用户名: 密码: 验证码:
长距离输水渠系冬季输水过渡过程及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命之源、生产之基、生态之要。我国人多水少,水资源时空分布不均,水资源短缺、水污染严重、水生态恶化问题十分突出,已成为制约我国经济社会可持续发展的主要瓶颈,因此必须提高水资源的利用效率,并对水资源进行合理配置。修建长距离跨流域输调水工程是优化水资源配置最为有效的的工程措施之一。长距离输水工程采用自动化运行控制技术,可以大大提高渠系的运行调度水平,改善输水效率,降低运行管理费用,实现适时、适量供水,最终达到提高水资源利用率并为用水单位提供良好服务的目的。但同时,长距离输水渠道系统具有大滞后性、高度非线性、强耦合性和未知扰动性,水流的控制非常复杂。研究渠道的运行调度问题不仅需要考虑输水渠道的水力学特性,同时又要研究运行控制理论在此基础之上的应用。因此,对于长距离输水渠系运行控制理论和应用方面的研究具有十分重要的意义。
     本文建立了长距离输水渠系运行控制仿真模型,对长距离输水渠系的运行控制相关问题和冬季输水进行了深入的研究,主要成果包括以下几个方面的内容:
     分析论述了渠道运行控制自动化的必要性以及渠道自动化、渠系运行和渠系控制的基本内容,总结了国内外现有的渠系运行控制方法、理论和典型工程实例。
     对长距离输水渠系的渠道和渠系建筑物进行了概化处理,并对典型渠段进行了数学建模。分析了恒定流模拟和非恒定流模拟,并提出采用一维圣.维南方程组描述非恒定流,总结了该方程组的几种数值解法,并提出采用Preissmann隐式差分法对一维圣.维南方程组进行数值求解。
     对长距离输水渠系总干渠的配水方式、运行控制技术和节制闸运行技术进行了研究,并设计了流量前馈和水位反馈相结合的带有死区设置的渠道控制系统。在此基础上,建立了长距离输水渠系运行控制模拟仿真模型。对长距离输水渠系建模和运行控制中常采用的模糊控制、状态空间法和时域频域分析法进行了总结和比较,得出了各自的特点和局限性,并进一步提出本文建立的基于明渠非恒定流与动态边界相结合的数值仿真模型的优势和特点,并利用该模型对典型工况进行了数值模拟。
     对弧形闸门闸孔淹没出流的基本原理进行了分析,并总结和比较了常用的各种计算公式。然后结合南水北调中线一期工程总干渠安阳-北京明渠段,进行了闸门过流能力的校核计算,拟合了李炜《水力学》公式和武汉水利电力学院公式的σs曲线,并根据计算结果提出了建议。
     针对长距离输调水工程在冬季面临冰期输水的问题,从定义、特点、成因等几个方面研究了冰塞和冰坝,分析论述了冰期输水特性和输水模式。对冰期输水进行了阶段划分,并提出了各个阶段的运行控制方法。从工程和管理两个方面提出长距离输水渠系冬季运行安全措施。最后总结了国内外调水工程冰期运行经验。
     提出了判断长距离输水渠系在冰期形成平封冰盖的两个判定标准,即流速判定标准和弗劳德数判定标准,并建议控制渠系采用流速判定标准。在此基础上,研究了渠系下游和分水口冰期取水方案、流速判定标准取值大小和闸前常水位运行方式下闸前控制点目标水位取值对长距离输水渠系冰期输水能力的影响。
     基于建议的冰期在平封冰盖下输水的模式,提出了根据提前三天的气象预报,通过降低渠池输水流量和分水口取水流量将渠池内流速在三天内降低至0.4m/s,进而得到长距离输水渠系在三天内从常态下的明渠大流量输水向冰期平封冰盖下小流量输水的过渡模式,并研究了该过渡阶段分水口的调控方式和渠系运行策略。
     研究了确定PI控制器参数和实时整定参数的方法。同时,还对PI控制器的鲁棒性进行了分析,得出在相同的PI控制器参数下,渠系的糙率和渠池的长度会影响渠道系统的控制效果,弧形闸门过闸流量系数小幅度变化时,基本不影响渠系的控制效果。
Water is the source of life, basis of production, and essence of ecology. However, China has large population and inadequate water, and the spatial and temporal distribution of water resources is extremely uneven in our country. Also, problems of water shortage, water pollution and water ecological deterioration are very serious, severely restricting the sustainable development of the economy and society in China. Thus utilization efficiency of water resources must be improved and reasonable allocation must be made. Constructing long distance inter-basin water delivery projects is one of the most effective engineering measures to optimize allocation of water resources. Besides, automatic operation and control technology can greatly enhance the quality of canal system operation and scheduling, improve water delivery efficiency, reduce the cost of operation and management and achieve timely and adequate water supply, eventually to improve water utilization efficiency and provide good service for water units. But also, due to the characteristic of large time delay, high nonlinearity, strong coupling, unknown disturbance and time-varying for the long distance water delivery projects, control of water flow is very complicated. Research on operation and control of long distance water delivery canal system not only needs to consider the hydraulic characteristics of canal system, but also the applications of operation and control theories on this base. Therefore, the research work is of great significance.
     This paper aims to develop a simulation model of long distance water delivery canal system operation and control. Moreover, some research was done on the related issues of canal system operation and control and water delivery in the winter. The main results include the following aspects:
     The essentiality and necessity of automatic operation and control of canal system was analyzed and discussed. Then basic knowledge of canal automation, canal operation and canal control were introduced. Besides, the development history of canal operation and control was reviewed, and the methods and theories of canal operation control and some typical engineering projects at home and abroad were summarized.
     The mathematic models of the canal system, important inline structures (aqueducts and inverted siphons) and turnouts and check gates were developed by generalized methods based on respective hydraulic characteristics. Simulation for steady flow and unsteady flow was analyzed, and one-dimensional Saint Venant equations, which are expressions for conservation of mass and momentum, were adopted to describe unsteady flow in open channels. Then several common numerical methods solving these equations were summarized and compared. In this paper, Preissmann's implicit difference method was employed to establish discrete equations owing to its high accuracy and good numerical stability.
     Delivery concepts, methods of operation, control theory, basic characteristics of automatic control, canal system control methods, control algorithms and check gate operating techniques for long distance water delivery canal system were studied and summarized. The combination of feed-forward and feedback control was used in this work-or rather, discharge was used as the feed-forward controlled variable and water level as the feedback controlled variable. Also, a dead band was set in the comparator of the control system. On this basis, the simulation model of long distance water delivery canal system operation and control was developed. Then, several common methods used in modeling and operation control of long distance canal system, such as fuzzy control, state space method and analysis method in frequency domain and time domain, were summarized and compared. Consequently, features and limitations of each method were obtained. Our numerical simulation model was based on the unsteady flow in open channel with dynarnic boundary conditions, and the advantages and characteristics of this model different from conventional control theory and model were summarized, and the numerical simulations of three typical working conditions were carried on.
     The basic principle of radial gate with submerged outflow was analyzed, and several common calculation formulas were summarized and compared. A check calculation was performed to the flow capacity of the main canal of the diddle route of the South-to-North Water Transfer Project from Anyang to Beijing. Besides, σs curves in the Liwei formula and Wuhan Hydraulic&Electric College formula were fitted. Moreover, some suggestions were given according to the calculation results.
     In view of water delivery during ice period in winter, ice jam and ice dam were studied from several aspects such as definition, characteristics, causes and so on. Characteristics and mode of water delivery in ice period were analyzed and discussed. Also, the ice period was divided into several stages and respective methods of operation and control at each stage were put forward. Then safety measures for canal operation in winter were given from the point of engineering and management, and operating experiences in ice period of long distance water delivery projects were summarized.
     Two criterion s were given to judge whether a juxtaposed freeze-up ice cover formed in the ice period:velocity criterion and Froude criterion. And the velocity criterion was suggested to be used as the judgment for controlled canal system. On this basis, influences of scheduled discharges of downstream and turnouts, target water levels before each check gate with constant downstream depth method of operation and standard velocity value of velocity criterion on water conveyance capacity in ice period were studied.
     Based on the suggested mode of delivering water under the juxtaposed freeze-up ice cover, flow velocities were reduced to less than0.4m/s by decreasing discharges of canal pools and turnouts in terms of3days'cold current forecast in advance and then the transition mode from open-channel water delivery state to a low flow ice-forming state was proposed. Also, regulation rules of turnouts and operation strategy of canal system in the transition stage were studied.
     Giving and real-time tuning methods of PI controller parameters were studied. Besides, robustness of PI controller was analyzed. With the same PI controller parameters, roughness and length of canal pools will affect the control effect of canal system, while small changes of discharge coefficient of radial gates seldom affect the control effect of canal system.
引文
[1]中共中央,国务院.中共中央国务院关于加快水利改革发展的决定[Z].2010-12-31.
    [2]朱宪生,冀春楼主编.水利概论[M].郑州:黄河水利出版社,2004.
    [3]管光华.大型渠道自动控制建模及鲁棒控制研究[D].武汉:武汉大学,2006.
    [4]丁志良.长距离输水渠道水力特性及运行控制研究[D].武汉:武汉大学,2009.
    [5]刘孟凯.长距离输水渠系冬季运行自动化控制研究[D].武汉:武汉大学,2012.
    [6]周小兵,张立德,达楞塔.长距离大型调水工程运行管理实践[M].北京:中国水利水电出版社,2007.
    [7]刘昌明,何希吾.中国21世纪水问题方略[M].北京:科学出版社,1998.
    [8]王光谦,欧阳琪,张远东,等.世界调水工程[M].北京:科学出版社,2009.
    [9]张蔚榛.有关水资源合理利用和农田水利科学研究的几点意见[J].中国农村水利水电,1997年增刊.
    [10]美国内务部垦务局著.现代灌区自动化管理技术实用手册[M].高占义,谢崇宝,程先军译.北京:中国水利电力出版社,2004.
    [11]周小兵,张立德,刘广林.长距离调水工程管理信息系统[M].北京:中国水利水电出版社,2007.
    [12]水利部南水北调规划设计管理局,山东省胶东调水局编著.引黄济青及其对我国跨流域调水的启示[M].北京:中国水利水电出版社,2009.
    [13]范堆相主编.可持续发展水利在大型调水工程中的实践:万家寨引黄工程若干问题研究[M].北京:中国水利水电出版社,2005.
    [14]李运辉,陈献耘.美国加利福尼亚州水道工程调水工程[J].水利发展研究,2002,2(9):45-48.
    [15]李运辉,陈献耘,沈艳忱.美国中亚利桑那调水工程[J].水利发展研究,2003,3(3):55-58.
    [16]张成,肖军.中央亚利桑那工程[J].南水北调与水利科技,2006,4(6):39-43.
    [17]曹雪玲,管光华.美国中亚利桑那调水工程运行的一些做法和经验[N].中国水利报,2008,6(27):OOC.
    [18]王长德.美国中亚利桑那调水工程[N].中国水利报,2007,3(9):OOC.
    [19]范杰,王长德,管光华,等.美国中亚利桑那调水工程自动化运行控制系统[J].人民长江,2006,37(2):4-5+58.
    [20]Inernational Commission on Iriigation and Drainage. Experiences with iner-basin transfers for irrigation, drainage or flood management,4th draft[R].2006.
    [21]香川跨流域引水工程.http://www.cws.net.cn/cwsnet/hegong/22.htm.
    [22]王长德,张礼卫,冯晓波.灌溉自动化的基本原理与技术发展[J].中国农村水利水电,2002,27(2):11-15.
    [23]郭华.渠系运行的预测控制及其仿真研究[D].武汉:武汉大学,2005.
    [24]王涛.神经网络渠道PID控制理论及其动态仿真研究[D].武汉:武汉大学,2004.
    [25]李卫.渠道运行系统中的PID控制数值模拟研究[D].天津:天津大学,2008.
    [26]丁志良,工长德,谈广鸣,姚雄.渠系蓄量补偿下游常水位运行方式研究[J].应用基础与工程科学学报,2011,19(5):700-711.
    [27]韩宇.灌溉渠道非恒定流数值模拟研究及应用[D].陕西杨凌:西北农林科技大学,2010.
    [28]吴泽宇,周风珍编著.调水工程渠道系统设计方法与实践[M].武汉:长江出版社,2007.
    [29]王晋.基于MATLAB/Simulink的建筑环境控制系统的计算机辅助设计与仿真分析[D].天津:天津大学,2003.
    [30]A.J.Clemmens, T.F.Kacerek, B.Grawitz and W.Shuurmans. Test Case for Canal Control Algorithms [J]. Journal of Irrigation and Drainage Engineering,1998,124(1):23-30.
    [31]D. Rogier, C. Coeuret, J. Bremond. Dynamic Regulation on the Canal de Provence [J]. Planning, Operation, Rehabilitation, and Automation of Irrigation Water Delivery Systems, ASCE, edited by D.D.Zimbelman, pp.180-200, New York,1987.
    [32]Robert S. Gooch, Albert L. Graves. Central Arizona Progect Supervisory Control System [J]. Journal of Water Resources Planning and Management,1986,112 (3): 382-394.
    [33]工水林.等体积明渠的鲁棒控制[D].武汉:武汉大学,2004.
    [34]单毅.渠道运行过程鲁棒控制研究及动态仿真[D].武汉:武汉大学,2005.
    [35]柳树票,工长德,崔玉炎,等.串联倒虹吸渠系的P+PR控制[J].中国农村水利水电,2001,26(10):30-32.
    [36]工长德,柳树票,崔玉炎,等.多渠段串联渠系P+PR控制[J].武汉大学学报(工学版),2002,35(1):15-19.
    [37]工长德,柯善青,冯晓波.P+PR控制器用于比威尔算法[J].武汉水利电力大学学报,2000,33(2):11-15.
    [38]王长德,宋光爱,张礼卫.自动闸门步进控制的设计原理[J].中国农村水利水电,1997,27(6):20-22+48.
    [39]周芳.调水工程中明渠输水系统的水力控制研究[D].天津:天津大学,2008.
    [40]李宗健,江仪贞,王长德.水力自动闸门[M].水利电力出版社,1987.
    [41]杨立信等编译.国外调水工程[M]北京:中国水利水电出版社,2003.
    [42]汪秀丽.国外流域和地区著名的调水工程[J].水利电力科技,2004,30(1):1-25.
    [43]Dewey, H.G., W.B.Madsen. Flow Control and Transients in the California Aqueduct [J]. Journal of the Irrigation and Drainage Division, ASCE,1976,102(IR3):335-348.
    [44]余国安.闸门调控下的灌溉渠到非恒定流数值模拟研究[D].陕西杨凌:西北科技大学,2004.
    [45]阮新建.渠道运行现代控制理论模型研究[D].武汉:武汉水利电力大学,2002.
    [46]麦赫默德K,叶夫耶维奇V.明渠不恒定流(第1卷)[M].林秉南译,北京:水利电力出版社,1987.
    [47]黄东,郑国栋,郑邦民.明渠非恒定流数值模拟[J].工程设计CAD与智能建筑,1999(10):16-19.
    [48]周琼.南水北调中线总干渠河南段非恒定流数值模拟研究[D].郑州:郑州大学,2007.
    [49]Forsythe G.F., Wasow W.R. Finite-Difference Methods for Partial Differential Equations, John Wiley and Sons, New York,1960.
    [50]Richtmyer R.D. A Survey of Difference Methods for Non-Steady Fluid Dynamics, NCAR Technical Notes, Colorado,1962.
    [51]Gelfand I.M., Lokutsievski O.V. The Double Sweep Method for Solution of Difference Equations, North Holland Publishing Co., Amsterdam,1964.
    [52]Abbot M. B. An Introduction to the Method of Characteristics, American Elsevier, New York,1966.
    [53]Strelkoff T. S. Numerical Solution of Saint-Venant Equations[J]. Journal of Hydraulic. Division,1970,96(1):223-252.
    [54]Strelkoff T.S., Falvey H.T. Numerical Methods to Model Unsteady Canal Flow [J]. Journal of Irrigation and Drainage Engineering,1993,119(4):637-655.
    [55]Cooley R.L., Moin S.A. Finite Element Solution of Saint-Venant Equations [J]. Journal of the Hydraulics Division,1976,102(6):759-775.
    [56]The ASCE task committee on Irrigation Canal System Hydraulic Modeling. Unsteady-flow Modeling of Irrigation Canals[J]. Journal of Irrigation and Drainage Engineering, ASCE,1993,119(4):615-630.
    [57]Clemmens, A. J.. Editorial on canal system hydraulic modeling [J]. Journal of Irrigation and Drainage Engineering,1993,119(4):613-614.
    [58]Dinshaw N. Contractor, Wytze Schuurmans. Informed Use and Potentional Pitfalls of Canal Models [J]. Journal of Irrigation and Drainage Engineering,1993,119(4): 663-672.
    [59]Clemmens, A. J., Bautista, E., Wahlin, B. T.& Strand, R. J.. Simulation of Automatic Canal Control System [J]. Journal of Irrigation and Drainage Engineering,2005,131(4): 324-335.
    [60]Hussaim M.. Numerical simulation of canals irrigation systems in Pakistan [C]. Pakistan Engineering Congress,70th Annual Session Proceedings, Pakistan,2007, pp. 251-262.
    [61]刘国强,工长德,管光华,等.南水北调中线干渠弧形闸门过流能力校核分析[J].南水北调与水利科技,2010,8(1):24-28.
    [62]Metzler, D. E. A Model Study of Tainter Gate Operation [D]. MS thesis, Iowa State Univ., Iowa City, Iowa,1948.
    [63]Toch, A. Discharge Characteristic of Tainter Gates[J]. Transactions, American Society of Civil Engineering,1955,120:290-300.
    [64]Buyalski, C. P. Discharge Algorithms for Canal Radial Gates. U. S. Department of the Interior, Bureau of Reclamation, Research Report REC-ERC-83-9, Denver, CO.1983.
    [65]Clemmens, A. J., Strelkoff, T. S., Replogle J. A. Calibration of Submerged Radial Gates[J]. Journal of Hydraulic Engineering.2003,129(9):680-687.
    [66]M.A. Shahrokhnia, M. Javan. Dimensionless Stage-discharge Relationship in Radial Gates [J]. Journal of Irrigation and Drainage Engineering.2006,132(2):180-184.
    [67]O. S. Balogun, M. Hubbard, J. J. Devries. Automatic Control of Canal Flow Using Linear Quadratic Regulator Theory [J]. Journal of Hydraulic Engineering,1988,114(1): 75-102.
    [68]Mario T. L. Barros, Shu-li Yang, Benedito P. F. Braga Jr., Yung-Hsin Sun, William W.-G. Yeh. Optimal Design for Automatic Control of On-demand Canal Systems [J]. Journal of Infrastructure Systems,1997,3(2):59-67.
    [69]Reddy, J. M. Design of Global Control Algorithm for Irrigation Canals [J]. Journal of Hydraulic Engineering,1996,122(9):503-511.
    [70]G. Corriga, S. Sanna, and G. Usai. Sub-optimal constant volume control for open-channelnetworks [J]. Appl. Math. Modeling,1983, pp.262-267.
    [71]G. Corriga, S. Sanna, and G. Usai. Estimation of uncertainty in an open-channel network mathematical model [J]. Appl. Math. Modeling,1989, pp.651-657.
    [72]P. O. Maleterre. Modelisation, Analysis and LQR Optimal Control of Irrigation Canals [D]. Ph.D. Thesis LASS-CNRS ENGREF-Cemagref. Etude EEE n.14.
    [73]X.Litrico P.-O. Malaterre, J.-P.Baume:Automatic Tuning of PI Controllers for an irrigation Canal Pool[J], Journal of Irrigation and Drainage Engineering, Jan. /Feb..2007:27-37.
    [74]N. Bedjaoui, X. Litrico, Static and Dynamic Data Reconciliation for an Irrigation Channel [J], ASCE Journal of Irrigation and Drainage Engineering, Vol.134, No.6, December 1,2008,778-787.
    [75]Schuurmans, J. (1997). Control of water levels in open-channels [D]. PhD thesis, Faculty of Civil Engineering, Delft Univ. of Technology, Delft, The Netherlands.
    [76]Brian T. Wahlin and Albert J. Clemmens, Automatic Downstream Water-Level Feedback Control of Branching Canal Networks:Theory [J]. Journal of Irrigation and Drainage Engineering, ASCE, May/June 2006.
    [77]Brian T. Wahiln and Albert J. Clemmens, Automatic Downstream Water-Level Feedback Control of Branching Canal Networks:Simulation Results [J]. Journal of Irrigation and Drainage Engineering, ASCE, May/June 2006.
    [78]Brian T. Wahlin and Albert J. Clemmens, Performance of Historic Downstream Canal Control Algorithms on ASCE Test Canal 1, Journal of Irrigation and Drainage Engineering [J]. ACSE, November/December 2002.
    [79]E. Bautista and A. J. Clemmens, Volume Compensation Method for Routing Irrigation Canal Demand Changes [J]. Journal of Irrigation and Drainage Engineering, Vol.131, No.6, December 1,2005.
    [80]A. J. Clemmens, E. Bautista, B. T. Wahlin and R. J. Strand, Simulation of Automatic Canal Control Systems[J]. Journal of Irrigation and Drainage Engineering, Vol.131, No. 4, August 1,2005.
    [81]A. J. Clemmens, R. J. Strand, Downstream-Water-Level Control test Results on the WM Lateral Canal [J]. Journal of Irrigation and Drainage Engineering, ASCE,2009.
    [82]田建明.圆形明流洞水力瞬变问题的研究[D].郑州:郑州大学,2009.
    [83]林秉南.林秉南论文选集[M].北京:中国水利水电出版社,2001.
    [84]董耀华,黄煜龄.河口潮流河段二维非恒定流数模研究及应用[J].长江科学院院报,1995,12(1):31-39.
    [85]钱木金,蔡云美.解明渠非恒定流的混合网格法[J].人民长江,1996,27(7):44-46+48.
    [86]何少苓,陆吉康.三维动边界破开算子法不恒定流模拟研究[J].水利学报,1998,29(8):8-13.
    [87]雷军,夏勇,陈家远.大底坡明渠的非恒定流计算[J].四川大学学报(工程科学版), 23(6):27-30.
    [88]邓家泉.二维明渠非恒定水流BGK数值模型[J].水利学报,2002,33(4):1-7.
    [89]邓家泉.以波尔兹曼方程建立明渠水流模型的理论基础[J].人民珠江,2000(6):4-9+30.
    [90]李致家,殷骏.一维不恒定流与卡尔曼滤波耦合的河道实时洪水预报模型[J].水力发电,29(4):15-18.
    [91]程永光,索丽生.二维明渠非恒定流的格子Boltzmann模拟[J].水科学进展,2003,14(1):9-14.
    [92]赵克玉.天然河道一维非恒定流数学模型[J].水资源与水工程学报,2004,15(1):38-41.
    [93]穆锦斌.一维非恒定流若干问题研究[D].武汉:武汉大学,2004.
    [94]万五一.长距离输水系统的非恒定流特性研究[D].天津:天津大学,2004.
    [95]罗景.明渠非恒定流的有关特性及应用[D].武汉:武汉大学,2004.
    [96]冯小香,张小峰,崔占峰.垂向二维非恒定流及悬浮物分布模型研[J].水科学进展,2006,17(4):518-524.
    [97]李大勇,董增川,刘凌,等.一维非恒定流模型与卡尔曼滤波耦合的实时交替校正方法研究[J].水利学报,2007,38(3):330-336.
    [98]周晓岚,刘江,罗秋实,等.河道一维非恒定流数值模拟深化研究[J].武汉大学学报(工学版),2010,43(4):443-445+450.
    [99]谭维炎.明渠一维不恒定流计算程序包[J].水利学报,1982,13(1):1-11.
    [100]庚维德,赵小霞,黄菊.明渠一维不恒定流隐式差分数值解[J].水利学报,1986,17(4):41-47.
    [101]李致家.通用一维河网不恒定流软件的研究[J].水利学报,1998,29(8):14-18.
    [102]王长德.灌溉渠道水力自动控制闸门的运行稳定问题[J].武汉水利电力学院学报,1982(4):25-34.
    [103]王念慎,郭军,董兴林.明渠瞬变流最优等容量控制[J].水利学报,1989,20(]2):12-20.
    [104]Wang changde, Albert J. Clemmens, William E. Hart. Dynamic Response of Automatic Water-Level Controller. Ⅰ:Theory [J]. Journal of Irrigation and Drainage Engineering, 1990,116(6):769-783.
    [105]Clemmens A. J., Wang Changde, Reploge J. A. Dynamic Response of Automatic Water-level Controller Ⅱ:Application [J]. Journal of Irrigation and Drainage Engineering,1990,116(6):784-796.
    [106]王长德,韦直林,张礼卫.上游常水位自动控制渠道明渠非恒定流动态边界条件 [J].水利学报,1995,26(2):46-51.
    [107]王长德,张礼卫.下游常水位水力自动控制渠道运行动态过程及数学模型的研究[J].水利学报,1997,28(11):11-19.
    [108]柯善青.供水渠道等体积运行的动态过程及其数学模型的研究[D].武汉:武汉水利电力大学,2000.
    [109]李明思,朱凤书.灌溉输配水渠系水量调度的研究[J].灌溉排水学报.2000,19(3):77-80.
    [110]阮新建,杨芳,王长德.渠道运行控制数学模型及系统特性分析[J].灌溉排水,2002,21(1):36-40.
    [111]吕宏兴,宋松柏,马孝义,等.灌溉渠道闸门调控过程中的非恒定流研究[J].农业工程学报,2002,18(6):18-22.
    [112]张礼卫.水力自动控制渠系动态过程与仿真研究[D].武汉:武汉大学,2006.
    [113]姚雄,王长德,李长菁.基于控制蓄量的渠系运行控制研究[J].水利学报,2008,39(6):733-738.
    [114]姚雄,王长德,丁志良,等.渠系流量主动补偿运行控制研究[J].四川大学学报(工程科学版),2008,40(5):38-44.
    [115]丁志良,谈广鸣,陈立,等.输水渠道中闸门调节速度与水面线变化研究[J].南水北调与水利科技,2005,3(6):46-50.
    [116]方神光,王开,吴保生.大型输水渠道中过水建筑物的新处理方法[J].南水北调与水利科技,2006,4(6):56-58.
    [117]丁志良,王长德,谈广鸣,等.大型输水渠道系统建筑物水头损失处理方法研究[J].南水北调与水利科技,2008,6(5):18-23.
    [118]刘孟凯,王长德,闫奕博,等.弧形闸门过闸流量公式比较分析[J].南水北调与水利科技,2009,7(3):18-19+26.
    [119]杨开林,汪易森.调水工程闸门特性的动态系统辨识[J].水利学报,2011,42(11):1289-1294.
    [120]杨桦.渠道运行模糊控制理论及其动态仿真研究[D].武汉:武汉大学,2002.
    [121]杨桦,王长德,冯晓波.模糊控制在渠道运行系统中的应用[J].武汉大学学报(工学版),2003,36(1):45-49.
    [122]王长德,姚雄,李长菁.分层模糊控制器在渠道运行系统中的应用[J].武汉大学学报(工学版),2005,38(1):1-52.
    [123]王长德,郭华,邹朝望,等.动态矩阵控制在渠道运行系统中的应用[J].武汉大学学报(工学版),2005,38(3):6-9.
    [124]王涛,阮新建.基于BP神经网络PID控制器在渠道自动控制中的应用[J].灌溉排 水学报(节水灌溉理论与实践专刊),2003,22(2):8-10.
    [125]李长菁,王长德,姚雄.单神经元自适应PID的渠道系统运行研究[J].灌溉排水学报,2005,24(1B):115-116.
    [126]管光华,王长德,范杰,等.鲁棒控制在多渠段自动控制的应用[J].水利学报,2005,36(11):1379-1384+1391.
    [127]崔巍,王长德,管光华,等.渠道运行管理自动化的多渠段模型预测控制[J].水利学报,2005,36(8):1000-1005.
    [128]崔巍.渠系运行最优控制及仿真研究[D].武汉:武汉大学,2006.
    [129]范杰,王长德,管光华,等.渠道非恒定流水力学响应研究[J].水科学进展,2006,17(1):55-60.
    [130]范杰.渠系运行特性分析及智能控制研究[D].武汉:武汉大学,2006.
    [131]水利部南水北调规划设计管理局,山东省胶东调东局编著.引黄济青及其对我国跨流域调水的启示[M].北京:中国水利水电出版社,2009.
    [132]王长德,阮新建.南水北调中线总干渠控制运行设计[J].人民长江,1999,30(1):19-21.
    [133]吴泽宇,周斌.南水北调中线渠道控制计算模型[J].人民长江,2000,31(5):10-11.
    [134]章晋雄,牛争鸣.南水北调中线输水渠道系统的仿真研究[J].系统仿真学报,2002,14(12):1588-1590+1594.
    [135]张成,傅旭东,王光谦,等.分水口运用引起的南水北调中线总干渠水力响应特征[J].南水北调与水利科技,2007,5(6):25-29.
    [136]尚毅梓.南水北调中线工程运行控制模型研究[D].北京:清华大学,2010.
    [137]崔巍,李斯胜,陈文学,等.南水北调中线分水口群不同运用方式对总干渠水力控制特性的影响[J].水利学报,2011,42(11):1316-1321.
    [138]郑惟祚.国外规模宏大的调水工程[J].民防苑,2006,13(2):14-17
    [139]段潇潇,范雨晴.国外跨流域调水工程建设及运营模式概述[J].城市建设理论研究,2012年第23期.
    [140]王龙,徐厚臻.国外著名的调水工程概览[J].地理教学,2010,4(14):4-7.
    [141]张力威,徐子恺,郭鹏,等.澳大利亚雪山工程水质安全与运营管理经验及思考[J].南水北调与水利科技,2007,5(2):94-96.
    [142]魏昌林.巴基斯坦的西水东调工程[J].世界农业,2001,23(6):26-28.
    [143]谷海霞.我国跨流域调水生态补偿法律制度研究[D].北京:中国政法大学,2010.
    [144]姚雄,庞敏,李静,等.距离输水渠系控制蓄量运行研究[J].南水北调与水利科技,2009,7(6):237-240.
    [145]王万良.自动控制原理[M].北京:科学出版社,2001.
    [146]格拉夫,阿尔蒂纳卡著.河川水力学[M].赵文谦,万兆惠译.成都:成都科技大学出版社,1997.
    [147]日本土木学会编.水力公式集[M].铁道部科学研究院水工水文研究室译.北京:人民铁道出版社,1977.
    [148]马文英,张红光主编.渠道和渠系建筑物[M].北京:中国水利水电出版社,2011.
    [149]陈德亮主编.水工建筑物(第5版)[M].北京:中国水利水电出版社,2008.
    [150]李炜,徐孝平.水力学[M].武汉:武汉水利电力大学出版社,2000.
    [151]徐正凡.水力学[M].北京:高等教育出版社,1986.
    [152]姚雄.长距离输水渠系自动化运行控制研究[D].武汉:武汉大学,2008.
    [153]杨国录.河流数学模型[M].北京:海洋出版社,1993.
    [154]王卓然.调水工程管渠结合输水系统水力控制研究[D].天津:天津大学,2009.
    [155]陈莹莹.蒸汽发生器子系统控制方法研究[D].哈尔滨:哈尔滨工程大学,2004.
    [156]刘亚秋.木材干燥窑神经网络控制与仿真[D].哈尔滨:东北林业大学,2001.
    [157]张凌云.快速智能化挤出机料筒温控算法的研究及应用[D].济南:山东大学,2005.
    [158]Henry H. R. Discussion of "Diffusion of Submerged Jets" by M. L. Albertson, Y. B. Dai, R. A. Jensen, H. Rouse [J]. Transaction of ASCE,1950,115:687-694.
    [159]Swamee P.K. Sluice-gate Discharge Equation [J]. Journal of Irrigation and Drainage Engineering,1992,118(1):56-60.
    [160]美国陆军工程兵团.水力设计准则[M].北京:水利出版社,1982.
    [161]王韦.平底闸潜没孔流流量系数的初步分析[J].原水利部南京水利实验处研究试验报告汇编,1955.
    [162]武汉水利电力学院水力学教研室堰闸水力特性科研小组.闸孔出流水力特性的研究[J].武汉水利电力学院学报,1974(1):37-66.
    [163]武汉水利电力学院水力学教研室.水力计算手册[M].北京:水利出版社,1980.
    [164]William W-G Yeh, Albert L. Graves, Douglas Toy. Leonard Becker. Central Arizona Project:Operation Model [J]. Journal of the Water Resources Planning and Management Dividion,1980,106(2):521-540.
    [165]Clemmens, A. J., Strelkoff, T. S., Replogle J. A. Calibration of Submerged Radial Gates [J]. Journal of Hydraulic Engineering,2003,129(9):680-687.
    [166]Rajaratnam, N., Subramanya, K. Flow Equations for the Sluice Gate [J]. Journal of Irrigation and Drainage Engineering,1967,93(IR3):167-186.
    [167]穆祥鹏,陈文学,崔巍,等.长距离输水渠道冰期运行控制研究[J].南水北调与水利科技2010,8(1):8-13.
    [168]王涛,杨开林.神经网络算法在南水北调冰期输水中的应用[J].水利学报,2009,40(11):1403-1408.
    [169]王涛,杨开林,乔青松,等.南水北调中线冬期输水气温研究[J].南水北调与水利科技,2009,7(3):14-17.
    [170]蔡琳等.中国江河冰凌[M].郑州:黄河水利出版社,2008.
    [171]高霈生,靳国厚,吕斌秀.南水北调中线工程输水冰情的初步分析[J].水利学报,2003,34(11):96-101+106.
    [172]戴长雷,于成刚,廖厚初,等著.冰情监测与预报[M].北京:中国水利水电出版社,2010.
    [173]廖厚初,肖迪芳,栾建,等.冰坝与冰塞[J].东北水利水电,2010,28(6):65-66.
    [174]马喜祥,白世录,袁学安,等著.中国河流冰情[M].郑州:黄河水利出版社,2009.
    [175]Shen, H. T., Wang, D. S.& Lal, A. M. W.. Numerical Simulation of River Ice Processes [J]. Jouranl of Cold Regions Engineering,1995, Vol.9(3):107-118.
    [176]Wang, D. S., Shen, H. T.& Randy, R. C. Simulation and Analysis of Upper Niagara River Ice-Jam Condition [J]. Jouranl of Cold Regions Engineering,1995, Vol.9(3): 119-134.
    [177]Shen, H. T.& Liu, L. W.. Shokostu River Ice Jam Formation [J]. Cold Regions Science and Technology,2003, Vol.37(1):35-49.
    [178]付辉,杨开林,工涛,等.河冰水力学研究进展[J].南水北调与水利科技,2010,8(1):14-18.
    [179]杨开林,刘之平,李桂芬,等.河道冰塞的模拟[J].水利水电技术,2002,33(10):40-47.
    [180]张成,工开.冰期输水研究进展[J].南水北调与水利科技,2006,4(6):59-63.
    [181]张义夫,李国方,王勇.2000年黑龙江上游冰坝成因分析[J].黑龙江水利科技,2001,8(2):52-54
    [182]龚道溢,王绍武.近百年我国的异常暖冬与冷冬[J].灾害学,1999,14(2):63-68.
    [183]茅泽育,董曾南,陈长植.河冰数学模拟研究综述[J].水力发电,1996,22(12):58-61.
    [184]范北林,张细兵,蔺秋生.南水北调中线工程冰期输水冰期及措施研究[J].南水北调与水利科技,2008,6(1):66-69.
    [185]刘之平,吴一红,陈文学,等著.南水北调中线工程关键水力学问题研究[M].北京:中国水利水电出版社,2010.
    [186]杨立信.俄罗斯莫斯科运河的运行情况[J].水利发展研究,2002,2(10):60-62.
    [187]王静,牟高峰.对明渠冬季结冰盖运行的几点认识[J].新疆水利,1998,5(3):3-11.
    [188]宋杰,金富深,崔鹏.明渠冬季冰盖下安全输水综述[J].内蒙古水利,1998,增刊:37-40.
    [189]迈德顺,王学忠.京密引水渠工程运行的问题与对策[J].北京水务,2012,19(2):57-59.
    [190]李善增,程天金,李为民.明渠冰盖输水观测研究[A].见:第一届全国冰工程学术会议论文集[C].大同,1992:57-64.
    [191]王大伟,徐茂岭,于浩,等.冬季冰盖下输水渠道的断面设计[A].见:第二届全国水力学和水利信息学学术大会论文集[C].成都,2005:145-149.
    [192]汪于鸿,元文珂,于忠华,等.引黄济青青岛段冬季输水的主要问题及对策[J].山东水利科技,1995,2(4):54-57.
    [193]王大伟,江勇.引黄济青工程冰期输水运行研究[J].水利水电工程设计,1996,3(2):56-58.
    [194]颜景协,马安堂,谢金忠.引黄济青冬季运行水面线控制经验探析[J].山东水利,1999,1(S1):15.
    [195]郭海燕,封春华.引黄济津冬季输水冰情观测及初步分析[J].河北水利,2004,11(6):25-27.
    [196]陈文学,刘之平,吴一红,等.南水北调中线工程运行特性及控制方式研究[J].南水北调与水利科技,2009,7(6):8-12+41.
    [197]佘云童.封冻河道阻力分析和计算方法研究[D].北京:清华大学,2000.
    [198]颜丙池.南水北调冰期输水原型观测与研究[J].河北水利水电技术,2002,9(2):41-42.
    [199]刘国强,闫弈博,王长德,等.长距离渠系冰期运行过渡模式[J].武汉大学学报(工学版),2012,45(1):34-40.
    [200]Shen H. T., Ho C. F.. Two-dimensional simulation of ice cover formation in a large river [C]. Proc. IAHR Ice Symp., Iowa City,1986, pp.547-558.
    [201]Sun Z. C, Shen H. T.. A field investigation of frazil jam in Yellow River [C]. Proc.5rh Workshop on Hydr. of River Ice/Ice Jams, Winnepeg,1988, pp.157-175.
    [202]陈赞廷著.黄河洪水及冰凌预报研究与实践[M].郑州:黄河水利出版社,2009.
    [203]水利部南水北调规划设计管理局,山东省胶东调水局编著.引黄济青及其对我国跨流域调水的启示[M].北京:中国水利水电出版社,2009.
    [204]Hammar, L., Shen, H. T., Evers, K.-U., Kolerski, T., Yuan, Y,& Sobaczak, L.. A laboratory study on freeze up ice runs in river channels [C]. Ice in the Environment: Proceeding of 16th IAHR Int. Symp. on Ice,3, Delft, The Netherlands,2002, pp. 36-39.
    [205]Liu Guoqiang, Yan Yibo, Wang Changde, et al. Study on automatic control of water transfer projects before freezing [C]. In:Proceeding of 2011 International Conference on Control, Automation and Systems Engineering, Singapore, Jul.30-31,2011. Piscataway, NJ U.S., IEEE CS Press, Vol.3:199-202.
    [206]王流泉,赵文清,姚丽华.南水北调中线工程渠道防冻胀设计中的几个问题[J].南水北调与水利科技,2004,2(5):9-14.
    [207]武汉大学,长江科学院.南水北调中线工程总干渠冰期输水计算分析[R].武汉:武汉大学,2005.
    [208]中国水利水电科学研究院.中线工程输水能力与冰害防治技术研究[R].北京:中国水利水电科学研究院,2010.
    [209]Pierre O.M., David C.R., Jan S. Classification of canal control algorithms [J]. Journal of Irrigation and drainage engineering,1998,124(1):3-10.
    [210]David C.Rogers & Jean Goussard. Canal control algorithms currently in use [J]. Journal of Irrigation and Drainage Engineering,1998,124(1):11-15.
    [211]张涛.一种小型的智能地面警卫系统的研究[D].南京:南京理工大学,2003.
    [212]曹强.新型航空机轮刹车控制技术研究[D].长沙:中南大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700