用户名: 密码: 验证码:
仁宗海堆石坝初期蓄水阶段的监测分析与安全评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仁宗海堆石坝坝基河床覆盖层深达130m~148m,结构层次复杂,坝基采用悬挂式混凝土防渗墙防渗,墙体最大深度82m;两岸坝肩岩体卸荷强烈,其防渗采用帷幕灌浆处理。拦河坝为复合土工膜面板防渗堆石坝,最大坝高约56m。鉴于坝体结构及地基处理较复杂,国内外类似工程实例较少,初期蓄水阶段大坝的渗流安全及其变形稳定显得尤为重要。本论文通过对渗流渗压及坝体变形监测资料的分析,以及三维渗流场数值模拟,得出以下主要结论:
     (1)存在库水绕过防渗墙底部向下游渗透,右岸比左岸明显;堆石坝1-1、2-2、3-3监测剖面的渗压变化,以及左岸下层灌浆廊道和压重平台坡脚的渗水,主要是库水绕防渗墙向下游渗透使坝基地下水位上升所致。
     (2)左岸灌浆帷幕防渗效果较好,不存在明显的坝肩绕渗;右岸下层灌浆廊道、右岸绕渗孔、右岸坝后岸坡的渗水,是库水绕过灌浆帷幕底部以及灌浆帷幕端部向下游渗透引起,其中绕帷幕底部占主导。
     (3)通过现场检查,以及对渗流和渗流量监测资料的分析,综合判断仁宗海堆石坝的渗流处于异常状态。
     (4)坝体沉降受库水位升降影响,库水位上升过程大部分测点出现2~8mm量值抬升现象,库水位下降过程各测点下沉量明显增大;蓄水期间坝体表面最大沉降量为50.1mm,不均匀沉降小于1%。
     (5)坝体水平位移受库水升降变化影响较小,表面测点的水平位移方向向下游,位移量在33mm以内;坝体内部测点除2-2监测剖面上游坝坡的VE7向上游变形外,其它各测斜孔的挠度方向均向下游;堆石坝1-1、2-2、3-3和4-4监测剖面最大坝体挠度分别为99.76mm、-143.66mm、123.47mm和16.06mm。
     (6)通过现场检查,以及对坝体变形监测资料的分析,综合判断堆石坝变形整体稳定,仅局部即2-2监测剖面上游坝坡变形发展趋势尚未稳定。
The thickness of river bed cover at Renzonghai Rock-fill Dam is 130~148m, which have complex structure-level, and dam foundation seepage control by suspended concrete cutoff wall which maximum depth is 82m. The rock mass at two banks abutment is strongly unloading , and the seepage control by curtain grouting. The dam is complex geomembrane prevented-seepage face rock-fill dam; the maximum height is about 56m. As the dam structure and the foundation treatment works is more complex, and less instances of similar projects at home and abroad, then the seepage and the deformation of the dam are particularly important during its initial impoundment period. This paper flow through the analysis of the results of seepage flow、seepage force and dam deformation monitoring and numerical simulation of the three seepage, draw the conclusions as follow:
     (1) There is reservoir water to the lower penetration around the bottom of the wall, and the left bank more significant than the right. The seepage pressure at 1-1、2-2 and 3-3 monitor profile of rock-fill dam have changed, and leak the left bank of the lower level grouting hole and the slope of loading platform, which is mainly used by the reservoir water to the lower penetration around the bottom of the wall and the rising of groundwater level of dam foundation.
     (2) The seepage effect of curtain grouting is better on the left bank; there is no obvious infiltration around abutment. The leak at the right bank of the lower level grouting holes、around the penetration hole and the toe slope of right bank, which is mainly used by the reservoir water around the bottom of grouting curtain and discharge to the downstream at grouting curtain end, of which the former dominant.
     (3)Through on-site inspection, the analysis of the results of seepage flow、 seepage force, the seepage of Renzhonghai rock-fill dam in a abnormal state on comprehensive Judgment.
     (4) Dam settlement affect by downing or rising of water level, most monitoring points appear 2 ~ 8mm value uplift phenomena during the water rising, and then each monitoring points was significantly increased subsidence during the water downing. The maximum settlement amount is 50.1mm on the dam surface during initial impoundment period, the amount of uneven settlement is less than 1%.
     (5) Horizontal displacement of dam affect less by reservoir water level change, the horizontal displacement of the surface point to the downstream direction, and the amount is less than 33mm. In addition to monitoring point VE7 which deformation is to the upstream on 2-2 monitoring section, the deflection of the other inclinometer holes is to the downstream direction. The maximum deflection on the 1-1、2-2、3-3 and 4-4 monitoring sections of rock-fill dam are 99.76mm、-143.66mm、123.47mm and 16.06mm.
     (6) Through on-site inspection, the analysis of the results of dam deformation, the deformation of Renzhonghai rock-fill dam is stability wholly, but the trend of local deformation that is 2-2 monitoring section on upstream slope have not stabilized.
引文
[1]李雷,王仁钟等.大坝风险评价与风险管理[M] .北京:中国水利水电出版社,2006.
    [2]汝乃华,牛运光.大坝事故与安全·土石坝[M].北京:中国水利水电出版社,2001.
    [3]李珍照.大坝安全监测[M].中国电力出版社,1997.
    [4]赵志仁.大坝安全监测的原理与应用[M].天津科学技术出版社,1992.
    [5]李雷.我国水库大坝安全监测和管理[J].大坝观测与土工测试,2000.24(6):6~9.
    [6]牛运光.大坝安全监测工作的回顾[J].人民珠江,2000年第5期.
    [7]二滩水电开发有限责任公司.岩土工程安全监测手册[M].北京:中国水利水电出版社, 1999.
    [8]张进平,黎利兵,卢正超.大坝安全监测研究的回顾与展望[J] .中国水利水电科学研究院学报,2008.12.
    [9]毛昶熙.渗流计算分析与控制(第二版)[M].北京:中国水利水电出版社.2003
    [10]柴军瑞.大坝工程渗流力学[M].西藏人民出版社.2001
    [11]陈宗希,林敏.地下水动力学[M].中国地质大学出版社,1999.10.
    [12]徐广明.地下流体渗流理论与数值模拟[M].地质出版社,2008.
    [13]朱学愚,钱孝星.地下水水文学[M].中国环境科学出版社,2005.8.
    [14]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法[M].中国地质大学出版社,2001.
    [15]吴吉春,薛禹群.地下水动力学[M].中国水利水电出版社,2009.1.
    [16]余钟波,黄勇.地下水水文学原理[M].科学出版社,2008.6.
    [17]苑莲菊等.工程渗流力学及应用[M].中国建材工业出版社,2001.
    [18]郑万勇,杨振华.水工建筑物[M].黄河水利出版社,2003.
    [19]刘杰.土的渗透稳定与渗流控制[M].水利电力出版社,1992.12.
    [20]钮新强,杨启贵等.水库大坝安全评价[M].中国水利水电出版社,2007.8.
    [21]魏海,沈振中.土坝渗透稳定可靠性分析方法及其应用[J].岩土工程学报,2008.9.
    [22]碾压式土石坝设计规范DL/T 5395-2007.
    [23]土石坝安全监测技术规范SL 60-94.
    [24]混凝土坝安全监测技术规范DL/T 5178-2003.
    [25]水电枢纽工程等级划分及设计安全标准DL 5180-2003.
    [26]水利水电工程地质勘察规范GB 50278-99.
    [27]水库大坝安全评价导则SL258-2000.
    [28]王德厚.水利水电工程安全监测理论与实践[M].长江出版社,2007.
    [29]邱发兴.地基沉降变形计算[M].四川大学出版社,2007.
    [30]刘杰.土石坝渗流控制理论基础及工程经验教训[M].中国水利水电出版社,2006.
    [31]王清友,孙万功,熊欢.塑性混凝土防渗墙[M].中国水利水电出版社,2008.
    [32]王复来,陈洪天.土石坝变形与稳定分析[M].中国水利水电出版社,2008.
    [33]中国水电顾问集团成都勘测设计研究院.四川省田湾河仁宗海水库电站首部枢纽工程蓄水安全鉴定设计自检报告,2008.
    [34]黄静莉.西藏贡嘎县江雄水库大坝渗透稳定性及渗控设计的研究[D].吉林大学硕士学位论文,2006.
    [35]陈康.黄河小浪底水利枢纽工程大坝坝基渗流分析[D].中国地质大学(北京)硕士学位论文,2006.
    [36]于斌.平原水库增容扩建技术土坝渗流分析研究[D].山东大学硕士学位论文,2008.
    [37]顾洤臣.国内外土工膜防渗土石坝的现状与发展[J].东北水利水电,1994.
    [38]岑黛蓉.覆盖层上面板堆石坝坝区渗流场特性及其分析模型研究[D].河海大学硕士学位论文,2006.
    [39]王伯乐,刘英珍,吴鹤鹤.中国土石坝工程建设新进展[J].水力发电,2005.
    [40]陈建生,董海洲.堤坝渗漏探测示踪新理论与技术研究.科学出版社,2007.
    [41]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].地质出版社,1994.
    [42]郭国林.宁化桥下水库大坝渗流稳定分析[D].河海大学工程硕士专业学位论文,2005.
    [43]刑玉玲.膜土联合防渗堆石坝内部应力研究[D].河海大学硕士学位论文,2007.
    [44]杨海林.深厚覆盖层基础上堆石坝防渗系统优化研究[D].河海大学硕士学位论文,2007.
    [45]邹波忠.仁宗海堆石坝填筑过程中的变形及稳定性分析[D].成都理工大学硕士学位论文,2009.
    [46]张立杰,杜新强等.磨盘山水库坝基渗透稳定研究[J].吉林大学学报(地球科学版),2007.
    [47]贺晓明.基于ANSYS的大坝渗流分析研究[D].西安理工大学硕士学位论文,2006.
    [48]段祥宝,谢兴华,速宝玉.水工渗流研究与应用进展[M].黄河水利出版社,2006.
    [49]顾慰慈.渗流计算原理与应用[M].中国建材工业出版社,2000.
    [50]蔡元奇,朱以文,周鸿汉,童建文.深厚覆盖层上堆石坝采用倒悬挂式防渗墙的渗流场特性研究[J].岩石力学与工程学报,2005.
    [51]蒙富强.基于ANSYS的土石坝稳定渗流场的数值模拟[M].大连理工大学硕士学位论文,2005.
    [52]土石坝安全监测资料整编规范SL 169-96.
    [53]余进,张连明,吴梦喜,姜媛媛.坝基防渗墙及墙下灌浆帷幕渗流及渗透稳定性分析[J].水电能源科学,2009.
    [54]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004.
    [55]中国水电顾问集团成都院.四川省田湾河仁宗海水库电站可行性研究报告. 2001.4.
    [56]郑子祥.深厚盖层面板堆石坝渗漏监测方法探讨[J].水力发电,2003.
    [57]潘别桐,黄润秋.工程地质数值法[M].地质出版社,1994.04.
    [58]郭家朋,余金煌,董育烦,邓成发.龙井水库大坝的渗流和稳定分析[J].工程地质学报,2007.
    [59]刘建刚.堤基渗透变形理论与渗漏探测方法研究[D].河海大学博士学位论文,2002.
    [60]胡强,佘成学.仙岭水库土坝渗流稳定分析及除险加固措施[J].岩土力学,2004.
    [61]王正波.清江高坝州水电站坝区渗流场分析与防渗帷幕研究[D].河海大学工程硕士学位论文,2006.
    [62]段祥宝,李祖贻.瀑布沟水电站大坝三维渗流数值模拟研究[J].水电站设计,1997.
    [63] Vaughan,P.R. Soares,H.F.Design of Filters for Clay Cores of Dams[J]. Engineering Geology,1982.
    [64] Chugaev,R.R.Seepage through dams[M].Advances in Hydroscience,1971.
    [65] Neuman,S.P. Saturated-unsaturated seepage by finite element[J].Journal of Hydraulic Division,1973.
    [66]王宏,娄华君,邹立芝.MODFLOW在华北平原区地下水库模拟中的应用[J].世界地质,2003.
    [67] Chen shenghong. Adaptive FEM Analysis for Two-dimension Unconfined Seepage Problems. Journal of Hydrodynamics.1996
    [68] Zienkiewicz. The Finite Element Method in Engineering Science. MCGRAM-Hill. London. 1971.
    [69] ICOLD. The World register of Dams (国际大坝注册簿),1988.
    [70]国家电力公司成都勘测设计研究院.二滩水电站拱坝安全监测分析与反分析(1998~2001).2002.
    [71]罗谷怀,甘明辉.土石坝安全论证理论与方法[M] .科学出版社.2001.
    [72]陈宗希,唐仲华.地下水流动问题数值方法[M] .武汉:中国地质大学出版社,1999.
    [73]刘鸣,钟敬全等.牙塘水库大坝渗流监测分析及安全评价[J] .长江科学院院报,2007.
    [74]傅世平.混凝土面板堆石坝监测资料分析与安全评价[D].浙江大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700