用户名: 密码: 验证码:
裂隙岩体热流模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂隙岩体的渗流状态对工程安全起着举足轻重的作用。本文在阅读国内外大量文献的基础上,详细分析了裂隙岩体中相互影响的渗流场和温度场的分布特征,建立了能真实反映裂隙岩体温度和渗流分布的裂隙岩体热流模型。基于流体力学和传热学的基本原理,分析了平板裂隙渗流和圆柱形通道渗漏两种情况下整个裂隙岩体的温度分布特征,讨论了流量、流体与岩体温差等因素对裂隙岩体温度场分布的影响,根据现场温度场分布,推导出裂隙内的渗流量、等效水力隙宽等渗流场参数,如此实现:采集大量现场温度数据→总结温度分布特征→反演现场裂隙水流通量、等效水力隙宽等水文地质参数,从而实现利用温度场探漏的目的。最后,结合具体工程实例,验证了模型的正确性。本文主要工作如下:
     (1)分析了裂隙岩体的温度场、渗流场分布特征以及相互影响。大裂隙或断裂在渗流区域中起主要导水作用,直接影响温度场的分布,而低温水流的加入使整个地区形成以裂隙为最低温度面,形状近似平行于裂隙分布的温度场。
     (2)建立了平板裂隙热流模型。针对裂隙岩体中裂隙对渗流的主控作用,借鉴了单裂隙平行板模型,考虑了对流换热,根据动量守恒、质量守恒和能量守恒定律建立了平板裂隙热流模型,并分别进行了稳态和瞬态下的一维和二维建模与求解。
     (3)建立了圆柱形渗漏通道热流模型。根据裂隙岩体地区现场实测的渗漏通道有许多为圆柱形这一情况,类比平行板热流模型,建立了圆柱形渗漏通道热流模型,借助数学物理方法对模型进行求解,得到稳态、瞬态热流模型下的一维和二维解析解。
     (4)结合工程实践,应用所建立的数学模型对工程中的渗流场分布以及相应的水文地质参数进行计算分析,并与通过现场试验结果对比,验证了模型的正确性。
Leakage is one of the important factors that influence the safety of project in fractured rock mass areas. Based on the study of extensive domestic and foreign literature, the distribution characteristics of seepage field and temperature field is studied, and the heat-fluid model which can reflect seepage and temperature distribution of fractured rock mass objectively is established. According to the fundamental of fluid mechanic and thermal conduction, the temperature distribution characteristic of flat-slab and column seepage in rock mass areas is analyzed. Besides, some influence factors, such as amount of seepage, temperature difference between fluid and rock et al are discussed. Therefore, seepage volume, equivalent hydraulic aperture could be calculated by spot temperature data. At last, a case is given, which confirm the validity of such theory. The major contents are as follows:
    (1) The distribution and interrelation between seepage field and temperature field are analysed. Big fracture and fault play an important role in water conducting within the whole seepage areas, which dominate the distribution of temperature field. Due to the entering of low temperature water, fracture became the lowest temperature plane of the whole temperature field with the isotherm parallelling to fracture strike.
    (2) Profits from parallel plate model in fracture seepage, a parallel plate Heat-fluid model is established. Considering the seepage dominate effect of fracture, and convective heat transfer, based on momentum conservation, mass conservation and energy conservation, a 1D and 2D model under steady and transient state is established respectively, then the solution of each model is performed.
    (3) Compared with the parallel plate Heat-fluid model, a columniform Heat-fluid model was established. There are also many columniform leakage passages in fracture mass areas based on field information, so it is necessary to set up a columniform Heat-fluid model, which also including 1D and 2D model under steady and transient state. The analytical solutions of those models are calculated by means of mathematical physical method.
    (4) Combining with the construction practice, the model is applied to study the leakage field distribution, to calculate the hydrogeology parameters. The result is near to field test results, which confirm the correctness of model.
引文
1.太沙基·泼克.工程实用土力学[M].蒋彭年译.北京:水利电力出版社,1960
    2.韦立德,杨春和.考虑饱和-非饱和渗流、温度和应力耦合的三维有限元程序研制[J].岩土力学,2005,26(6):1 000-1 004
    3.周宏伟.岩石节理张开度的分形描述[J].水文地质工程地质,1999,(1):1~4.
    4.宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004,25(2):226~232
    5.鼎言.略论土质堤坝渗漏的主要成因及其相应对策[J].浙江水利水电专科学校学报,2002,14
    6.仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994
    7.庞忠和.地下水运动对地温场的影响[J].水文地质与工程地质.1987,(2):20~25
    8.H.A.Myxer.苏伯林译.将温度作为土石坝性态的指示因子[J].大坝观测技术,1994,(2)
    9. Bredehoefl J D, Papadopulos, I. S. Rates of vertical groundwater movement estimated from the earth's thermal profile[J]. Water Resour. Res. 1965, 2: 325~328
    10. Drury M J, Jessop A M, Lewis, T. J. The detection of groundwater flow by precise temperature measurements in boreholes[J]. Geothermics, 1984, 13: 163~174
    11. Hurtig E, Groβwig S, Jobmann M, et al. Fibre-optic temperature measurements in shallow boreholes: experimental application for fluid logging[J]. Geothermics, 1994, 23: 355~364
    12. Hurtig E, Groβwig S, Kuhn K. Fibre optic temperature sensing: application for subsurface and ground temperature measurements[J]. Tectonophysics, 1996, 257: 101~109
    13. Ikuta R, Yamaoka K, Miyakawa K, et al. Continuous monitoring of propagation velocity of seismic waves using ACROSS[J]. Geophys. Res. Lett., 2002, 29 (13): 16~27.
    14. Nagao T, Uyeda S. Heat flow measurements in the northern part of Honshu using shallow holes[J]. Tectonophysics, 1989, (164): 301~314.
    15. Witherspoon P A, Wang J S Y. Validity of cubic law for fluid flow in deformable rock fracture[J]. Water Resources Research, 1980, (6): 112~118
    16. Noorishad J, Ayatollahi M S. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1982, (19): 185~193
    17. Barton N, Bandis S C. Strength deformation and conductivity coupling of rock joints. Int. [J]. Rock Mech. Min. Sci. & Geomech. Abstr., 1985, 22(3): 121~140
    18. M W Beckera, T Georgianb, H Ambrosea. Estimating flow and flux of ground water discharge using water temperature and velocity[J]. Journal of Hydrology, 2004, (296): 221~233
    19. Ge N. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer[J]. Water Rour. Res, 1996, 32(5): 1449~1453
    20.孙东亚,Markus Aufleger.基于光纤温度测量土石坝渗漏监测技术[J].水利水电科技进展,2000,20(4):29~21
    21. Dormstadter J, Gorres in Concrete[A]. Case Study at the Birecik Gravity Dam in south-east Anatolia[C]. Dam Engineer, 1999, 10(1): 55~65
    22.王志远,王占锐,王燕.一项渗流监测新技术—排水孔测温法[J].大坝观测与土工测试,1997(4):5-7.
    23.朱伯芳,王同生,丁宝瑛等.水工混凝土的温度应力与温度控制[M].北京:水利电力出版社,1976
    24.刘建刚,陈建生.平面热源法在北江大堤石角段堤基渗漏分析中的应用[J].水利水运工程学报,2002(3):63~65
    25.陈建生,余波,陈亮.利用地下水温度场研究江都高水河船厂段堤防的渗漏[J].岩土工程界,2002,5(12):37~39
    26.董海洲,陈建生.利用温度示踪方法探测基坑渗漏[J].岩石力学与工程学报,2004,23 (12):2085-2090.
    27.李端有,熊健,於三大等.土石坝渗流热监测技术,长江科学院院报,2005,22(6)29-33
    28.王锦国,周志芳.地下水热量运移模拟BEM-FAM耦合法[J].水利学报,2000(5):71-76
    29.周志芳,王锦国.河流峡谷区地下水温度异常特征分析[J].水科学进展,2003(1):62~66
    30.H.H.叶尔马科娃.皮罗戈夫斯克水利枢纽渗透温度观测[J].水利水电快报,2003,(8):20~22
    31.董海洲.利用孔中温度分布确定堤坝渗透流速的热源法模型,水文地质与工程地质,2003,(5):40~44
    32.陈建生,董海洲等.虚拟热源法研究坝基裂隙岩体渗漏通道[J].岩石力学与工程学报,2005:24(22):4019~4024
    33.王新建,陈建生.温度探测土坝圆柱状集中渗漏模型研究[J].水文地质与工程地质,2006(4):31~36
    34.刘建刚,魏兵荣,包明文等.马家沟水库大坝渗漏示踪分析.红水河[J].2005,24(2)
    35.杜国平,曹建辉,李国凡等.示踪技术堤坝水库绕坝渗漏研究中的应用[J].地下水,1998,24(4):172~177
    36.刘建刚,陈建生.基岩渗漏成因病险堤坝的两个典型实例[J].岩石力学与工程学报, 2003,22(4):684~689
    37.刘建刚,陈建生,陈亮.小浪底缓倾角结构坝基的渗漏及示踪探测研究[J].岩石力学与
    38. Couillion R J, Cotton D C. Laboratory and computer comparisons of ground-coupled heat pump backfills[J]. ASHRAE Transactions, 1990, (96): 642~651
    39. Gu Y O, Neal D L. A analytical solution to transient heat conduction in a composite region with a cylindrical heat source[J]. Solar Energy Engineering, 1995, (117): 2424~248
    40.吉小明.饱和多孔岩体中温度场渗流场应力场耦合分析[J].广东工业大学学报,2006(9):46~53
    41.张树光.深埋巷道围岩温度场的数值模拟分析.科学技术与工程[J].2006,(14):2194~2196
    42.柴军瑞.大坝工程渗流力学[M].拉萨:西藏人民出版社,2001
    43.黄涛,杨立中.隧道裂隙岩体温度-渗流耦合数学模型研究[J].岩土工程学报,1999,(5):554~558
    44.刘建军,冯夏庭.我国油藏渗流-温度-应力耦合的研究进展[J].岩土力学.2003(增2):645~650
    45.杨立中,黄涛.初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J].水文地质与工程地质,2000,(2):33~35
    46.黄涛,杨立中.渗流-应力-温度耦合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999,34(5):554—559.
    47.黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002,211(1):77~82
    48.柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型[J].红水河,2003,22(2):18~21
    49.刘亚晨.核废料贮存围岩介质THM耦合过程力学分析[J].地质灾害与环境保护,2006,(3):54~57
    50. Oda M. Permeability tensor for discontinuous rock masses [J]. Geotechnique, 1985, 35 (4): 483~495
    51. Germanovich L N, et al. Percolation theory, Thermo elasticity, and discrete hydro thermal venting in the earth structure[J]. Science, 1992, 255 (3): 1564~1567
    52.赖远明.寒区挡土墙温度场渗流场和应力场耦合问题的非线性分析[J].土木工程学报,2003(6):88~95
    53.靳德武,牛富俊等.土体冻融过程中渗流场-应力场-温度场耦合作用机理研究[J].煤田地质与勘探,2003,(5):40~42
    54.徐光苗 刘泉声 张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J],岩石力学与工程学报,2004,(21):3709~3713
    55. Yamabe T, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029~1034
    56. Neaupane K M, Yamabe T. A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium[J]. Computers and Geotechnics, 2001, 28(8): 613~637
    57..赖远明,喻文兵,吴紫汪等.寒区圆形截面隧道温度场的解析解[J].冰川冻土,2001,23(2):126~130
    58. Noorishad J, Tsang C F. Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks—Formulation and numerical solution[A], Stephansson O, Jing L, Tsang C F. Coupled thermo-hydro-mechanieal progresses of fractured media[C]. Elsevier: Development in Geotechnical Engineering, 1996, 93~134
    59. Nguyen T S. Description of the computer code FRACON[C], Stephansson O, Jing L, Tsang C F. Coupled thermo-hydro-mechanieal progresses of fractured media[C]. Elsevier: Development in Geotechnieal Engineering, 1996, 539~544
    60. Tijani S M, Vouille G. FEM analysis of coupled THM processes in fractured media with explicit representation of joints[A], Stephansson O, Jing L, Tsang C F. Coupled thermo-hydro-mechanieal progresses of fractured media[C]. Elsevier: Development in Geotechnical Engineering, 1996, 165~180
    61.张玉军.一种模拟热—水—应力耦合作用的节理单元及其数值分析[J].岩土工程学报,2005,27(3):270~274
    62.张玉军.裂隙岩体的热-水-应力耦合模型及二维有限元分析[J].岩土工程学报,2006,28(3):288~297
    63.王如宾,柴军瑞,陈兴周.单裂隙水流稳定温度场理论分析[J].人民黄河,2006:28(5):17~19
    64.朱诗鳌.坝工技术史[M].北京:水利电力出版社,1995
    65.林睦增.岩石热物理学及其工程应用[D].重庆:重庆大学出版社,1991
    66. E R G Eckert, R M D Rake. Analysis of Heat and Mass Transfer[M]. California: McGraw-Hill, 1972
    67.戴锅生.传热学[M].北京:高等教育出版社,1999.
    68.陈景仁.流体力学及传热学[M].北京:国防工业出版社,1984.
    69.伊萨琴科.传热学[M].王丰,冀守礼译.北京:高等教育出版社,1987.
    70.孙广忠,岩体结构力学[M].北京:科学出版社.1988
    71. Lomize GM. Flow in Fractured Rocks [M]. Gesenergoizdat, Moscow, 1951.
    72. Romm E S. Flow Characteristics of Fractured Rocks [M]. Nedra, Moscow, 1966.
    73. Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses[R]. Rock Mech Res Rep 10, Imp Coll, London, 1969: 91~98.
    74. Neuzil C E. Tracy J V1 Flow through fractures[J]. Water Resour Resear, 1981, 17(1): 191~194.
    75. Tsang Y W, Witherspoon P A. Hydromechanical Behavior of a deformable rock fracture subject to normal stress[J]. J of Geophys Research, 1981, 86(B10): 9187~9298.
    76. Elsworth D, Goodman R E. Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles Int[J]. J Rock Mech Min Sci & Geomech Abstr, 1986, 23(3): 233~243.
    77. Barton N, Bandis S, Bakhtar K1 Strength, deformationand conductivity coupling of rock joints[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1985, 22(3): 121~140.
    78. Walsh J B. Effect of pore pressure and confining pressure on fracture permeability, Int J Rock Mech Min Sei & Geomechl Abstr, 1981, 18: 429~435.
    79.周创兵,熊文林.岩石节理的渗流广义立方定理[J]1 岩土力学,1996,17(4):1-7
    80.王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68
    81.耿克勤,陈凤翔,刘光廷等.岩体裂隙渗流水力特性的实验研究[J].清华大学学报(自然科学版),1996,36(1):102~106
    82. Iwai K. Fundamental Studies of Fluid Flow Through a Single Fracture[D]. Berkely: University of California, 1976
    83.速宝玉,詹美礼,张祝添.充填裂隙渗流特性实验研究[J].岩土力学,1994,15(4):46~51
    84.于龙,陶同康.岩体裂隙水流的运动规律[J].水利水运科学研究,1997,(3):208~218.
    85.王竹溪,郭静仁.特殊函数概论[M].北京:北京大学出版社,2000
    86.汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993
    87. Drury M J. Perturbations to temperature gradients by water flow in crystal rock formations[J]. Tectonophysics, 1984, (102): 19~32
    88. Ramey H J, J Petrol. Wellbore heat transmission[J]. Technol., 1962, (14): 427~435
    89.过增元.热流体学[M].北京:清华大学出版社,1992年2月
    90.陈崇希,万军伟,詹红兵等.“渗流—管流耦合模型”的物理模拟及数值模拟[J].水文地质工程地质,2004,(1):1~8
    91.吴国忠,张久龙,王英杰.埋地管道传热计算[M].哈尔滨:哈尔滨工业大学出版社,2003
    92.薛禹群.地下水动力学[M].北京:地质出版社,1985
    93.郭宽良等.计算传热学[M].合肥:中国科学技术大学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700