用户名: 密码: 验证码:
齿轮振动可靠性与修形减振策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮传动系统在现代化的工业进程中有着无可替代的作用,在电力、能源、交通、国防和航空领域都得到了广泛的应用。发动机中的齿轮传动系统长期在高速、重载的条件下工作,同时必须满足低噪音、轻量化、高可靠性、长寿命的要求。因此,齿轮的振动可靠性和减小振动的齿廓修形研究对齿轮的设计具有重要意义。目前考虑振动的齿轮设计研究主要表现在齿轮固有特性和动态响应的研究方面,没有考虑齿轮参数的误差等随机因素的影响,而用概率描述随机性才更准确。因此有必要将可靠性理论引入齿轮的设计工作中,从振动的角度开展高速、重载齿轮的可靠性研究,并应用优化方法进行齿廓修形减振分析,这对提高齿轮的工作性能、可靠性都有重大的意义。
     本研究从工程应用的角度出发,以直齿圆柱齿轮为研究对象,将遗传算法、修形理论、随机参数振动、非线性振动、动态可靠性理论等先进的理论和技术相结合,对齿轮系统的传递误差可靠性、非线性振动可靠性、结构频率可靠性,齿廓修形减振等多个方面进行了系统的研究,主要研究工作如下:
     (1)基于齿轮系统非线性振动模型,通过数值逐步积分法把随机参数的概率特征反映在系统的随机响应中,并将随机过程理论引入振动可靠性的计算中来,以单位啮合周期内振幅超差作为失效准则,形成了一种基于随机过程跨越分析方法的非线性随机参数振动可靠度计算方法。该方法针对齿轮非线性振动的复杂性,采用数值求解并直接对振动响应的概率分布进行评估,避免了近似算法的误差,可直接应用在工程设计中。
     (2)为了寻找减振效果最好的修形参数,依靠参数化有限元建模模拟修形齿轮的啮合过程,并引入遗传算法,以减小齿轮啮合传递误差的波动作为目标,对直齿圆柱齿轮齿廓修形参数进行了高精度的优化设计,通过对设计结果进行减振效果分析,说明该方法准确,有效,能大幅度的减小齿轮的扭转振动。
     (3)为了揭示齿轮系统振动非线性行为的本质,避免混沌振动状态,在考虑传递误差、时变啮合刚度、齿侧间隙的基础上,建立单间隙以及多间隙的齿轮系统非线性动力学模型,用数值方法对模型进行了求解,分析了系统的非线性动力学特性,从相图和Poincare图上定性判断了混沌性态,并计算了当频率比变化时系统的分岔图和Lyapunov指数图,利用Lyapunov指数定量识别了混沌振动,判断了混沌振动区域,为齿轮非线性振动的可靠性分析奠定了基础。
     (4)为了研究修形参数对齿轮啮合传递误差可靠性影响,用响应面法获取齿轮副随机参数啮合传递误差的极限状态函数,并利用Monte-Carlo可靠性及可靠性敏感度分析方法获取传递误差振幅不超差的可靠度及可靠性敏感度。
     (5)基于ANSYS软件的参数化设计语言APDL(ANSYS Parametric Design Language)分别建立了渐开线齿廓、齿廓直线修形和齿廓抛物线修形时的齿轮啮合参数化有限元模型。可以准确模拟具有随机参数的齿轮副的啮合过程,并对齿轮时变啮合刚度和齿轮传递误差进行了仿真计算。
     (6)根据齿轮结构的固有频率与激振频率差的绝对值不超过规定值的关系准则,定义齿轮随机结构振动问题的系统可靠度,并结合直齿圆柱齿轮和弧齿锥齿轮提出避免共振的频率可靠性分析方法,讨论了随机参数统计特性的改变对齿轮结构频率可靠性的影响。所得结论为改善齿轮结构,保证齿轮系统的安全运行提供了理论依据。
Gear system plays an indispensable role in the era of industry process changing rapidly, it is widely used in many field such as electric power, energy, transport, national defense and aviation. As the key transmission component in motor, gears always work in the condition of high speed and overload. Besides, it must meet the need of low noise, light weight, high reliability as well as long life span. Therefore, it is significant and meaningful to develop the study of vibration reliability and explore the method of modification to decreases the vibration for gears. Recently, the researches of gear concerning the vibration mainly focus on the aspects of natural characteristics and dynamic responses. However, the stochastic factors of gear parameters such as error, whose stochastic property is accurate to express with probability, are rare to taken into consideration. Therefore, it is possible to adopt reliability theory to design gears in accessory gearbox. Basing on vibration analysis, reliability research can be developed in high speed and overload gears. Still, optimization methods can be use into the analysis of modification and vibration damping. The research is important to enhance the working performance and reliability of gears in accessory gearbox.
     The research regards spur gears as the object from the engineering application perspective, and transmission error reliability, nonlinear vibration reliability, structural frequency reliability and profile modification for vibration damping are systematically studied based on integrating some advanced theories and techniques such as the Genetic Algorithm (GA), modification theory, stochastic parameter vibration, nonlinear vibration and dynamic reliability. The main researches are shown as follows:
     (1) Basing on nonlinear vibration model of gear sysytem, the probability characteristics of random parameters are reflected in the stochastic response by numerical integration scheme, with the stochastic process introduced into vibration reliability. A method of calculate reliability is formed with failure criteria that random amplitude exceeds the prescribed value in a vibration cycle. For the complexity of gear nonlinear vibration, this method assesses the probability distribution of the vibration response directly by numerical solution, and avoids the error of approximation algorithms. It can be directly used in engineering design.
     (2) To determine the parameters of gear profile modification accurately, the meshing process of a pair of gears was simulated via Finite Element Method (FEM). With GA introduced into the process to reduce the fluctuation of transmission error, the profile modification parameters of spur gears were designed optimally and accurately. Obviously, the method is accurate and efficient to decrease the torsion vibration greatly by analyzing the vibration damping effect.
     (3) In order to discovery the nature of nonlinear behavior of gear system and avoid the chaotic vibration, nonlinear dynamic model of both single backlash and multiple backlash gear systems are built concerning the transmission error, time-varying mesh stiffness. The model is solved with numerical method, and the nonlinear dynamic characteristic is analyzed. The chaotic character is shown from the phase map and Poincare map, and the bifurcation diagram and largest Lyapunov exponent diagram are plotted while the frequency ratio varies. Lyapunov exponent is applied to identify the chaotic vibration numerically, and to fix the region of chaotic vibration. It provides a basis of nonlinear vibration reliability for gears.
     (4) For studying the modification parameters effect on transmission error reliability, the limit state function for the transmission error of gear stochastic parameters is established with Response Surface Method (RSM). And method of Monte-Carlo reliability and reliability sensitivity is applied to acquire the reliability and reliability sensitivity when the transmission error amplitude is not crossing.
     (5) Basing on ANSYS Parametric Design Language (APDL) ANSYS, parameter FEM models of involute tooth profile, linear modification profile and parabolic modification profile are established respectively. The model is accurate to simulate the meshing process of gears with stochastic parameters. The time-varying mesh stiffness and transmission error of gear are calculated as well.
     (6) The reliability of gear structures with stochastic parameter vibration is defined on the basis of the relation criterion of the difference not beyond special value of the natural frequency and driving frequency. The frequency reliability analysis methods for spur gear and spiral bevel gear are carried out to avoid the resonant. The effect of statistical characteristic change of stochastic parameter is evaluated for frequency reliability of gear structure. The result provides a theoretical basis for improving the gear structure and ensuring the gear system working safely.
引文
1.汪凯,张健全.机械工程标准手册—密封与润滑卷[M],北京:机械标准出版社,2003
    2.许锷俊,梁世昌,常春江,沈丙炎.中央传动锥齿轮共振破坏的实验研究[J],航空动力学报,1988,3(3):193-198
    3.孙志礼,陈良玉.实用机械可靠性设计理论与方法[M],北京:科学出版社,2003
    4. Freudenthal A M. The safety of structures [J], Transactions ASCE,1947,112:125-129
    5. #12
    6. Disney R L, Sheth N J, Lipson C. The determination of the probability of failure by stress/strength interference theory [J], Proceeding of Annual Symposium on reliability [J], 1968,12:55-62
    7. Cornell C A. A probability-based structural code [J], Journal of ACI,1969,66(2):15-25
    8. Hasofer A M, Lind N C. An exact and invariant first-order reliability format [J], ASCE, 1974,100(1):1-2
    9. Kececioglu D. Fatigue prevention and reliability [C], Proc ASME,1978,19:285-309
    10. Rackwitz R, Fiessler B. Structural reliability under combined random load sequences [J], Computers and structures,1978,9:489-494
    11. Attila C A. Improved Monte Carlo method in structural reliability [J], Reliability Engineering and System Safety,1988,24(3):275-291
    12. Claudio M, Rocco S. A rule induction approach to improve Monte Carlo system reliability assessment [J], Reliability Engineering and System Safety,2003,82(1):85-92
    13.郭耀斌,张文明,张国芬.基于蒙特卡罗法的螺旋锥齿轮接触疲劳可靠性分析[J],农业机械学报,2008,39(4):157-159
    14.刘惟信.机械可靠性设计[M],北京:清华大学出版社,1996
    15. Guan X L, Melchers R E. Effect of response surface parameter variation structural reliability estimates [J], Structural Safety,2001,23(4):429-444
    16. Lee S H, Kwak B M. Response surface augmented moment method for efficient reliability analysis [J], Structural Safety,2006,28(3):261-272
    17. Wong F S. Slope reliability and response surface method [J], Journal of Geotechnical Engineering,1985,111(1):32-53
    18. Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems [J], Structural Safety,1990,7:57-66
    19. Bergman L A, Heinrich J C. On the reliability of the linear oscillator and systems of coupled oscillators [J], International Journal for Numerical Methods in Engineering,1982, 18(9):1271-1295
    20. Spencer B F and Elishakoff I. Reliability of Uncertain Linear and Nonlinear Systems[J], Journal of Engineering Mechanics,1988,114(1):135-148
    21.史进渊.机械零件振动的可靠性设计[J],振动工程学报,1999,12(4):553-558
    22.张义民,陈塑寰,刘巧玲.单自由度非线性随机参数系统的可靠性分析[J],振动工程学报,1995,8(4):356-362
    23.张义民,王顺,刘巧伶.具有相关失效模式的多自由度非线性随机结构振动系统的可靠性分析[J],中国科学(E辑),2003,33(9):804-812
    24.朱文予.机械可靠性设计[M],上海:上海交通大学出版社,1992
    25.解艳彩.基于响应面法的机械结构可靠性灵敏度分析[D],吉林:吉林大学,2008
    26.王世鹏.基于最大可能点摄动法的机械零部件可靠性分析[D],吉林:吉林大学,2008
    27. Bjerager P, Krenk S. Parametric sensitivity in first order reliability theory [J], Journal of Engineering Mechanics, ASCE,1989,115(7):1577-1582
    28. Karamchandani A, Cornell C A. Sensitivity estimation within first and second order reliability methods [J], Structure Safety,1992,11(2):95-107
    29. Lataillade A D, Blanco S, Clergent Y, etal. Monte Carlo method and sensitivity estimations [J]. Quantitative Spectroscopy and Radiative Transfer,2002,75(5):529-538
    30. Wei Chen, Jin R, Sudjianto A. Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty [J], Transactions of the ASME, Journal of Mechanical Design,2005,127(5):875-886
    31. Liu Huibin, Chen Wei, Sudjianto Agus. Relative entropy based method for probabilistic sensitivity analysis in engineering design [J], Journal of Mechanical Design, Transactions of the ASME,2006,128(2):326-336
    32.张湘伟,徐美和.随机激励下可变阻尼结构的可靠性及其灵敏度的分析[J],重庆大学学报(自然科学版),1991,14(4):8-15
    33.蔡萌林,顾海涛.桁架结构系统可靠度的敏度分析[J],航空学报,1993,14(7):342-347
    34.刘宁,吕泰仁.三维结构可靠度对随机变量的敏感性研究[J],工程力学,1995,12(2):119-128
    35.陈建军,马洪波,戴军,等.结构可靠性优化中的灵敏度分析[J],应用力学学报,2002,19(1):14-17
    36.张义民,刘巧伶,闻邦椿.非线性随机系统的独立失效模式可靠性灵敏度[J],力学学报,2003,35(1):117-120
    37.张义民,刘巧伶,闻邦椿.单自由度非线性随机参数振动系统的可靠性灵敏度分析[J],固体力学学报,2003,24(1):61-67
    38.陈磊,吕震宙,宋述芳.模糊可靠性灵敏度分析的线抽样方法[J],工程力学,2008,25(7):45-51
    39.陈磊,吕震宙.相关变量模糊可靠性灵敏度分析的线抽样方法[J],航空学报,2008,29(5):1186-1195
    40.张峰,吕震宙.可靠性灵敏度分析的自适应重要抽样法[J],工程力学,2008,25(4):80-84
    41.袁修开,吕震宙.可靠性灵敏度分析的重要抽样方法[J],机械强度,2007,29(5):760-764
    42.宋军,吕震宙.可靠性灵敏度分析的一种新方法[J],航空学报,2006,27(5):823-826
    43.宋述芳,吕震宙,傅霖.基于线抽样的可靠性灵敏度分析方法[J],力学学报,2007,39(4):564-570
    44.张峰,吕震宙.串联结构模糊可靠性灵敏度分析的自适应重要抽样法[J],西北工业大学学报,2009,27(2):162-167
    45.郭耀斌,张文明,张国芬.基于蒙特卡罗法的螺旋锥齿轮接触疲劳可靠性分析[J],农业机械学报,2008,39(4):157-159
    46.万越,吕震宙,袁修开.重要抽样可靠性灵敏度的方差分析[J],机械强度,2008,30(4):606-611
    47.李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D],重庆:重庆大学,2004
    48.唐定国.齿轮传动技术的现状与展望[J],机械工程学报,1993,29(5):35-42
    49. Sigg N. Tooth Profile Modification of High Speed Duty Gear[J], Proceedings of International Conference on Gearing, New York:McGraw-Hill Co.,1958,313-316
    50.宋乐民.渐开线鼓形齿的鼓形量[J],齿轮,1981,5(2):63-67
    51.杨廷力,叶新,王玉璞.渐开线高速齿轮的齿高修形[J],齿轮,1982,6(3):14-24
    52.薛家国,彭文生.具有误差齿轮的弹性啮合特性及修形[J],齿轮,1986,10(3):22-28
    53.陶燕光,黎上威,马宪本.高速齿轮热变形修形的试验研究[J],齿轮,1988,12(2):25-28
    54.王统.用有限元法分析估算弹流润滑正齿轮的体积温度[J],润滑与密封,1986,6(3):64-69
    55.王统,李伟.齿轮轴三维综合弹性变形和齿向修形曲线的研究[J],上海交通大学学报,1993,27(1):64-71
    56.唐增宝,钟毅芳,陈久荣.修形齿轮的最佳修形量和修形长度的确定[J],华中理工大学学报,1995,23(2):125-128
    57. Tavakoli M S, Houser D R. Optimum Profile modifications for the minimization of static transmission errors of spur gears[J], ASME Journal of Mechanisms, Transmissions and Automation in Design,1996,108(3):86-90
    58.裴玲,鲁守荣,叶仲新.关于齿轮振动、噪声与齿轮修形关系的探讨[J],材料·工艺·设备,1998,(2):23-26
    59.朱传敏,秦慧芳,宋孔杰,田志仁.齿轮传动动态系统辨识及修形研究[J],机械工程学报,1999,35(4):60-63
    60.张树生,刘增文,庞守美.齿轮传动动态性能的优化设计—最优修形曲线的确定[J],中国机械工程,1999,10(3):247-248
    61.刘辉,吴昌林.传动装置的齿轮三维修形设计法[J],机械设计,1999,(1):35-37
    62. Feng P H, Litvin F L. Determination of Principal Curvatures and Contact Ellipse for Profile Crowned Helical Gear[J], ASME Journal of Mechanical Design,1999,121(3): 43-46
    63.孙月海,张策,熊光彤,等.减小齿轮传动误差波动的渐开线直齿轮齿廓修形研究[J],天津大学学报,2001,34(2):214-216
    64. Bonori G, Barbieri M, Pellicano M. Optimum profile modifications of spur gears by means of genetic algorithms[J], Journal of Sound and Vibration,2008,313(3):603-616.
    65.王立华.汽车螺旋锥齿轮传动耦合非线性振动特性研究[D],重庆:重庆大学,2003
    66. Nakamura K. Tooth Separations and Abnormal Noise on Power-Transmission Gears[J], Bulletin of JSME,1967(10),846-854
    67. Dubowsky S et al. Dynamic Analysis of Mechanical System with Clearance Formulation of Dynamic Model[C], ASME Eng.Ind.,93,1971
    68. Azar R.C et al. Digital Simulation of Impact Phenomenon in Spur Gear System[C], ASME Eng.Ind.,99,1977
    69. Neriya S.V, Sankar T.S. Coupled Torsional-flexural Vibration of a Geared Shaft System Using Finite Element Method[J], The Shock and Vibration Bulletin,1985,55(3):13-25
    70. Neriya S.V et al. On the Dynamic Response of Helical Geared System Subjected to a Static Transmission Error in the Form of Deterministic and Filtered White Noise Inputs[J], ASME Vib.Acios. Stress Reliab.Des.,1988,110(2):260-268
    71. Iida H et al. Coupled Torsional-Flexural of a Shaft in a Geared System[J]. Bull.JSME, 1985,28(245):2694-2701
    72. Comparin R.J, Singh R. Nonlinear Frequency Response Characteristics of an Impact Pair[J], Journal of Sound and Vibration,1989,134:259-290
    73. Kahaman A, Singh R. Non-linear Dynamic of a Spur Gear Pair[J]. Journal of Sound and Vibration,1990,142(1):49-75
    74. Kahaman A, Singh R. Non-linear Dynamic of a Geared Rotor-bearing System with Multiple Clearances[J], Journal of Sound and Vibration,1991,144(3):469-506
    75. Karaman.A, Blankenship.G.W.. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters [J], Journal of Applied Mechanics, Transaction ASME,1997,64(1):217-226
    76. Raghothama A, Narayanan S. Bifurcation and Chaos in Geared Rotor-bearing System by Incremental harmonic Balance Method[J], Journal of Sound and Vibration,1999,226(3): 469-492
    77. Theodossiades S, Natsiavas S. Non-linear dynamics of gear-pair system with periodic stiffness and backlash[J], Journal of Sound and Vibration,2000,229(2):287-310
    78.唐增宝,周建荣.直齿圆柱齿轮传动系统的振动分析[J],机械工程学报,1992,28(4):86-93
    79.唐增宝,钟毅芳,周建荣.直齿圆柱齿轮传动系统的振动分析计算[J],华中理工大学学报,1993,21(4):44-49
    80.张锁怀,李忆平,丘大谋.齿轮耦合的转子—轴承系统非线性动力特性的研究[J],机械工程学报,2001,37(9):53-58
    81.孙智民.功率分流齿轮传动系统非线性动力学研究[D],西安:西北工业大学,2001
    82.孙智民,沈允文,王三民,侯宇.星型齿轮传动非线性动力学建模与动载荷研究[J],航空动力学报,2001,16(4):402-407
    83.孙智民,沈允文,王三民,李华.星形齿轮传动系统分岔与混沌的研究[J],机械工程学报,2001,37(12):11-15
    84.孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J],机械工程学报,2002,38(2):44-52
    85.李华,沈允文,刘梦军,孙智民.用Lyapunov指数研究单对齿轮间隙非线性系统的动力学行为[J],中国机械工程,2002,13(12):1040-1044
    86.王三民,沈允文,董海军.含摩擦和间隙直齿轮副的混沌与分又研究[J],机械工程学报,2002,38(9):8-11
    87.王国权.虚拟试验技术[M],北京:电子工业出版社,2004
    88. Levent U G, Benlyazid K,. Dougal R A, et al. A Virtual Prototype for a Hybrid Electric Vehicle[J]. Mechatronics,2002,12:575-593
    89. Jae Ick Lee, Sung Wook Chun, Soon Ju Kang. Virtual Prototyping of PLC based Embedded System using Object Model of Target and Behavior Model by Conberting RLL-to-state chart Directly[J]. Journal of Systems Architecture,2002,48:17-35
    90. T.Y. Yan, J.H. Chung, Y.S. Choi. Design of the Driving System of an Automatic Vacuum Packer using Functional Virtual Prototyping[J].Biosystems Engineering,2004, 89(1):37-46
    91. X.J. Fan, J. Zhou, G.Q. Zhang. Multi-physics Modeling in Virtual Prototyping of Electronic Packages-Combined Thermal, Thermomechanical and Vapor Pressure Modeling[J]. Microelectronics Reliablility,2004,44:1967-1976
    92. Xia Yimin, Bu Yingyong, Ma Zhiguo. Modeling and Simulation of Ocean Mining Subsystem based on Virtual Prototyping Technology[J]. Journal CSUT,2005, 12(2):176-180
    93. Ferretti G, Magnani G A, Rocco P. Virtual Prototyping of Mechatronic Systems[J]. Annual Reviews in Control,2004,28:193-206
    94. Alistair Sutcliffe, Brian Gault, Neil Maiden. ISRE:Immersive Scenariobased Requirements Engineering with Virtual Prototypes[J]. Requiements Engineering,2005, 10:95-111
    95.李昌.齿轮传动系统虚拟可靠性试验方法的研究[D],沈阳:东北大学,2009
    96. R. Bergman, J. D. Baker. Enabling Collaborative Engineering and Science at JPL[J], Advances in Engineering Software,2000, (31):661-668
    97.刘振德,王维明,陈宝延.弹用涡扇发动机虚拟试验平台研究[J],计算机测量与控制,2008,16(1):8-11
    98.车杰.基于加工误差的无返回力矩钟表机构虚拟试验技术[D],南京:南京理工大学,2008
    99.刘晓明.专用车辆振动特性虚拟试验技术研究[D],南京:南京理工大学,2008
    100.王晓群,孙萍,李威.非对称渐开线圆柱齿轮建模与扭转振动仿真[J],北京科技大学学报,2007,29(12):1264-1267
    101.周云波,李宏才,闫清东.坦克机动性虚拟试验研究[J],战术导弹技术,2006,(5):83-86
    102.王炎,马吉胜,蒙刚.基于虚拟样机的齿轮系统非线性扭转振动分析[J],机械工程师,2007,(11):23-25
    103.王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计[J].农业机械学报,2003,(4):53-56.
    104.朱闯锋.飞机起落架静强度虚拟试验技术研究[D],南京:南京航空航天大学,2008
    105.李如珍,赵庆辉.齿轮强度设计资料[M],北京:机械工业出版社,1984
    106.唐进元.齿轮传递误差计算新模型[J],机械传动,2008,32(6):13-14
    107.李润方,王建军.齿轮系统动力学-振动、冲击、噪声[M],北京:科学出版社,1997
    108.李树军.机械原理[M],沈阳:东北大学出版社,2000
    109.三机部中模数齿轮标准编制组,北京航空学院四0七齿轮小组.齿根过渡曲线的分析[J],29-31
    110.邓凡平.ANSYS10.0有限元分析自学手册[M],北京:人民邮电出版社,2007
    111.高耀东,郭喜平,郭志强.ANSYS机械工程应用25例[M],北京:电子工业出版社,2007
    112. Mary J, Lindstrom and Douglas M. Bates. Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data [J], Journal of the American Statistical Association,1988,83(404):1014-1022
    113.仙波正驻.高强度齿轮设计[M],北京:机械工业出版社,1981
    114.苏永华,王旭春,张宗社.岩体工程可靠性分析的响应面方法及应用[J],工程地质学报,2001,9(4):381-384
    115. GE P Box, K B Wilson. On the Experimental Attainment of Optimum Conditions[J], Journal of Royal Statistical Society,1951, B13:1-45
    116.齐秉寅.数值计算方法[M],沈阳:东北大学出版社,1996
    117.王超,王金,孙志礼.机械可靠性工程[M],北京:冶金工业出版社,1990
    118.纪玉杰.结构动作可靠性仿真技术研究[D],沈阳:东北大学,2006
    119.黄洪钟.机械传动可靠性理论与应用[M],北京:中国科学技术出版社,1995
    120. Rackwitz R. Structural reliability under random sequences [J]. Computers and Structure, 1977,23(9):22-28
    121.胡宗武,乐晓斌.机械结构概率设计[M],上海:上海交通大学出版社,1995
    122.徐钟济.蒙特卡罗法[M].上海:上海科学技术出版社,1985:326-332
    123. Alredo H, Wilson H. Probability concepts in engineering planning and design [M]. New York:John Wiley & Sons,1984:271-278
    124.段巍,王璋奇.基于响应面方法的汽轮机叶片静动频概率设计及敏感性分析[J],中国电机工程学报,2007,27(20):12-16
    125.小飒工作室.最新经典ANSYS及Workbench教程[M],北京:电子工业出版社,2004
    126.原思聪.MATLAB语言及机械工程应用[M],北京:机械工业出版社,2008
    127.卢险峰.最优化方法应用基础[M],上海:同济大学出版社,2003
    128. Y Cai, T Hayashi. The optimum modification of tooth profile for a pair of spur gears to make its rotational vibration equal to zero[J], ASME Proceeding of Power Transmission and Gearing Conference,1992,43(2):453-460.
    129.李华,沈允文.基于A-算符方法的齿轮系统的分岔与混沌[J],机械工程学报,2002,38(6):11-15
    130.刘延柱,陈文良.振动力学[M],北京:高等教育出版社,1998
    131.闻邦春,李以农,韩清凯.非线性振动理论中的解析方法及工程应用.沈阳:东北大学出版社,2001
    132.黄润生.混沌及其应用[M],武汉:武汉大学出版社,2005
    133.马海军.复杂非线性系统的重构技术[M],天津:天津大学出版社,2005
    134.刘梦军,沈允文,董海军.单级齿轮非线性系统吸引子的数值特性研究[J],机械工程学报,2003,39(10):111-116
    135.李杰.随机结构系统[M],北京:科学出版社,1996
    136.田铮,秦超英.随机过程与应用[M],北京:科学出版社,2007
    137.徐劲.轨道交通系统随机振动特性及其动力可靠性分析[D],武汉:武汉理工大学,2007
    138.欧进萍,王光远.结构随机振动[M],北京:高等教育出版社,1998
    139.爱德华L威尔逊.结构静力与动力分析[M],北京:中国建筑工业出版社,2006
    140. Haym B, Seon M H. Probability Models in Engineering and Science[M], Boca Raton:CRC Press,2005.
    141.晏砺堂,邱士均.齿轮的摇型节径振动及其减振法[J],航空动力学报,1992,7(4):329-334
    142.许锷俊,梁世昌,常春江,沈丙炎.中央传动锥齿轮共振破坏的实验研究[J],航空动力学报,1988,3(3):193-198
    143.楠波,成电.精密齿轮传动装置理论与实践[M],北京:国防工业出版社,1978.1:25-38
    144.孙麟治,张鄂,赵明晶.小模数精密齿轮传动设计[M],北京:机械工业出版社,1985.8:25-78
    145.张义民,闻邦椿.随机结构系统振动的频率可靠性分析[J],机械强度,2002,24(2):240-242
    146.武清玺.结构可靠性分析及随机有限元法:理论、方法、工程应用及程序设计[M],北京:机械工业出版社,2005
    147.刘炽.概率有限元法及其在齿轮可靠性中的应用[D],沈阳:东北大学,2002
    148.牟致忠.机械零件可靠性设计[M],北京:机械工业出版社,1988
    149. Zhao Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation[J], Computers and Structures, 2000,77:651-657
    150. Chang T.P, Chang H.C A finite element analysis on random vibration of nonlinear shell structures [J], Journal of Sound and Vibration,2006,291:240-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700