用户名: 密码: 验证码:
长距离调水工程渠道输水控制数学模型研究及非恒定流仿真模拟系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在长距离调水工程中,渠系输水控制运行是最重要任务之一,特别是对复杂的大型长距离调水工程,其特点是距离长,控制站点多,分布不均,要求实行不间断供水,调度和控制十分复杂,任何调度运行的失误都可能造成严重的后果。研究新的、高效的输水控制新技术及非恒定流仿真模拟系统是非常必要的。
     (1)对带有梯级泵站的大型长距离调水工程,电费是最大的运行成本之一,为了降低输水成本,本文利用电网峰荷期和基荷期不同的电价及最优化原理,提出了一种针对长距离复杂调水工程的最优输水控制模型。从仿真模拟结果看,优化控制方法不仅能有效的降低运行电费,也能有效控制水位的变化,而且可以以最少泵站开停机次数,有效控制整个渠道运行。
     (2)针对大型自流型调水工程,根据控制蓄水量法的基本原理、最优化理论和多年调度运行的实践经验,提出了一种使渠道内水流在最短时间内恢复到目标水位的最优输水控制的二步法模型。较传统输水方法:一是可以在规定的时间内,以最快的速度使渠道水位恢复到目标水位,传统方法需要几天才时间完成调控的渠道,用本优化控制方法,可在几小时内使渠道水位达到目标水位;二是模型中对渠段的蓄水量变化速率、流量变化等进行了约束,因此能使渠道内水流平稳运行,也可避免由于水位降落速度过快产生的渠堤滑坡。
     (3)根据明渠输水特点,提出了将传统渠道下游常水位输水PID控制和RBF人工神经网络控制方法结合的非线性输水控制模型,使输水控制具有自学习、自适应功能,容错性、鲁棒性强的特征。通过非恒定流仿真表明,基于RBF网络的PID输水控制方法,能够通过不断学习,自动调整控制参数,使输水控制过程超调量小,响应速度快,具有不需要特意选择或计算控制参数的优点。
     (4)根据模糊控制的优点,结合PID控制结构简单、稳定的特点,建立了渠道输水控制参数自适应模糊控制输水模型。模型通过模糊推理,吸纳渠道输水自动控制的专家经验,实现参数的优化,使控制过程始终处于一个较优的状态。水力模拟结果表明,用模糊自适应控制渠道输水,能明显减少超调量,输水控制的动态特性也得以改善。
     (5)根据渠道输水具有非线性的特点,提出了渠道输水控制的非线性PID数学模型;分析了渠道输水PID控制响应曲线,各个阶段控制参数对控制过程的影响,根据参数相对较优的变化趋势确定了比例、积分、微分参数的非线性函数曲线。进行了非线性PID控制的非恒定流模拟,仿真结果表明,应用实时调整增益参数的非线性模型较常规线性PID控制结构简单、响应速度快,超调量小。
     (6)提出了步进式PID渠道输水控制模型。在步进式PID渠道输水控制过程中,目标水位不是一次设定的静态水位,而是动态的、多步的,使输入指令一步一步的逼近所要求的最终目标水位。步进式控制可使渠道输水更稳定,使水位下降速度可控,具有简单实用、可控性强的特点。仿真结果表明,较常规PID控制,步进式PID控制渠道输水,水位波动小,超调量小,较适合需要严格控制水位变化的明渠输水或冰期输水。
     (7)研究并开发了专门针对长距离调水工程调度运行及自动控制过程的非恒定流仿真模拟系统,系统可用特征线法也可用隐格式法计算。可用于实际输水调度、输水控制模型研究、河网调度等。系统针对渠道输水控制,编写了常用的渠道输水自动控制模型及RBF神经网络法、模糊控制法、二步法、优化法及步进法的控制程序。用户也可自定义控制过程。
The operation and control is one of the most important work for long-distance water conveyance project, especially for complex large-scale canal system, distance is long, control points is more, distributing asymmetrical, and water supply need uninterrupted. So the control is not easy. Any mistake can lead to serious results such as liner-plates damaged or dam banks slipped. The research about new, high quality and needs-satisfying control models and unsteady flow simulation system for long-distance water conveyance canals is important and necessary.
     To large-scale water conveyance systems with stair pumps, the power cost is high. For reducing the cost of transmitting water, a new optimal methodology used control flow in canal was presented based on optimal methods and different power-network prices in peak-load and low-load periods for a long distance water conveyance project. The result of an application example shows that the cost can be reduced largely, the minimum frequent of switch can be achieved, flow in canal can be stabilized and the safety of the canal can be ensured.
     A two-step model, which can make the deviant water levels restore to the normal position in minimum duration was present for long and large-scale water conveyance canal based on the volume control method, optimum technique and experiences in operation and control works. The merits using this model are (1) Water levels arrive to the goal level during minimum time. The simulations show that the time that the water levels reach the target levels and keep them stable can be reduced from a few days using classic method to a few hours using this optimum method. (2) The drop and rise of flow rate is constrained, so the flow is stable which can avoid landslip because of water level rapid fall.
     A method combining normal PID and RBF neural network method was presented according to the characteristic of canal transmitting water. It has merits of self-studying, self-adapting, strong fault tolerant and robustness. Through hydraulic simulating, the results show that in the process of RBF PID control, the method can adjust the parameters at a best state,the water level overshoot is smaller and the response is quicker. It not require to choose and computer parameters complexly, and can be used to the real-time control of nonlinear system such as canal transmitting water.
     The paper presents a parameter self-adapting canal flow fuzzy PID control combining fuzzy control merits with PID control features of simple structure and stability. Through fuzzy inference method, the model uses the canal automation history control experiences to realize the optimization of parameters and make the control process at the best state. The simulation results of an adaptive fuzzy sample show that using the adaptive fuzzy PID control canal flow, the overshoot is reduced, the dynamic behaviors are improved. This paper presented a new step-size PID control method for canal flow according to the actual canal-flow operation for canal of cool area. In the step-size PID canal control process, it is not once time to set goal water level statically, but set many temp goal that approach final goal step by step. This can control the water drop speed, and make the flow in canal steady. The Step-PID has the characteristics of simple, better controllability and operability. The simulations show that the water fluctuation and overshoot are smaller using Step-PID. The method is suitable to open channel flow with drawdown speed is hard limited or canal flow under ice.
     A nonlinear open channel PID control method was proposed according to the nonlinear and hysteretic nature of canal flow control. The nonlinear functions of proportional and integral parameters were created based on the relatively best tendency. The unsteady flow of canal nonlinear PID control process is simulated last. The simulation results show that the response of nonlinear PID control speeds is faster, the overshoot is less rather than that of normal liner PID control method.
     The unsteady flow simulation systems of canal operation and automation control have been researched and developed for long distance and large-scale water conveyance canals. Users can use either characteristic line method or implicit format to simulate. It can be used to simulate unsteady flow processes of operation and control, to simulate, verify and develop auto control models, to simulate the hydraulics and flood of river network. The systems include some classic canal control models and RBF+PID, fuzzy+PID, Two-Step optimum control for gravity canal, cost optimum control for water conveyance system with pumps.
引文
[1] Buyalski C P , Falvey H T. Rogers D.S. Canal systems automation manual Volume I. Denver Colo : US Bureau of Reclamation, 1991
    [2] David C, Rogers, Jean Goussard. Canal control algorithms currently in use. Journal of Irrigation and Drainage Engineering, 1998, 124(1): 11-15
    [3] K. Pongput and G.P.Merkley. Comparison and Calibration of Canal Gate Automation Algorithms . Journal of Irrigation and Drainage Engineering, ASCE, 1997,123(3): 222-225
    [4] Pierre-Olivier Malaterre, DavidC. Rogers, and Jan Schuurmans. Classification of Canal Control Algorithms. ASCE Journal. of Irrigation and Drainage Engineering. 1998, 124(1):3-10
    [5] C.M.Burt, R.S. Mills, Improved proportional-integral (PI) logic for canal automation. Journal of Irrigation and Drainage Engineering, 1998, 124(1): 53-57 (6) Sawadogo S. A Modélisation. Commande prédictive et supervision d'un système d'irrigation. Thèse de Doctorat, LAAS-CNRS Toulouse, 1992,152-200.
    [7] Deltour, J.-L.. Application de l'automatique numérique à la régulation des canaux ; Proposition d'une méthodologie d'étude. Thèse de Doctorat, Institut National Polytechnic de Grenoble, 1992, 153-160.
    [8] Jean-Lue Deltour, Franck Sanfilippo. Introduction of Smith Prediction into Dynamic Regulation . Journal of Irrigation and Drainage Engineering, 1998, 124(1), 11-15
    [9] Corriga G., Fanni A., Sanna S. & Usai G. A constant-volume control method for open channel operation. International Journal of Modelling & Simulation. 1982,2( 2):108-112.
    [10] Balogun O.S, Hubbard M. & DeVries J.J. Automatic control of canal flow using linear quadratic regulator theory. Journal of Hydraulic Engineering, 1988. 114(1):75-102
    [11] P. J. van Overloop1; J. Schuurmans2; R. Brouwer3. Multiple-Model Optimization of proportional Integral controllers on Canals. Journal of Irrigation and Drainage Engineering, 2005,131( 2):190-196
    [12] Brian T. Wahlin, Performance of Model Predictive Control on ASCE Test Canal 1, Journal of Irrigation and Drainage Engineering, 2004,130(3):227-238
    [13] Wahlin, B. T., and Clemmens, A. J. Performance of historic downstream canal control algorithms of ASCE test canal 1. J. Irrig.Drain. Eng., 2002,128(6): 365–375.
    [14] Barts, C.M. Regulation of sloping canal by automatic downstream control. Ph.D. thesis,Utah State Unversity. Logan, Utah. 1983
    [15] Omer F. Durdu, Optimal Control of Irrigation Canals Using Recurrent Dynamic Neural Network (RDNN) , World Water Congress, July 1, 2004, Salt Lake City, Utah, USA
    [16] 王涛,阮新建 基于单神经元 PID 控制器在渠道自动控制中的应用,长江科学院院报,2004,Vo1.21 No.4:53-56
    [17] Yagi S. and Shiba S. Application of Genetic Algorithms and Fuzzy Control to a Combined Sewer Pumping Station. Water Science and echnology,1999,39(9):217~224
    [18] 李梅,梁慧冰.遗传算法在供水系统优化调度中的应用.广东工业大学学报,2000(1):33~36
    [19] 王长德,等. 灌溉自动化基本原理与技术发展. 中国农村水利水电,2002(2):11~15
    [20] 吕谋,张土乔,赵洪宾 ,大规模供水系统直接优化调度方法. 水利学报. 2001(7):84-90
    [21] 王训俭,张宏伟,赵新华. 城市配水系统宏观模型的研究,中国给水排水 , 1988,4(3):33-37
    [22] Clemmens. Replogle. Control of irrigation canal networks. Journal of Irrigation and Drainage Engineering. 1988,115(1):97-111
    [23] 吕谋,张土乔,赵洪宾. 给水系统多目标混合实用优化调度方法,中国给水排水 , 2000,16(11):10-14 .
    [24] 吴泽宇,周斌,南水北调中线渠道控制计算模型,人民长江,2000, 31(5),10-12
    [25] Harald D. Frederiksen, Design of California Aqueduct . Journal of Irrigation and Drainage Engineering, 1968, 95(IR2),1968
    [26]. Dewey H G, Madsen W B. Flow control and transients in the California Aqueduct . Journal of Irrigation and Drainage Engineering, 1976,102(3):335-348
    [27] 刘金琨. 先进 PID 控制及其 MATLAB 仿真. 北京: 电子工业出版社, 2003.
    [28] K.麦赫默德 V.叶夫耶维奇. 明渠不恒定流(第一卷). 北京:水利电力出版社,1987.
    [29] 徐正凡.水力学.北京:高等教育出版社,1986.
    [30] 王耀南.智能控制系统.长沙:湖南大学出版社,1996.
    [31] 王德爟. 计算水力学理论与应用.南京:河海大学出版社,1989
    [32] 魏占民.自动上游控制灌溉渠道系统计算机模拟.内蒙古农牧学院学报. 1997(4):91~97
    [33] 王长德。张礼卫. 下游常水位水力自动控制渠道运行动态过程及数学模型的研究.水利学报。1997(11):l1~19
    [34] 阮新建等.渠道运行控制数学模型及系统特性分析.灌溉排水,2002(1):36~4O
    [35] 王长德,阮新建. 南水北调中线总干渠控制运行设计. 人民长江.1999, 31(1):19-21
    [36] 阮新建. 渠道运行 GSM 算法及其适用条件:中国农村水利水电,1999(5):15-17
    [37] 刘豹.现代控制理论.北京:机械工业出版社,1983
    [38] 薛定字.反馈控制系统设计与分析— MATLAB 语言运用. 北京:清华大学出版社,2000
    [39] 陶永华.新型 PID 控制及其应用.北京:机械工业出版社,2002.
    [40] 张干宗,线性规划,武汉:武汉大学出版社,1990
    [41] 尚 涛 ,安 宁等,渠道自动运行鲁棒控制的理论及其动态仿真研究,武汉大学学报(工学版),2004(37):78-84
    [42] 肖建民 , 金龙海,寒区水库冰盖形成与消融机理分析,水利学报,2004(6):80-85
    [43] 倪汉根, 徐福生, 金生. 水库冰盖厚度及弧门自开启原因的研究 . 水利学报, 1998 (12) : 1- 6
    [44] 霍跃东. 水库冰盖数值预报方法 . 武汉水利电力大学学报, 1993 , 26(5): 530 -536
    [45] 郭宽良. 数值计算传热学 . 合肥: 安徽技术出版社, 1987.
    [46] 乔殿石. 水库冰情分析. 冰凌研究 .1985 (1) : 14 - 16.
    [47] 谢永刚. 水库护坡破坏原因及对策 .水和土,1996,105(3) : 21 - 26.
    [48] 谢永刚. 黑龙江省胜利水库冰盖生消规律 . 冰川冻土, 1992,14(2) : 168 - 173.
    [49] Thorley,A.R.D. Modeling and numerical solutions for one dimensional unsteady liquid flows. London (England): In Von Karman Inst,1980
    [50] 顾元谈,王尚毅等。具有岔道支流的明渠不恒定计算,天津大学学报. 1995(1):11~17
    [51] 李岳生. 网河不恒定流隐式方程组稀疏矩阵解法。中山大学学报(自然科学版),1997(3):7-13
    [52] 上游常水位自动控制渠道明渠非恒定流动态边界条件.水利学报,1995,(2):46-51
    [53] 张二骏,等. 河网非恒定流三级联合算法。华东水利学院学报,1982(1):1-13
    [54] Schulze K W.Finite Element Analysis of Long Waves in open Channel Systems.Finite Element Method in Flow Problems.Chapter 5,Ed.By Oden J T et al.,The Univ.Of Alabama Pxess, 1974, 295-303.
    [55] 吴寿红. 河网非恒定流四级解算法,水利学报,1985,8:42-50
    [56] 李义天. 河网非恒定流隐式方程组的汊点分组解法,水利学报,1997(7): 49-57.
    [57] Naidu B J,Murty Bhallamudi S,and Narasimhan S,GVF Computation in tree-type channel Networks. J.Hydr Engrg,1997, 8: 700-708.
    [58] Balogun O.S. Design of real-time feedback control for canal systems using linear quadratic regulator theory. PhD thesis, Department of Mechanical Engineering, University of California at Davis, 1985.
    [59] 林延江,陆昌甫,朱光熙等,水利土木工程系统分析方法,北京:水利电力出版社,1983
    [60] 韩延成,赵洪丽. 山东省引黄济青工程调度运行自动控制系统研究,山东水利(山东水利学会专刊).2005,9: 20:22
    [61] 赵竞成,等. 灌溉渠系运行计算机模拟,国农村水利水电,2001(2):9~12
    [62] 王大为,江勇. 引黄济青工程冰期输水运行研究. 水利水电工程设计,1996(2):55-58
    [63] H.T. Falvey, P.C. Luning. Gate stroke. Engineering and research center, Bureau of reclamation, Colorado,1979.
    [64] Schuurmans, J., Hof, A., Dijkstra, S., Bosgra, O. H., and Bouwer, R. ‘‘Simple water level controller for irrigation and drainage canals.’’ J. Irrig. Drain. Eng., 1999,25(4), 189–195.
    [65] X. Litrico and D. Georges, Robust continuous-time and discrete-time flow control of a dam-river system (II): Controller design, Applied Mathematical Modelling, 1999,23(11): 829~846.
    [66] Falvey H.T. Philosophy and implementation of Gate Stroking. Proceedings ASCE Portland, Zimbelman D.D. , 1987.
    [67] Filipovic V. & Milosevic Z. Dyn2 method for optimal control of water flow in open channels. Journal of irrigation and drainage engineering, 1989,115(6):973-981.
    [68] 张岳, 自动控制原理,北京:清华大学出版社,2005
    [69] Omer Faruk Durdu. Robust control of irrigation canals, PHD degree, Colorado State University, 2003
    [70] 李友善.自动控制理论. 北京:国防工业出版社,1997
    [71] 蒋静平.计算机实时控制系统.浙江:浙江大学出版社,1992.4
    [72] Rogers.D .C .et canal systems automation manual,Vol.2, USB ureau of R reclamation ,Denver colo,1995
    [73] 王诗必.多变量控制系统的分析和设计,北京:中国电力出版社,1996
    [74] 陈维曾,韩璞.线性控制系统中的矩阵理论、北京:中国水利水电出版社,2000
    [75] Wylie E. Control of Transients Free Surface Flows. J Hyd. Div. 1969, 95(1): 347-361
    [76] 褚健,俞立,苏宏业.鲁棒控制理论及应用.杭州:浙江大学出版社,2000.4
    [77] 柯善青,供水渠道等体积运行的动态过程及其数学模型的研究,武汉水利电力大学硕士学位论文,2000.3
    [78] Didier G.,Decentralized Adaptive Control for a Water Distribution, IEEE ,1994
    [79]. 韩占峰,韩延成,远距离调水工程调度运行初探. 水利建设与管理,2003,1: 58-60
    [80] A. J. Clemmens, J. Schuurmans. Simple Optimal Downstream Feedback Canal Controllers:Theory. Journal of Irrigation and Drainage Engineering, 2004,130(1):26-34
    [81] Clemmens, A. J., and Wahlin, B. T. Simple optimal downstream feedback canal controllers: ASCE test case results. J. Irrig. Drain. Eng., 2004,130(1):35–46
    [82] Malaterre, P.-O. PILOTE: Linear quadratic optimal controller for irrigation canals. J. Irrig. Drain. Eng., 1998,124(4): 187–194.
    [83] Garcia A., Hubbard M. & DeVries J.J. Open channel transient flow control by discrete time LQR methods. Automatica, 1992.,28(2):255-264.
    [84] 崔荃, 中国南水北调西线工程. 郑州:黄河水利出版社 ,2004
    [85] Ruiz-Carmona, V., Clemmens, A. J., and Schuurmans, J. Canal control algorithm formulations. J. Irrig. Drain. Eng., 1998,124(1), 31–39.
    [86]Schuurmans, J. Controller design for a regional downstream controlled canal. Rep. No. A668, Laboratory for Measurement and Control, Delft Univ. of Technology, Delft, The Netherlands, 1992
    [87] Schuurmans, J. Control of water levels in open-channels. PhD thesis, Faculty of Civil Engineering, Delft Univ. of Technology, Delft, Netherlands., 1997
    [88] Schuurmans, J., Bosgra, O. H., and Brouwer, R. Open-channel flow model approximation for controller design. Appl. Math. Model., 1995(19): 525–530.
    [89]吴振顺,姚建均,岳东海.模糊自整定 PID 控制器的设计及其应用.哈尔滨工业大学学报.2004,36(11):1578-1580
    [90] 梁宏柱,叶鲁卿,孟安波. 参数自适应模糊 PID 控制器及其在水电机组调速器中的应用. 水电自动化与大坝监测,2003 (6):26~29
    [91] 蒋志明,林廷圻等,一种基于 CMAC 的自学习控制器, 自动化学报. 2000,26(4):542-546
    [92] 高美珍. 基于 CMAC 的 PID 控制在换热器中的应用设计及仿真. 微计算机信息(测控自动化).2005(3):52-53
    [93] Reddy, J.M. Local Optimal Control of Irrigation Canals , Journal of Irrigation and Drainage Engineering, 1990 , 116(5): 616-631.
    [94] 王涛,杨开林,调水工程明渠水力控制线性化数学模型,南水北调与水利科技,2005,3(3):52-55
    [95] 赵文峰.Matlab 控制系统设计与仿真.西安:西安电子科技出版社。2002.
    [96] 李国勇. 智能控制及其 MATLAB 实现. 北京: 电子工业出版社, 2005.
    [97] 刘志远,吕剑虹等. 过热汽温系统的 RBF 神经网络控制. 系统仿真学报,2004,8:1828-1834
    [98] Litrico, X., Fromion, V., and Baume, J.-P. Tuning of robust distant downtown PI controllers for an irrigation canal pool. II: Implementation issues. J. Irrig. Drain. Eng., 2006,132(4), 369-379.
    [99] Wahlin, B. T., and Clemmens, A. Performance of historic downstream canal control algorithms on ASCE test canal 1. J. Irrig. Drain. Eng., 2002,128(6), 365–375.
    [100] Liu F., Feyen J. & Berlamont J. Computation method for regulating unsteady flow in open channels. Journal of irrigation and drainage engineering, 1992,118(10): 674- 689.
    [101] 徐建新,唐斌,李飞,尚静石. 南水北调中线工程河北受水区水资源优化配置研究. 水科学与工程技术 , 2007,(01) :4-7
    [102] 张鑫. 区域生态环境需水量与水资源合理配置, 博士论文,西北农林科技大学, 2004 .
    [103] Shand M.J. Automatic downstream control systems for irrigation canals. PhD,University of California, Berkeley, 1971.
    [104] Zimbelman D.D. Planning, operation, rehabilitation and automation of irrigation water delivery systems. Proceedings of a symposium ASCE, Portland, Oregon, USA, 28-30 July 1987.
    [105] 刘金琨. 先进 PID 控制及其 MATLAB 仿真. 北京: 电子工业出版社, 2003.
    [106] 周雪漪. 计算水力学,北京:清华大学出版社,1994
    [106] 韩延成,高学平. 远距离自流型渠道输水自动控制的二步法. 水科学进展,2006,17(3):414-418
    [107] 韩延成,高学平. 长距离调水工程最优控制数学模型. 水利水电技术,2005,36(10):62-66
    [108] Baume, J.-P., Malaterre, P.-O., and Sau, J.. Tuning of PI to control an irrigation canal using optimization tools. Workshop on Modernization of Irrigation Water Delivery Systems, Phoenix, 1999,483–500.
    [109] Clemmens, A. J., Kacerek, T. F., Grawitz, B. Test cases for canal control algorithms. J. Irrig. Drain. Eng., 1998,124(1), 23–30.
    [110] Franklin, G. F., Powell, J. D., and Emami-Naeini, A. Feedback control of dynamic systems, 4th Ed., Prentice Hall, Englewood Cliffs, 2002
    [111]Litrico, X., and Fromion, V. _2004a_. Frequency modeling of open channel flow. J. Hydraul. Eng., 130(8): 806–815.
    [112] Litrico, X., and Fromion, Simplified modelling of irrigation canals for controller design. J. Irrig. Drain. Eng.,2004,130(5):373–383.
    [113] Malaterre, P.O. Multivariable Predictive Control of Irrigation Canals. Design and Evaluation on an a 2-pool Model, International Workshop on Regulation of Irrigation Canals, Marroco, 1997, 230-238
    [114]胡锦晖,胡大斌 ,PID 参数模糊自整定控制器的设计与仿真研究, 海军工程大学学报,2005, 17(1):97-100
    [115]王立新. 自适应模糊系统与控制,北京.国防工业出版社.1995
    [116]张国良,曾静,柯熙政等.模糊控制及其 MATLAB 应用.西安.西安交通大学出版社,2002
    [117]吴晓莉,林哲辉. Matlab 辅助模糊系统设计.西安.西安电子科技大学出版社,2002
    [118] Liu F., Feyen J. & Berlamont J. Downstream control algorithm for irrigation canals. Journal of irrigation and drainage engineering. 1994,120(3):468-483.
    [119]alaterre P.O. Water flow regulation in irrigation canals: present methods and perspectives. Seminar IIMI, CEMAGREF Montpellier Division Irrigation, 1991
    [120] Plusquellec H. Improving the Operation of Canal Irrigation Systems. An Audiovisual Production. The Economic Development Institute and the Agriculture and Rural Development Department of the World Bank, 1988.
    [121] 肖建民,金龙海等, 寒区水库冰盖形成与消融机理分析,水利学报,2004,6:80-86
    [122] Schuurmans, J., Clemmens, A. J., Dijkstra, S., Hof, A.. ‘‘Modeling of irrigation and drainage canals for controller design.’’ J. Irrig. Drain. Eng., 1999,125(6), 338–344.
    [123] Fubo Liu, Feyen, Jean Berlamout. Downstream control of multireach canal systems. J. Irrig. Drain. Eng., 1993,121(2), 179–189.
    [124] Brian T. Wahlin, Albert J. Clemmens. Automatic Downstream Water-Level Feedback Control of Branching Canal Networks: Simulation Results. Journal of Irrigation and Drainage Engineering, 2006, 132(3): 208-219
    [125] V. Feliu-Batllea, R. Rivas Pe′ rezb. Fractional robust control of main irrigation canals with variable dynamic parameters. Control Engineering Practice 2007,22(15): 673–686
    [126] A. J. Clemmens, E. Bautista, A.M. Simulation of Automatic Canal Control Systems. Journal of Irrigation and Drainage Engineering, 2005, 131(4):324-335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700