用户名: 密码: 验证码:
松辽盆地南部长岭凹陷—华字井阶地含片钠铝石砂岩成岩流体演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以片钠铝石和含片钠铝石砂岩为研究对象,通过岩石学、稳定同位素地球化学与流体包裹体地质学等多学科相结合的综合研究方法,开展了松辽盆地南部长岭凹陷-华字井阶地含片钠铝石砂岩的成岩流体演化研究。含片钠铝石砂岩的成岩共生序列为:伊蒙混层、方解石、自生高岭石、次生加大石英、伊利石、片钠铝石和铁白云石,CO2注入之后形成了片钠铝石和铁白云石组合。通过片钠铝石的碳、氧同位素特征研究,结合松南中浅层CO2气成因与分布,确定形成片钠铝石的CO2和气藏中的CO2具有相同的碳来源,绝大部分属于幔源-岩浆型CO2。运用伊利石K-Ar同位素测年、包裹体均一温度和埋藏史-热史曲线等方法,推断出CO2充注时间为58.8~37Ma。根据火山喷发活动时间、物质成分等条件分析研究,证实了双辽火山群活动和同期的热流底辟体上侵为松辽盆地南部长岭凹陷-华字井阶地形成片钠铝石的CO2的主要来源。最后,总结出松辽盆地南部长岭凹陷-华字井阶地含片钠铝石砂岩的成岩流体的演化过程。
Abundant of CO2 occurred in southern part of Songliao Basin, and as reported, most of the CO2 gas reservoirs distributed in Qian’an, Gudian and so on. As an active gas, CO2 can dissolve into water and form the acid fluid. Theoretically, ankerite, siderite and dawsonite can all become the effective products with the function of CO2-H2O-sandstone interaction, but recently, geological observation, synthetic experiment and numerical simulation are inclined to that dawsonite would make more sense. Numerous evidences show that, in the background with CO2 gas reservoir, as the trace mineral, dawsonite can make record on the migration, accumulation and seepage of CO2.
     Nowadays, abundant of dawsonite was found in Changling Depression- Huazijing Step, southern part of Songliao Basin, which producing an ideal natural laboratory for doing research on fluid evolution in daswonite-bearing sandstone. Combining with petrology, stable isotopic analysis and fluid inclusion methods, the petrologic characteristic and genesis of CO2 for forming the dawsonite are studied; then we focus on the coupling relationship among volcanic activity, CO2 fluid and diagenesis of sandstone in the material contents and time scales; at last the evolution of diagenetic fluid in dawsonite-bearing sandstone is investigated.
     The diagenesis sequence for dawsonite-bearing sandstone in research area are as follows: illite and smectite mixed layer, micrite calcite, authigenic kaolinite, quartz overgrowth, late calcite, illite, dawsonite and ankerite. Among them, dawsonite and ankerite are the authigenic mineral combination which formed after CO2 injection. In the late CO2 injection period, the weak acid fluid turns to be alkaline, and if the pressure of CO2 in porosity is higher, dawsonite formed, otherwise, the authigenic mineral is ankerite. These specific mineral combinations can keep track for transformation, aggression and seepage of CO2, so they can make contribute to the research on CO2 gas reservoir.
     Dawsoniteδ13C values are -5.3‰~1.13‰, and the calculated values of CO2 gas in isotopic equilibrium with dawsonite are -4.55‰~-11.72‰, meanwhile,δ13C values of the accompanying CO2 in Qian’an and Honggang are -5.32‰~-6.76‰, so these calculated data is coincided with the values of free gas. Moreover, these data appears as an inorganic CO2 source, especially in the range for mantle- magmatic CO2 (-8‰~-2‰). The ratios of 3He/4He(R) of natural gas samples range from (3.16±0.09)×10-6 to (6.94±0.20)×10-6,with the R/Ra of 2.26~4.96, showing a mantle source characteristics. Combining with the truth that there is a good relationship between dawsonite-bearing sandstone and CO2, and both of them are controlled by basement faults, a same carbon source for forming dawsonite and free gas phase CO2 in middle-shallow layers can be suggested, and this kind of carbon source seems to belong to mantle-magmatic origin mixing with some organic CO2.
     Sequencing and timing are two new methods can be used to estimate the infilling time of CO2 which forming the dawsonite in Changling depression- Huazijing step.Through fluid inclusions and diagenesis sequence studies, two terms of oil&gas infilling were determined, and dawsonite was found developing between these two infilling stages. The analysis of isotopic dating of autogenetic illite shows that the time for hydrocarbon injection is 92.5~58.8Ma, which is coincide with the first phase inclusions (developing in quartz overgrowth). The other stage of inclusions mainly developed in calcite cements, microfissure which cutting quartz debris and overthgrowths. Through homogenization temperature and buried&thermal history studies, the second phase of hydrocarbon injection was calculated to be between 37 and 20Ma. Then the filling time for CO2 which inducing the dawsonite genesis can be fixed to be 58.8~37Ma. After a series of research on the volcanic activities after late cretaceous, it is found that there is a great time coincidence among Shuangliao volcanic activity, inorganic CO2 infilling and genesis of dawsonite. The fluid inclusions data showed that abundant of CO2-melt inclusions were caught in alkaline olivine basalt by both phenocryst and xenoliths, Shuangliao volcanic cluster. Therefore, through the analysis on activities time and materials of the volcano, the volcanic groups in Shuangliao and the intrusion of heat flow diaper bodies are confirm to play the predominant roles on the CO2 source for forming dawsonite.
     The fluid evolution can be divided into three stages: pre-CO2 (illite&smectite mixed layer and micrite calcite step, kaolinite and quartz overgrowth step, late calcite and illite step ), dual infilling by CO2 & hydrocarbon and nowadays fluid. Once the formation water injected into CO2, its geochemical content would be change, such as appearing as high salinity and rich in Na+ and HCO3-. So the whole evolution in Changling depression- Huazijing step is a complex process accompanying continuous fluid infilling. The occurrence of dawsonite can be divided into two types, continuing growth and termination, depending on whether there is aqueous fluid in dawsonite-bearing areas. The former type means that under the dawsonite accompanying with fluid background, with the proper condition (CO2 pressure, pH, Na+,Al3+and so on), dawsonite will keep on growing; while in termination type, the amount of dawsonite can not be increased as there is no aqueous fluid.
     These previous studies opened a new field on basin fluid and made an advanced research on the migration of the materials in the deep-shallow of the earth or hydrocarbon source rock- reservoir. Through revealing the mechanism for the interaction between complex fluids and sandstones, the basic law for dynamic process of CO2 and oil & gas can be explored.
引文
[1]陈国利.松辽盆地南部天然气的分布特征[J].新疆石油地质, 2003, 24 (6): 520-522.
    [2]陈均亮,李忠权,应丹琳,等.松辽盆地北部白垩纪末反转变形的三维构造物理模拟[J].地质科学, 2009, 44(1): 63-73.
    [3]陈发景.伸展盆地分析[J].天然气地球科学, 1993, 2(3): 109-131.
    [4]程有义.含油气盆地二氧化碳成因研究[J].地球科学进展, 2000, 15(6): 684-687.
    [5]蔡春芳.沉积盆地流体-岩石相互作用研究的现状[J].地球科学进展, 1996, 11(6): 575-579.
    [6]蔡春芳,顾家裕,蔡洪美.塔中地区志留系烃类侵位对成岩作用的影响[J].沉积学报, 2001, 19(1): 60-65.
    [7]池国祥,周义明,卢焕章.当前流体包裹体研究和应用概况[J].岩石学报, 2003, 19(2):201-212.
    [8]杜韫华.一种次生的片钠铝石[J].地质科学, 1982, 4: 434-437.
    [9]杜韫华.具二氧化碳气顶储层的成岩作用研究[J].石油与天然气地质, 1985,6(1): 91-97.
    [10]戴金星.中国含油气盆地的无机成因气及其气藏[J].天然气工业, 1995, 15(3): 22-27.
    [11]戴金星.中国气藏(田)的若干特征[J].石油勘探与开发, 1997, 24(2): 6-9.
    [12]戴金星,卫延昭.无机成因石油论和无机成因的气田(藏)概略[J].石油学报, 2001, 22(6):5-10.
    [13]戴金星.中国东部和大陆架二氧化碳气田(藏)及其气的类型[J].大自然探索, 1996, 15(58): 18-20.
    [14]戴金星,戴春森,宋岩,等.中国东部无机成因的二氧化碳气藏及特征[J].中国海上油气(地质), 1994, 8(4): 215-222.
    [15]戴金星,宋岩,戴春森,等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社, 1995, 1-11.
    [16]杜乐天.地幔流体与玄武岩及碱性岩岩浆成因[J].地学前缘, 1998,5(3): 145-157.
    [17]郭巍,刘彦杰,王建功,等.松辽盆地英台地区储层砂岩体微观结构特征研究[J].长春科技大学学报, 1998, 28(2): 162-165.
    [18]郭巍.松辽盆地南部白垩纪构造沉积演化与成藏动力学研究[D].吉林大学, 2007,21-41.
    [19]眭良仁,黄德佩.东海沉积物中碳酸盐的初步研究[J].沉积学报, 1983,1(1): 63-73.
    [20]高玉巧,刘立,蒙启安,等.海拉尔盆地与澳大利亚Bowen-Gunnedah-Sydney盆地系片钠铝石碳来源的比较研究[J].世界地质, 2005, 24(4): 344-349.
    [21]高玉巧,刘立,曲希玉,等.海拉尔盆地乌尔逊凹陷与松辽盆地南部孤店CO2气田含片钠铝石砂岩的岩石学特征[J].古地理学报, 2008, 10(2): 111-123.
    [22]高玉巧,刘立.自生片钠铝石的碳氧同位素特征及其成因意义[J].高校地质学报, 2006, 12(4): 522-529.
    [23]髙玉巧.岩浆成因CO2气藏中储集砂岩的热对流成岩作用:以海拉尔盆地乌尔逊凹陷为例[D].吉林大学,2007,16-58.
    [24]高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展, 2005, 20(10): 1083-1088.
    [25]葛云锦,陈勇,周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响[J].中国石油大学学报(自然科学版), 2009, 33(1): 18-22.
    [26]韩广玲.松辽盆地乾安隐蔽油藏形成的石油地质条件[J].大庆石油学院学报, 1986, 29(1):1-6.
    [27]韩广玲,赵洪涛,边吉.松辽盆地中央拗陷带青山口组玄武岩与油气分布的关系[J].石油实验地质, 1998, 10(3): 248-254.
    [28]何家雄,李明兴,陈胜红.莺歌海盆地泥底辟带中深层天然气勘探中的CO2风险分析[J].中国海上油气(地质), 2000,14(5): 332-338.
    [29]何家雄,夏斌,王志欣,等.中国东部及近海陆架盆地不同成因CO2运聚规律与有利富集区预测[J].天然气地球科学, 2005, 16(5): 622-631.
    [30]花艳秋,孙罡,丁淑燕.吉林省晚白垩世玄武岩地球动力学意义及油气成藏[J].世界地质, 2006, 25(4): 385-389.
    [31]胡受奚,赵乙英,胡志宏,等.中国东部中-新生代活动大陆边缘构造-岩浆作用演化和发展[J].岩石学报, 1994, 10(4): 370-381.
    [32]胡海燕.油气充注对成岩作用的影响[J].海相油气地质, 2004, 9(1-2):85-88.
    [33]胡安平,戴金星,杨春,等.渤海湾盆地CO2气田(藏)地球化学特征及分布[J].石油勘探与开发, 2009, 36(2): 181-189.
    [34]黄善炳.金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J].石油勘探与开发, 1996, 23(2): 32-34.
    [35]黄善炳.对松辽盆地南部红岗油田砂岩次生孔隙的研究[J].石油勘探与开发, 1983, 6: 37-42.
    [36]赫英,王定一,刘洪营,等.胜利油气区二氧化碳气藏成因[J].石油与天然气地质, 1997, 18 (1).
    [37]解习农,李思田,刘晓峰.异常压力盆地流体动力学[M].中国地质大学出版社. 2006, 1-16.
    [38]刘立,高玉巧,曲希玉,等.海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J].岩石学报, 2006, 22(8): 1861-1868.
    [39]刘立,髙玉巧,曲希玉,等.东北中新生代含油气盆地中深源CO2时空分布、成因及其对成岩成藏的影响[A].地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议论文集[C]. 2007.
    [40]刘立,曲希玉,董林森,等.东北及邻区中生代盆地片钠铝石的分布、产状及其油气地质意义[J].吉林大学学报. 2009, 39(1):1-8.
    [41]刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报, 1996, 14(1): 110-116.
    [42]刘嘉麒.中国东北地区新生代火山岩的年代学研究[J].岩石学报, 1987(4): 21-31.
    [43]刘建明,赵善仁,刘伟等.成矿地质流体体系的主要类型[J].地球科学进展, 1998, 13(2):161-165.
    [44]刘建明.沉积盆地动力学与盆地流体成矿[J].矿物岩石地球化学通报, 2000,19(2): 76-84.
    [45]刘方槐,颜婉荪.油气田水文地质学原理[M].北京:地质出版社, 1991: 27-40.
    [46]刘德良,李振生,刘波,等.火山岩吸附CO2气的成藏潜力及实例分析[J].地质通报, 2005, 24(10-11): 962-967.
    [47]刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探开发中的应用[M].广州:广东科技出版社, 2007, 100-211.
    [48]刘建.长岭凹陷地热史模拟[J].天然气工业, 2004,24(1): 17-20.
    [49]李福来,刘立,杨会东,等.松辽盆地南部乾安油田青山口组含片钠铝石砂岩的成岩作用[J].吉林大学学报(地球科学版), 2009, 39(2): 217-224.
    [50]李福来,刘立,曲希玉,等. CO2注入砂岩后的典型自生矿物组合[J].海洋地质与第四纪地质, 2009, 29(6):103-109.
    [51]李会军,吴泰然,吴波,等.中国优质碎屑岩深层储层控制因素综述[J].地质科技情报, 2004, 23(4): 76-82.
    [52]李明诚,单秀芹,马成华,等.油气成藏期探讨[J].新疆石油地质, 2005, 26(5): 587-591.
    [53]李明诚,李剑,万玉金,等.沉积盆地中的流体[J].石油学报, 2001,22(4): 13-17.
    [54]李天福,马鸿文,白志民.汉诺坝玄武岩的地球化学特征及成因模式[J].岩石矿物学杂志, 1999, 18(3): 217-227.
    [55]李思田,谢习农,王华,等.沉积盆地分析基础与应用[M].北京:高等教育出版社, 2004, 6-33.
    [56]李思田,路凤香,林畅松,等.中国东部及邻区中新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社, 1994:1-10.
    [57]廖建波,刘化清,林卫东.鄂尔多斯盆地山城-演武地区三叠系延长组长6-长8低渗储层特征及成岩作用研究[J].天然气地球科学, 2006, 17(5): 682-687.
    [58]林景晔,门广田.黄薇砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发, 2004, 23(2): 5-7.
    [59]林景晔,林铁锋,朱德丰,等.喜马拉雅运动与松辽盆地北部油气成藏的关系[J].石油与天然气地质, 2004, 25(2):222-225.
    [60]鲁雪松,宋岩,柳少波,等.幔源CO2释出机理、脱气模式及成藏机制研究进展[J].地学前缘, 2008, 15(6): 293-302.
    [61]连承波,钟建华,渠芳,等. CO2成因与成藏研究综述[J].特种油气藏, 2007, 14(5): 7-12.
    [62]卢焕章,范宏瑞,倪培,等.流体包裹体[M].科学出版社, 2004, 137-139.
    [63]米敬奎,张水昌,陶士振,等.松辽盆地南部长岭断陷CO2成因与成藏期研究[J].天然气地球科学, 2008, 19(4): 452-456.
    [64]牛嘉玉,张映红,袁选俊,等.中国东部中、新生代火成岩石油地质研究、油气勘探前景及面临问题[J].特种油气藏, 2003, 10(1): 7-12.
    [65]欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报, 2006, 25(1): 1-11.
    [66]曲希玉,刘立,胡大千,等. CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报(地球科学版), 2007,37(4):690-697.
    [67]曲希玉,刘立,高玉巧,等.苏仁诺尔断裂带含片钠铝石砂岩储层物性特征及成因[J].大庆石油地质与开发, 2007, 26(4):35-42.
    [68]曲希玉. CO2流体-砂岩相互作用的实验研究及其在CO2气储层中的应用[D].吉林大学, 2007,88-101.
    [69]曲希玉,刘立,高玉巧,等.砂岩中片钠铝石的特征及其稳定性研究[J].地质论评, 2008, 54(6): 837-844.
    [70]邵明礼,门吉华,魏志平.松辽盆地南部二氧化碳成因类型及富集条件初探[J].大庆石油地质与开发, 2000, 19(4): 1-3.
    [71]单玄龙,胡金祥,任利军,等.松辽盆地乾安地区青山口组三段沉积微相特征[J].地质学报, 2008, 82(1): 65-71.
    [72]隋少强,宋丽红,张金亮.海拉尔盆地乌尔逊凹陷大磨拐河组成岩作用研究[J].大庆石油地质与开发, 1996, 15(4): 12-16.
    [73]宋荣华,王军,何艳辉,等.荧光显微图像技术判断储层流体性质研究[J].油气井测试, 2000, 9(4): 28-32.
    [74]孙玉梅,郭迺嬿,欧光习.莺-琼盆地1号断裂带含烃热流体活动初探[J].岩石学报, 2000, 16(4): 687-694.
    [75]孙向阳,解习农.东营凹陷地层水化学特征与油气聚集关系[J].石油实验地质, 2001, 23(3): 291-296.
    [76]唐勇,黄文华,郭晓燕,等.准噶尔盆地白垩系储集层特征[J].新疆石油地质, 2003, 24(5): 403-406.
    [77]唐振兴,刘国文,姜泽军.松南构造认识及无机成CO2分布规律研究[J].石油天然气学报, 2009, 31(1): 1-5.
    [78]陶士振,张宝民,赵长毅.流体包裹体方法在油气源追踪对比中的应用:以四川盆地碳酸盐岩大型气田为例[J].岩石学报, 2003, 19(2): 327-336.
    [79]谈迎,张长木,刘德良.松辽盆地北部昌德东气藏CO2成因的地球化学判据[J].海洋石油, 2005, 25(3): 18-23.
    [80]王永春,康伟力,毛超林.吉林探区油气勘探理论与实践[M].石油工业出版社, 2007, 3-43.
    [81]王大锐.塔里木盆地中、上奥陶统烃源岩的碳同位素宏观证据[J].地质论评, 2000, 46(3):328-334.
    [82]王大锐.油气稳定同位素地球化学[M].北京:石油工业出版社, 2000, 17-119.
    [83]王飞宇,何萍,张水昌,等.利用自生伊利石K-Ar定年分析烃类进入储层的时间[J].地质评论, 1997, 43(5): 540-546.
    [84]王兴谋,夏斌,陈根文,等.中国东部地区新生代岩浆活动对区域性CO2形成时间的制约[J].大地构造与成矿学, 2004, 28(3): 338-344.
    [85]王龙樟,戴谟,彭平安.自生伊利石40Ar/ 39Ar法定年技术及气藏成藏期的确定[J].地球科学-中国地质大学学报, 2005, 39(1): 78-82.
    [86]王濮,潘兆橹,翁玲宝.系统矿物学下册[M].北京:地质出版社, 1987, 2: 413-415.
    [87]王连生,郭占谦,马志红,等.大庆长垣伴生气中二氧化碳含量的变化及原因[J].新疆石油地质, 2005, 26(6): 612-626.
    [88]王琪,史基安,肖力新,等.石油侵位对碎屑储集岩成岩作用序列的影响及其与孔隙演化的关系-以塔西南石炭系石英砂岩为例[J].沉积学报, 1998, 16(3): 97-101.
    [89]王衡鉴.松辽盆地齐家凹陷的石油地质特征[J].石油与天然气地质, 1984,5(3): 271-275.
    [90]维索茨基ИВ.天然气地质学[M].北京:石油工业出版社, 1986:16-89.
    [91]吴新民,康有新,姜英泽,等.吉林大安北油田葡萄花储层岩石基本特征[J].西安石油学院学报(自然科学版), 1999, 14(1): 6-9.
    [92]吴新民,康有新,张宁生.吉林油田大26井区储层潜在伤害因素分析[J].西安石油学院学报(自然科学版), 2001, 16(5): 29-32.
    [93]吴乾蕃,谢毅真.松辽盆地大地热流[J].地震地质, 1985, 7(2): 59-64.
    [94]吴向阳,牟荣,石胜群,等.苏北盆地火成岩发育与构造演化的关系[J].中国石油勘探, 1999, 4(1): 44-47.
    [95]熊福生,史謌,孙永梅,等.松辽盆地两井孤店地区泉头组四段沉积微相研究[J].北京大学学报, 2008, 44(2): 185-192.
    [96]徐衍彬,陈平,徐永成.海拉尔盆地碳钠铝石分布与油气的关系[J].石油与天然气地质, 1994, 15(4): 322-327.
    [97]薛永超,彭仕宓,朱红卫,等.新立油田泉三、四段储层成岩作用及储集空间演化[J].西安石油大学学报(自然科学版), 2005, 20(4): 11-16.
    [98]夏林圻.论五大连池火山岩浆演化[J].岩石学报, 1990, (1): 13-30.
    [99]夏林圻,夏祖春,徐学义.上地慢中的流体和熔体[J].地质学报, 1999, 73(3): 262.
    [100]徐同台,王行信,张有瑜,等.中国含油气盆地粘土矿物[M].石油工业出版社, 2003, 1-66.
    [101]余和中,蔡希源,韩守华,等.松辽盆地石炭-二叠系烃源岩研究[J].沉积与特提斯地质, 2003, 23(2): 62-66.
    [102]袁东山,张枝焕,刘洪军.油气充注对晚期碳酸盐矿物胶结作用的影响[J].石油天然气学报(江汉石油学院学报), 2005, 27(2):298-300.
    [103]余扬.吉林双辽七星山新生代玄武岩的特点及其成因探讨[J].岩石学报,1987(3):55-63.
    [104]闫建萍,刘池洋,郭桂红.松辽盆地扶杨油层油气成藏期次和时限确定[J].兰州大学学报, 2008,44(5):26-29.
    [105]杨默函,侯贵廷,史謌.辽河盆地东部凹陷新生代火山岩K-Ar地质年代学及其地质意义[J].北京大学学报(自然科学版), 2006, 42 (2): 184-191.
    [106]杨俊杰,黄月明,张文正,等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发, 1995, 22(4): 82-86.
    [107]杨明达.松辽盆地南部构造演化与油气聚集[D].中国地质大学(北京), 2005, 9-52.
    [108]杨继良,张淑英.松辽盆地的白垩纪浊流沉积[J].石油勘探与开发, 1987, 2:10-15.
    [109]杨会东.松南无机成因CO2与常规油气的耦合差异成藏研究[D],吉林大学,2009,17-50.
    [110]殷纯瑕.地质中的基础化学问题[M].地质出版社, 1980,16-56.
    [111]应凤祥,罗平,何东博.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M].石油工业出版社, 2004, 6-89.
    [112]赵荣.松辽盆地南部红岗油田高台子油层油藏地质特征研究[D].大庆石油学院, 2003,30-69.
    [113]赵澄林,朱莜敏.沉积岩石学[M].北京:石油工业出版社, 2001:99-139.
    [114]赵孟军,宋岩,潘文庆,等.沉积盆地油气成藏期研究及成藏过程综合分析方法[J].地球科学进展, 2004,19(6):939-946.
    [115]赵必强.琼东南盆地天然气运聚成藏规律研究[D].中国科学院研究生院, 2006, 35-99.
    [116]张万选.论油、气藏的分类及中国油、气藏的主要类型[J].石油学报, 1981,2(3): 1-11.
    [117]张惠良,张荣虎,王月华,等.粘土膜对砂岩储集性能的影响-以塔里木盆地群6井区泥盆系东河塘组下段为例[J].石油实验地质, 2006, 28(5): 493-498.
    [118]张丽霞,朱国华,李民.准噶尔盆地白垩系低电阻油层成因[J].新疆石油地质, 2004, 25(4): 388-389.
    [119]张岳桥,赵越,董树文,等.中国东部及邻区早白垩世裂陷盆地构造演化阶段[J].地学前缘, 2004, 3(11): 123-133.
    [120]张辉煌,徐义刚,葛文春,等.吉林伊通-大屯地区晚中生代-新生代玄武岩的地球化学特征及其意义[J].岩石学报, 2006, 22(6): 1579-1596.
    [121]张金亮.陆东凹陷九佛堂组储层岩石学及成岩作用[J].西安石油大学学报(自然科学版) , 1995,10 (2):4-10.
    [122]张苏予.中国五大连池火山[M].上海科学技术出版社,1979.
    [123]张铭杰,唐俊红,张同伟,等.流体包裹体在油气地质地球化学中的应用[J].地质论评, 2004,50(4): 397-406.
    [124]曾联波,田崇鲁.构造应力场与低渗透油田开发[J].石油勘探与开发, 1998,25(3): 91-93.
    [125]翟光明.中国石油地质志(卷二) [M].北京:石油工业出版社, 1990: 88-101.
    [126]邹才能,陶士振,张有瑜.松辽南部岩性地层油气藏成藏年代研究及其勘探意义[J].科学通报, 2007,52(19):2319-2329.
    [127]朱伟林,王振峰,黄保家.莺歌海盆地天然气成藏动力学[J].地球科学, 2004, 29(5): 563-568.
    [128]詹艳,赵国泽,王继军,等.黑龙江五大连池火山群地壳电性结构[J].岩石学报, 2006,22(6):1494-1502.
    [129] Aplin A C, Macleod G, Larter S R, et al. Combined use of confocal scaning microscopy and PVT simulation for estimating the composing and physical properties of petroleum in fluid inclusion[J]. Marine and Petroleum Geology, 1999,16:97-110.
    [130] Allen D E, Strazisar B R, Soong Y,et al. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities[J]. Fuel Processing Technology, 2005, 85: 1569-1580.
    [131] Archer S G, Wycherley H L,Watt G R, et al. Evidence for focused hot fluid flow with in the Britannia Field, offshore Scotland, UK[J]. Basin Research, 2004, 16: 377-395.
    [132] Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, eastern Australia[J]. Journal of Sedimentary Research, 1995, 65(3): 522-530.
    [133] Baker J C, Price P L, Golding S D. Coal as a source for hydrocarbon gas in the Aldebaran Sandstone, Bowen Basin geochemical evidence[J]. Queensland Coal Symposium proceedings, 1991,57-61.
    [134] Bader E. Uber die buiding and konstitution des dawsonite and seine synthetic darstelling[J]. Mineralogy,Geology and Palaeotology, 1938, 74:449-465.
    [135] Baksa C, Bognar L, Lovas G. Occurrence of dawsonite at Recsk(Matra Mountains, North Hungary)[J]. Acta Geologica Academiae Scientiarum Hungariae, 1975,19:281-286.
    [136] Balfe P E, Carmichael D C. An occurrence of dawsonite in the Bowen Basin[J]. Queensland Government Mining Journal, 1980, 81:519-522.
    [137] Beard T N, Tait D B, Smith J W. Nahcolite and dawsonite resources in the Green River formation, Piceance Creek basin, CO[M]. Rocky Mountain Association of Geologists, Guidebook, 1974, pp,101-110.
    [138] Bjφrlykke K. Fluid flow processes and diagenesis in sedimentary basin[A]: In: ParnellJ. Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins[C]. London: Geological Society Special Publication, 1994, 78: 127-140.
    [139] Broadhead R F. Natural accumulations of carbon dioxide in the New Mexico region-where are they, how do they occur and what are the uses for CO2[J]? Lite Geology. 1998, 20, 2-6.
    [140] Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences[J]. Natural and Physical Sciences, 1971, 231:40-41.
    [141] Clark P D, Hyne J B. Stream - oil chemical reactions:mechanisms for the aquathermolysis of heavy oil[J]. AOSTRA Journal of Research, 1984,(1):15-20.
    [142] Coveney R M, Kelly W C. Dawsonite as a daughter mineral in hydrothermal fluid inclusions[J]. Contributions to Mineralogy and Petrology, 1971,32: 334-342.
    [143] Fairbridge R W. Syndiagenesis-anadiagenesis-epidiagenesis: phases in lithogenesis. in: Iarsen G, Chilingar G V, ed. Diagenesis in sediments and sedimentary rocks 2[M]. Amsterdam: Elsevier, 1983,17-114.
    [144] Golab A N, Carrb P F, Palarnara D R. Influence of localized igneous activity on clear dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia[J]. International Journal of Coal Geology, 2006, 66: 296-304.
    [145] Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineral Petrology[J], 1997, 59:121-140.
    [146] Goldberry R, Loughnan F C. Dawsonite, aluminohydrocalcite and nordstrandite and gorceixite in Permian marine strata of the Sydney Basin, Australia[J]. Sedimentology, 1977, 24:565-579.
    [147] Hellevang H, Aagaard P, Oelkers E, et al. Can dawsonite permanently trap CO2[J]? Environ. Sci. Technol, 2005, 39: 8281-8287.
    [148] Helen Wycherley, Andrew Fleet, Harry Shaw. Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins[J]. Marine and Petroleum Geology, 1999 (16): 489-494.
    [149] Harrington, B J. Notes on dawsonite, a new carbonate[J]. Canadian Naturalist, 1874, 7:305-309.
    [150] Hay R L. Zeolite weathering in Olduvai Gorge, Tanganyika[J]. Bulletin of Geological Society of America, 1963,74: 1281-1286.
    [151] Heritsch H. Dawsonite as a product of low-hydrothermal transformation of a volcanic breccia from a borehole in eastern Styria(Austria)[J]. Neus Jahrbuch fur Mineralogie, Monatshefte, 1975,8:360-368.
    [152] Hogg A J C, Hamilton P J, Macintyre R M. Mapping diagenetic fluid flow within a reservoir, K-Ar dating in the Alwyn area(UK North Sea)[J]. Marine and Petroleum Geology, 1993,10(3): 279-294.
    [153] Huang Zhilong, Liu Congqiang, Xiao Huayun,et al. Study on the carbonate ocelli-bearing lamprophyre dykes in the Ailaoshan gold deposit zone,Yunnan Province[J]. Science in China(Series D),2002,45(6):494-502.
    [154] Haywood H M, Eyre J M, Scholes H. Carbon dioxide sequestration as stable carbonateminerals-environmental barriers[J]. Environmental Geology, 2001, 41:11-16.
    [155] Hongfei Lin, Takashi Fujii, Reisuke Takisawa,et al. Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions[J]. Applied Geochemistry, 2007, 22(1): 202-218.
    [156] Isaken G H, Pottorf R J, Jenssen A I. Correlation of fluid inclusions and reservoired oils to infer trap fill history in the South Viking Graben, North Sea[J]. Petroleum Geoscience, 1998, 4(1):41-55.
    [157] Kyser K, Hiatt E E. Fluids in sedimentary basins: an introduction[J]. Journal of Geochemical Exploration, 2003, 80: 139-149.
    [158] Karlsen D A, Nedkvitne T, Larter S R. Hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum resevoir filling history[J]. Geochim. Cosmochim. Acta, 1993, 57:3641-3654.
    [159] Kaszuba J P, Janecky D R, Snow M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃and 200bars: implications for geologic sequestration of carbon[J]. Applied Geochemistry, 2003, 18:1065-1080.
    [160] Lihui Liu, Yuko Suto, Greg Bignall. CO2 injection to granite and sandstone in experimental rock/hot watesystems[J]. Energy Conversion and Management, 2003, 44:1399-1410.
    [161] Limantseva O A, Makhnach A A, Ryzhenko B N,et al. Formation of Dawsonite Mineralizationat the Zaozernyi Deposit,Belarus[J].Geochemistry International, 2008, 46(1):62-76.
    [162] Lupton J E. Terrestrial inert gases: Isotope tracer studies and clues to primordial components in the mantle[J]. Annual Review Earth Science, 1983,11:371-414.
    [163] Loughnan F C, Goldbery R. Dawsonite and analcite in the Singleton Coal Measures of the Sydney Basin[J]. American Mineralogist, 1972, 57( 9-10): 1437-1447.
    [164] Lee M C, Aronson J L, Savin S M. K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands[J]. AAPG Bulletin, 1985,69: 1381-1385.
    [165] Moore J, Adams M, Allis R, et al. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs:an example from the Springerville-St. Johns Field,Arizona, and New Mexico, USA[J]. Chemical Geology, 2005, 217: 365-385.
    [166] Mckirdy D M, Chivas A R. Nonbiodgraded aromatic condensate associated with volcanic supercritical carbon dioxide,Otway Basin:On implication for primary migration from terrestrial organic matter[J]. Organic Geochemistry, 1992, 18(5): 611-627.
    [167] Milton C, Eugster H P. Mineral assemblages of the Green River Formation[M]. In:Abelson, P.H. (Ed.), Researches in Geochemistry. Wiley, London. 1959, pp. 118-150.
    [168] Milton C, Fahey J J. Classification and association of the carbonate minerals of the Green River Formation[J]. American Journal of Science, 1960,258-A:242-246.
    [169] M M Faiz, A Saghafi, S A Barclay,et al. Evaluating geological sequestration of CO2 in bituminous coals:The southern Sydney Basin, Australia as a natural analogue[J]. International journal of greenhouse gas control1, 2007, 1(2):223-235.
    [170] Nicoleliwig. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea[J]. AAPG Bulletin, 1987,71:1467-1474.
    [171] Nedkvitne T, Karlsen D A, Bjφrlykke K, et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea[J]. Marine and Petroleum Geology, 1993, 10: 255-270.
    [172] Ortoleva P J, Dove P, Richter F. Geochemical perspectives on CO2 sequestration[A]. In: US Department of Energy Workshop on“Terrestrial Sequestration of CO2-An Assessment of Research Needs”[C], Wawersik W R and Rudnicki J W. Editors, 1998: 20-28.
    [173] Ohmoto H, Rye RO. Isotopes of sulfur and carbon. In barnes H L. Geochemistry of Hydrothermal Ore Diposits[M]. 2nd Edition. New York, Wiley Press, 1979: 509-567.
    [174] Pearce J M, Holloway S. Natural occurrences as analogues for the geological disposal of carbon di-oxide[J]. Energy Conversion and Management, 1996, 37: 6-8.
    [175] Parnell J, Carey P, Duncan W. History of hydrocarbon charge on the Atlantic margin:evidence from fluid-inclusion studies, west of Shetland[J]. Geology, 1998, 26(9):807-810.
    [176] Rollinson H R. Using stable isotope data.In:Rollinson,H.R.(Ed),Using Geochemical Data:Evaluation,Presentation,Interpretation.Geochemistry Series,Longman Scientific and Technical[M].Wiley,New York, 1993,pp,266-315.
    [177] Shiraki R, Dun T L. Experimental study on water-rock interactions during CO2- flooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry, 2000,15:265-279.
    [178] Smith J W, Gould K W, Rigby D. The stable isotope geochemistry of Australian coals[J]. Organic Geochemistry, 1982, 3: 111-131.
    [179] Smith J W, Milton C. Dawsonite in the Green River Formation of Colorado[J]. Economic geology,1966, 61: 1029-1042.
    [180] Stevenson J S, Stevenson L S. The petrology of dawsonite at the type locality, Montreal[J]. Canadian Mineralogist, 1965,8: 249-252.
    [181] Stevenson J S, Stevenson L S. Contrasting dawsonite occurrences from Mount St-Bruno,Quebec[J]. Canadian Mineralogist, 1978, 16:471-474.
    [182] Stankevich E F, Batalin Y V. Distribution and origin of dawsonite[J]. Lithology and Mineral Resources, 1977,11: 359-368.
    [183] Smith J W, Milton C. Dawsonite in the Green River Formation of Colorado[J]. Economic Geology, 1966,61: 1029-1042.
    [184] Smith J W, Beard T N, Wade P M. Estimating nahcolite and dawsonite content of Colorado oil shale from oil yield assay data[M].Report of Investigation of the US Bureau of Mines 7689, 1972, 1-24.
    [185] Smith J W, Young N B. Dawsonite:its geochemistry, thermal behaviour and extraction from the Green River Formation oil shale[M]. Colorado School of Mines Quarterly Report, 1975, 70:69-93.
    [186] Stephane teinturier, Jacques Pironon. Experimental growth of quartz in petroleum environment.Part I: Procedures and Fluid Trapping[J]. Geochimica et Cosmochimica Acta, 2004, 68(11): 2495-2507.
    [187] Surdam R C, Crossey L J, Sven Hagen E, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
    [188] Saigal G C, Bjφrlykke K, Larter S. The effects of oil emplacement on diagenetic processes-Examples from the Fulmar reservoir sandstones, Central North Sea[J]. AAPG. Bulletin, 1992, 76(7):1024-1032.
    [189] Stuart M.V.Gilfillan, Chris J.Ballentine, Greg Holland,et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA[J]. Geochimica et Cosmochimica Acta, 2008, 72:1174-1198.
    [190] Schmidt V, McDonald D A.砂岩成岩过程中的次生储集孔隙.陈荷立,汤锡元译[M].北京:石油工业出版社, 1982,1-30.
    [191] Vincenzo Ferrini, Lucio Martarelli, Caterina Devito, et al. The Koman dawsonite and realgar-orpiment deposit, northern Albania:inferences on processes of formation[J]. The Canadian Mineralogist. 2003,41:423-427
    [192] Worden R H, Burley S D. Sandstone diagenesis: The evolution of sand to stone. In: Burley S D,Worden R H(eds). Sandstone diagenesis: Recent and ancient[M]. Blackwell Pub, 2003:1-44.
    [193] Worden R H. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology, 2006,23: 61-77.
    [194] Watson M N, Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstones reservoir[J]. Energy, 2004, 29: 1457-1466.
    [195] Wycherley H, Fleeta A, Shaw H. Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins[J]. Marine and Petroleum Geology, 1999,16: 489-494.
    [196] Wu F, Walker R J, Ren X, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chem Geol, 2003,196:107-129.
    [197] Xu T F, Apps JA, PruessK. Mumerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochmistry, 2004, 19:917-936.
    [198] Xu T F, Apps JA, PruessK. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology, 2005, 217: 295-318.
    [199] Zhang X F, Wen Z Y, Gu ZH, et al. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds[J]. Journal of Solid State Chemistry, 2004, 177(3): 849-855.
    [200] Zerai B, Saylor B Z, Matisoff G. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio[J]. Applied Geochemistry Geochemistry, 2006, 21: 223-240.
    [201] Zwingmann N, Mito S, Sorai M,et al. Pre-injection characterization and evaluation of CO2 sequestration potential in the Haizume Formation, Niigata Basin, Japan[J]. Oil and Gas Science and Technology, 2005, 60(2):249-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700