007,23(3):148-150.
    [23]刘社兵. PC连续箱梁桥温度场及温度效应研究[D].西安:长安大学硕士学位论文,2008.
    [24]徐钢.箱梁温度场及其效应分析[D].上海:同济大学硕士学位论文,2008.
    [25]陆文林,宋官保.不同材料桥面铺装下混凝土箱梁的温度场分析[J].交通科学与工程,2010,26(3):41-45.
    [26]李春早.大跨径连续刚构桥梁的温度场分析及温度荷载影响下的箱梁截面形式分析[D].西安:长安大学硕士学位论文,2010.
    [27]肖祥南.64米简支槽形箱梁的温度场及效应研究[D].长沙:中南大学硕士学位论文,2010.
    [28]张亮亮,杨磊,杨转运,等.大跨混凝土箱梁温度场分析[J].土木建筑与环境工程,2011,55(1):36-42.
    [29]周志敏.高速铁路箱梁桥日照温度场分布规律及计算模式研究[D].长沙:中南大学硕士学位论文,2011.
    [30]褚强,程海根.自然环境下混凝土箱梁横截面温度场理论及试验研究[J].高速铁路技术,2011,2(5):13-16.
    [31]吴六政.混凝土箱梁桥温度场的模拟[J].公路交通科技,2011,28(10):65-69.
    [32]沈典栋,王解军.连续刚构桥箱形墩与箱梁温度场实测研究[J].公路工程,2011,37(4):52-55
    [33]李强.大跨径预制混凝土箱梁温度场及温度效应研究[D].西安:长安大学硕士学位论文,2011.
    [34]吴金鑫.预应力混凝土箱梁桥温度场及温度效应实测研究[D].杭州:浙江大学硕士学位论文,2011.
    [35]顾斌,陈志坚,陈欣迪.基于气象参数的混凝土箱梁日照温度场仿真分析[J].东南大学学报(自然科学版),2012,58(5):950-955.
    [36]杨磊,高纯,赵小军.混凝土箱梁温度场研究与效应分析[J].施工技术,2012,42(17):35-39.
    [37]郑羽,王宗林,高庆飞,等.大跨连续箱梁桥施工期温度场测定及其影响分析[J].科学技术与工程,2012,12(22):5672-5675.
    [38]邓祖华,刘其伟.钢筋混凝土箱梁沥青摊铺温度场数值分析[J].湖南交通科技,2012,38(2):101-103.
    [39]李靖.温度场作用下大跨混凝土箱梁横向分析[J].交通科技,2012,38(3):28-31.
    [40]苏靖海,段树金.钢-混凝土双面组合箱梁日照温度场研究[J].石家庄铁道大学学报(自然科学版),2012,31(2):6-10.
    [41]程海根,王美英,李雪超,等.大气环境下混凝土箱梁横截面温度场试验研究[J].公路交通科技(应用技术版),2012,8(4):142-146.
    [42]李晓鹏,郝增新,刘强,等.基于Sketchup的曲线箱梁桥动态温度场边界条件的可视化研究[J].公路与汽运,2012,28(1):135-138.
    [43]唐云清,桂玉枝.混凝土箱梁桥施工过程中的水化热温度场实例及有限元计算[J].公路工程,2008,34(4):105-109.
    [44]张岗,任伟,贺拴海,等.箱梁水化热温度场时效模式及时变应力场[J].长安大学学报(自然科学版),2008,28(4):51-56.
    [45]曾志长.32m双线预制整孔箱梁蒸养温度场及温度裂缝控制研究[J].铁道标准设计,2009,53(3):72-75.
    [46]宋晓.基于ANSYS混凝土箱梁水化热温度场仿真分析[J].科学技术与工程,2011,11(27):6760-6762.
    [47]仇明.大跨度预应力混凝土箱梁桥温度场与水化热效应的研究[D].长沙:长沙理工大学硕士学位论文,2011.
    [48] Zuk W. Thermal and Shrinkage Stresses in Composite Bridges[J]. Journal ofAmerica Concrete Institute,1961,58(3):327-340.
    [49] Zuk W. Summary Review of Studies Relating to Thermal Stresses in HighwayBridges[R]. Highway Research Records,No.103,1965.
    [50] Zuk W. End Movement Studies of Various Types of Highway Bridges[R].Highway Research Records,No.295,1969.
    [51] Emerson M. Calculation of the Distribution of Temperature in Bridges[J].Systems Engineering Today,1973,(LR561):33-42.
    [52] Emerson M. Temperature Difference in Bridges: Basis of Design Requirements[J]. ASCE J Struct Div,1977,(765):39-52.
    [53] Emerson M. Temperatures in Bridges during the Hot Summer of1976[R].TRRL Laboratory Report (Transport and Road Research Laboratory,GreatBritain),1977,(783):31-52.
    [54] Emerson M. Bridge Temperatures Estimated From the Shade Temperature [J].TRRL Laboratory Report (Transport and Road Research Laboratory,GreatBritain),1976,(696):50-57.
    [55] Emerson M. Bridge Temperatures for Setting Bearings and Expansion Joints[J].TRRL Laboratory Report (Transport and Road Research Laboratory,GreatBritain),1979,(479):21-28.
    [56] Emerson M. Temperatures in Bridges during the Cold Winter of1978/1979[J].TRRL Laboratory Report (Transport and Road Research Laboratory,GreatBritain),1980,(926):34-39.
    [57] Kehlbeck F.太阳辐射对桥梁结构的影响[M].刘兴法,译.北京:中国铁道出版社,1981.
    [58] Hambly E C. Temperature Distributions and Stresses in Concrete Bridges[J].Journal of Structural Engineering,1978,56A(5):143-148.
    [59] Priestley M J N. Thermal Gradient in Bridges-Some Design Consideration[J].New Zealand Engineering,1972,27(7):228-233.
    [60] Priestley M J N. Design Thermal Gradients for Concrete Bridges[J]. NewZealand Engineering,1976,31(9):213-219.
    [61] Priestley M J N. Linear Heat-flow Analysis of Concrete Bridge Decks[R].Research Report, Unversity of Canterbury: Christchurch, New Zealand,1976.
    [62] Priestley M J N. Design of Concrete Bridge for Temperature Gradients[J].Journal of American Concrete Institute,1978,75(5):209-217.
    [63] Churchward A, Sokal Y J. Prediction of Temperatures in Concrete Bridges[J].ASCE J Struct Div,1981,107(11):2163-2176.
    [64] Dilger W H, Ghali A, Chan M, et al. Temperature Stresses in Composite BoxGirder Bridges[J]. Journal of Structural Engineering,1983,109(6):1460-1478.
    [65] Elbadry M, Ghali A. Thermal Stresses and Cracking of Concrete Bridges[J].Journal of American Concrete Institute,1986,83(6):1001-1009.
    [66] Elbadry M, Ghali A. Temperature Variations in Concrete Bridges[J]. Journal ofStructural Engineering,1983,109(10):2355-2374.
    [67] Hoffman P C, McClure R M, West H H. Temperature Study of An ExperimentalSegmental Concrete Bridge[J]. Journal of the Prestressed Concrete Institute,1983,28(2):78-97.
    [68] Richardson M, Selby A R. Measured Diurnal Thermal Strains in ReinforcedConcrete Beams[J]. Structural Engineer,1987,65B(1):11-15.
    [69] Rao D S. Temperature Distributions in Concrete Bridges for Indian SummerConditions[J]. Indian Concrete Journal,1987,61(8):211-218.
    [70] Rao D S. Temperature Distributions and Stresses in Concrete Bridges[J].Journal of The American Concrete Institute,1986,83(4):588-596.
    [71] Prakash R D. Temperature Stresses in Concrete Box-girder Bridges[J]. IndianConcrete Journal,1988,62(4):187-191.
    [72] Clark J H. Evaluation of Thernlal Stresses in A Concrete Box Girder Bridge[D].Washington: Washington University,1989.
    [73] Potgieter C, William L G. Nonlinear Temperature Distributions in Bridges atDifferent Locations in the United State[J]. PCI Journal,1989,34(4):81-103.
    [74] Mirambell E, Aguado A. Temperature and Stresses Distributions in ConcreteBridges[J]. Jounal of Structural Engineering,1990,116(9):2388-2409.
    [75] Fu H C, Ng S F, Cheung M S. Thermal Behavior of Composite Bridges[J].Journal of Structural Engineering, ASCE,1990,116(12)3302-3323.
    [76] Moorty S, Roeder C W. Temperature-dependent Bridge Movement[J]. Journalof the Structural Division, ASCE,1992,118(4):1090-1105.
    [77] Branco F A, Mendes P A. Thermal Actions for Concrete Bridge Design[J].Journal of Structural Engineering,1993,119(8):2313-2231.
    [78] Saetta A, Scotta R, Vitaliani R. Stress Analysis of Concrete StructuresSubjected to VariableThermal Loads[J]. Journal of Structural Engineering,1995,121(3):446-457.
    [79] Froli M, Hariga N, Orlandini M, et al. Research on the Longitudinal ThermalBehavior of a Prestressed Concrete Box Girder Bridge in Italy[J]. StructuralEngineering International, IABSE,1996,6(4):237-242.
    [80] Mirambell E, Costa J. Thermal Stresses in Composite Bridges According toBS5400and EC1[J]. Proceedings of the Institution of Civil Engneers,structures and Buildings,1997,122(3):281-292.
    [81] Shushkewich K W. Design of Segmental Bridges for Thermal Gradients[J]. PCIJournal,1998,43(4):120-137.
    [82] Roberis-Wollman C L, Breen J E, Cawrse J. Measurement of ThermalGradients and Their Effects on Segmental Concrete Bridge[J]. Jounal ofBridge Engineering,2002,7(3):166-174.
    [83] Thomas N. Temperature Effects in Concrete Box Girder Bridges [D]. Calgary:University of Calgary,1989.
    [84] Mahama F. Validation of Stresses Caused by Thermal Gradients in SegmentalConcrete bridges[D]. Tampa: University of Florida,2007.
    [85] Li D N, Maes M A, Dilger W H. Evaluation of Temperature Data ofConfederation Bridge: Thermal Loading and Movement at Expansion Joint[J].Proceedings of the ASCE: Structure Congress,2008,120(1):314-324.
    [86] Lee J H. Experimental and Analytical Investigations of the Thermal Behaviorof Prestressed Concrete Bridge Girders Including Imperfections[D]. Atlanta:Georgia Institute of Technology,2007.
    [87] Lee J H, Kalkan L. Analysis of Thermal Environmental Effects on Precast,Prestressed Concrete Bridge Girders: Temperature Differentials and ThermalDeformations[J]. Advances in Structural Engineering,2012,15(3):447-460.
    [88]英国标准协会.英国标准5400-钢桥、混凝土桥及结合桥[S].西安:西南交通大学出版社,1978.
    [89] Bridge Manual(2nd Ed). Section3:Design Loading[S]. Transit New Zealand,2003.
    [90]道路桥示方书同解说:第一卷[S].日本道路协会,2002.
    [91]康为江.钢筋混凝土箱梁日照温度效应研究[D].长沙:湖南大学硕士学位论文,2000.
    [92]李宏江,李湛,王迎军,等.广东虎门辅航道连续刚构桥混凝土箱梁的温度梯度研究[J].公路交通科技,2005,22(5):67-70.
    [93]盛超,于天来.连续刚构箱梁桥温度场及温度效应的研究[J].森林工程,2008,24(5):49-51.
    [94]杨世铭.传热学[M].北京:高等教育出版社,1998.
    [95]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学博士学位论文,2007.
    [96]王秀俊.云对太阳辐射的影响[J].科技风,2012,193(4):96-99.
    [97]朱伯芳.水工混凝土结构的温度应力与温度控制[M].北京:水利水电出版社,1976.
    [98]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
    [99]向敏,王新敏.混凝土热物理参数反分析试验研究[J].石家庄铁道学院学报,2003,16(1):52-54.
    [100]王卫锋,陈国雄,马文田.混凝土连续刚构桥箱梁的温度监测与分析[J].华南理工大学学报(自然科学版),2006,35(2):69-73.
    [101]张枫,肖建庄,宋志文.混凝土导热系数的理论模型及其应用[J].商品混凝土,2009,6(2):23-25.
    [102]刘卫东,田波,侯子义.混凝土导热系数试验研究[J].中外公路,2012,32(1):226-229.
    [103]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [104]刘文燕,黄鼎业,华毅杰.混凝土表面对流换流系数测试研究[J].建筑材料学报,2004,7(4):8-11.
    [105]徐帅.日照混凝土箱梁的温度场研究[D].北京:北京交通大学硕士学位论文,2008.
    [106]汪剑,方志.混凝土箱梁日照温差的试验研究[C].2003年全国桥梁学术会议论文集,2003.
    [107]刘文燕,耿耀明.混凝土表面太阳辐射吸收率试验研究[J].混凝土与水泥制品,2004,31(4):8-11.
    [108]赵玉青,邱攀,邢振贤.大体积混凝土导热系数反演分析[J].人民长江,2011,42(13):61-63.
    [109]叶玉树.客运专线预制箱梁蒸养温度场的仿真分析[J].山西建筑,2012,38(6):184-186.
    [110]Hoffman P C, McClure R M, West H H. Temperature Problem in a PrestressedBox-girder Bridge[J]. Transportation Research Record,1984,42-50.
    [111]Thurston S J, Priestley M J N, Cooke N. Influence of Cracking on ThermalResponse of Reinforced Concrete Bridges[J]. Concrete International: Designand Construction,1984,6(8):36-43.
    [112]Barsotti R, Froli M. Statistical Analysis of Thermal Actions on a ConcreteSegmental Box-girder Bridge[J]. Structural Engineering International: Journalof the International Association for Bridge and Structural Engineering(IABSE),2000,10(2):111-116.
    [113]Hattel J H, Thorborg J. A Numerical Model for Ppredicting theThermomechanical Conditions During Hydration of Early-age Concrete[J].Applied Mathematical Modelling,2003,(27):1-26.
    [114]Lesnic D, Elliott L, Ingham D B. Application of the Boundary Element Methodto Inverse Heat Conduction Problems[J]. International Journal of Heat andMass Transfer,1996,39(7):1503-1517.
    [115]Brown A D. A Physical Model of the Atmospheric Aerosol Turbidity forEstimating the Illuminance of Direct Sunlight[J]. Lighting Res. Technol,2008,40(1):347-358.
    [116]Branco F A, Mendes P A, Mirambell E. Heat of Hydration Effects inStructures[J]. ACI Material Journal,1992,189(2):139-145.
    [117]Faria R, Azenha M, Figueiras J A. Modelling of Concrete at Early Ages:Application to an Externally Restrained Slab[J]. Cement and ConcreteComposites,2006,(28):463-471.
    [118]Cristofari C, Notton G, Louche A. Study of the Thermal Behavior of aProduction Unit of Concrete Structural Components[J]. Applied ThermalEngineering,2004,(24):1087-1101.
    [119]Yan P. Research on Temperature Field anf Temperature Stress of Large SpanConcrete Cable-Stayed Bridge Girder[C]. Applied Mechanics andMaterials,Yantai,2012,2073-2080.
    [120]Liu H, Dong J, Liang T, et al. Investigation of Temperature Effect of Box-Girder Bridge in Typical Winter Weather of Qinhai-Tibet Plateau[C]. AppliedMechanics and Materials,Yantai,2012,2117-2120.
    [121]Cooke N, Priestley M J N, Thurston S J. Analysis and Design of PartiallyPrestressed Concrete Bridges under Thermal Loadings[J]. PCI Journal,1984,29(3):94-115.
    [122]Mase M A, Dilger W H, Ballyk P D. Extreme Values of Thermal LoadingParameters in Concrete Bridges[J]. Canadian Journal of Civil Enginering,1992,19(6):935-946.
    [123]Silveria A P, Branco F A. Statistical Analysis of Thermal Actions for ConcreteBridge Design[J]. Structural Engineering International,2000(1):33-38.
    [124]Lucas J M, Berred A, Louis C. Thermal Actions on a Steel Box GirderBridge[J]. Proceedings of the institution of Civil Engineers: Structures andBuildings,2003,156(2):175-182.
    [125]Mirambell E, Mendes P A, Aguado A, et al. Design Temperature Differencesfor Concrete Bridges[J]. Structural Engineering International,1991,1(3):36-40.
    [126]Cohen M F, Greenberg D P. The Hemi-Cube: A Radiosity Solution forComplex Environments[J]. Computer Graphics,1985,19(3):31-40.
    [127]Schindler A K, Ruiz J M, Rasmussen R O et al. Concrete PavementTemperature Prediction and Case Studies with the FHWA HIPERPAVModels[J]. Cement and Concrete Composites,2004,(26):463-471.
    [128]Poppe A, De Schutter G. Cement Hydration in the Presence of High FillerContents[J]. Cement and Concrete Research,2005,(35):2290-2299.
    [129]王勖成,邵敏.有限单元法基本理论和数值方法[M].北京:清华大学出版社,1997.
    [130]贾福杰,赵顺增,刘立.采用有限元模拟计算混凝土的温升实例[J].混凝土与水泥制品,2011,38(5):17-21.
    [131]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究[D].南京:东南大学博士学位论文,2006.
    [132]孙国富.大跨度钢管混凝土拱桥日照温度效应理论及应用研究[D].济南:山东大学博士学位论文,2010.
    [133]张运波.薄壁空心高墩的温度效应及其对稳定性影响的研究[D].北京:中国铁道科学研究院博士学位论文,2011.
    [134]葛俊颖,赵国军.实用混凝土箱梁温度应力计算方法[J].石家庄铁道大学学报(自然科学版),2010,23(2):117-121.
    [135]高大峰,何新成,任禹州.陕北榆林地区混凝土箱梁温度梯度分析[J].太原理工大学学报,2012,43(2):212-215.
    [136]徐丰.混凝土箱梁桥温度效应关键因素研究[D].武汉:华中科技大学博士学位论文,2009.
    [137]余建杰,宋固全,吴浪.基于MIDAS的大体积混凝土桩承台温度场有限元分析[J].混凝土与水泥制品,2012,39(5):34-37.
    [138]杨杰,毛毳,侯霞等.大体积混凝土温度场及温度应力的有限元分析[J].天津城市建设学院学报,2012,27(4):270-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700