用户名: 密码: 验证码:
典型煤种热解气化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的煤炭生产国和消费国,也是世界仅有的几个以煤为主要能源的国家之一。煤烟型污染是我国大气污染的主要特点,提高我国煤炭利用效率、减少煤炭利用带来的环境污染的根本途径是研制和推广应用煤炭优化利用技术,这已成为煤炭工业的发展方向。应用煤气化技术是减少环境污染、节能、发展工业的重要措施。虽然国外己有多种煤气化技术开发成功,但我国的先进煤气化技术还处于开发阶段,与世界先进技术相比差距甚远。因此,对适用于我国煤炭资源和国情的煤气化技术的研究,具有特别重要的现实意义。
     论文系统总结和分析了国内外有关煤热解气化方面的研究进展,明确了影响煤气化过程的各种关键因素,进而确定了研究对象和思路。主要从以下几个方面开展了研究:
     采用热重分析仪与便携红外联用对典型煤种热解过程进行了反应动力学和热解过程中气体产物的分析,系统研究了热解温度和煤质特性等因素对煤热解过程的影响,着重分析了热解过程中可燃气体产物和污染性气体产物的析出特性。
     利用管式炉制取了快速热解焦和慢速热解焦,并对原煤样进行酸洗脱灰处理,分别采取热重与便携红外联用、管式炉与便携红外联用等仪器对煤气化特性进行了详细分析,研究了煤气化过程中气化温度、煤种、脱挥发分、酸洗脱矿物质、煤粉细度和反应速率等因素对煤气化过程中气体产物析出的影响。热重气化实验表明:与原煤和慢速热解焦的气化相比,快速热解焦气化过程中,矿物质对气化反应的影响更加显著;研究发现煤粉细度对气化反应性有明显影响,当粒度大于0.15mm时,CO2气化反应转化率差别较小,而小于0.074mmm的煤粉CO2气化实验结果差别明显;提高气化剂CO2的浓度,可以提高原煤气化过程中可燃气体产物的析出浓度,同时也提高了污染物NO和SO2的析出浓度。通过对污染气体产物的析出特性研究,分析了气化过程中CO与污染气体产物析出的反应机理。
     利用快速比表面积及中孔/微孔分析仪、低温灰化仪和傅立叶变换显微红外光谱仪对样品的表面物理结构和表面化学结构进行分析,能很好的关联煤的表面特性与热解气化实验结果。通过比表面分析和低温灰化实验,对不同煤阶的原煤样和焦样进行表面物理结构及灰分分析,发现灰分高的煤种在高温下很容易黏结,严重影响热解气化反应的进行,然而制取的煤焦内会孔型很丰富。挥发分快速释放会形成更多的孔隙,但是形成的孔隙会发生坍塌,使得比表面减小。通过傅立叶红外吸收光谱分析,对原煤样和焦样进行了煤表面化学结构分析,研究了煤种、脱矿物质、制焦温度和升温速率等多种因素对煤/焦的表面化学结构的影响。研究发现酸洗主要脱除的是晶态Si02和可溶性盐;随着煤阶的增加,煤中的矿物质与煤分子结构结合更紧密,使得洗煤脱灰难度增大;煤化程度越低,煤结构中的基团越复杂,基团缔合现象越严重;酸洗、制焦温度和升温速率对煤中的基团的影响都有选择性。通过对煤表面分子结构变化进行红外表征,发现洗煤会影响某些基团,但对煤分子结构影响较小。贫煤和无烟煤中脂肪度都很低,且主要以芳环碳骨架为主,而褐煤中存在很多支链结构;贫煤和无烟煤中的氧主要来自于与不同桥氧原子相连的SiO4四面体的Si—O—Si和Si—O—中,而褐煤中还有脂肪族C=O和芳香族C=O,且后者较少;在气化过程中,芳香结构的裂解和缩合协同作用提高了高温气化半焦富氢程度;温度较低时脂肪结构不会脱落,芳环也不受影响,随着温度的升高,煤焦中原始脂肪结构脱落,但芳香度不变,而高温下芳环开链成脂肪结构也逐渐脱落,同时增加了脂肪链长的程度和支链化程度。
     基于上述实验研究,确定了典型煤热解气化动力学参数,运用多步热解反应机理模型对煤热解气化过程进行了数值模拟,模拟结果与实验结果有很好的相关性,对研究煤气化反应机理有重要指导意义。
Flue gas of coal power plant is the main resourcese of atmospheric pollution in China, and the fundamental way to improve the efficiency of coal utilization and reduce environmental pollution caused by coal utilization is to research and develop optimal utilization technologies, which has become the development direction of the coal industry, one of the possible ways is to research, develop and apply the coal gasification technology. Although various coal gasification technologies had been developed successfully in foreign countries, advanced coal gasification technology in China is still in development stage. Therefore, the research of coal gasification technology that suitable for our country's situations is of particular practical significance to satisfy the requirement of the economic development to coal clean utilization.
     This thesis provided an overview of the present researches on coal gasification. It revealed the key factor of the coal gasification process. The following investigations are made in this thesis:
     Thermal gravimetric analyzer STA 409C with portable infrared spectrometry (FTIR) GASMET DX-4000 is used to investigate the pyrolysis processes of some typical coals, including the reaction kinetics and the analysis of gas products. A comprehensive study on pyrolysis temperature and coal properties is analyzed, at the same time, pyrolysis products of the combustible gases and pollutants are mainly detected in this chapter.
     Rapid-pyrolysis cokes and slow-pyrolysis cokes are made in a tube furnace, and coal samples are dematerialized by pickling. Thermal gravimetric analyzer and tube furnace are used to perform coal gasification characteristic respectively with the help of FTIR on-line measurement, to study the impact of gasification temperature, coal property, devolatilization, demineralization by pickling, the coal particle size and the reaction rate on the yields of the product gas in the gasification progress. According to the TGA gasification experiments, it's indicated that, compared with coal and slow-pyrolysis cokes, rapid-pyrolysis cokes gasification can make the mineral influence more remarkable. It points that when the coal particle size is over 0.15mm, instead of smaller than 0.074mm, the differences of CO2 gasification conversion rates are not obvious. Meanwhile the study also indicated that raising the concentration of CO2 in the coal gasification process can increase the concentration of combustible gas products and pollutants NO and SO2.
     The physical structures of coals with different ranks have been studied by surface area analysis and low-temperature ashing experiments. It finds that high ash coal is very easy to felt at high temperatures, seriously affecting the pyrolysis and gasification reaction. In the char-making process, there are multi-molecular layer adsorption and capillary condensation phenomenon in the inner of char, and the pore types are various. The Fourier transform infrared spectroscopy have also been used to studied the chemical structures of coal and char. Detailed characteristics of coal properties, demineralization, char-making temperature and heating rate on coal/char chemical structure are studied. It pointed that pickling process mainly removed crystalline SiO2 and soluble salt. With the increase of coal rank, minerals in coal are in combination with the molecular structure more closely, resulting in dematerializing by pickling more difficult. Moreover, the lower the coal rank is, the more complex the coal structure is, the more serious peaks association is. In addition, the effects of pickling, char-making temperature and heating rate on the coal groups are selectivity. Comparing with the infrared parameters to characterize the molecular structure of coal, it is found that pickling would affect certain groups, but has little effect on the molecular structure of coal.
     Based on the experiments, kinetics parameters of typical coals pyrolysis were detemined, and a multi-step reaction mechanism of pyrolysis was used to simulate coal pyrolysis. There is good correlation between the experiments and the simulation results. It is important to investigate the reaction mechanism of pyrolysis and gasification.
引文
[1]国家统计局,国家环境保护总局,2007中国环境统计年鉴.北京:中国统计出版社,2007.
    [2]王鑫,傅德黔,努丽亚,NOx排放统计方法综述.中国环境监测,2008.24(4):57-60.
    [3]张强,燃煤电站SCR烟气脱硝技术及工程应用.北京:化学工业出版社,2007.
    [4]王同章,煤炭气化原理与设备.北京:机械工业出版社,2001:3-4.
    [5]李金柱,合理能源结构与煤炭清洁利用.北京:煤炭工业出版社,2002:12-15.
    [6]J. S. Gary, C. M. Russell, Gasification technologies:the Path to clean, affordable energy in the 21 century. Fuel Processing Technology,2001.71(1):79-97.
    [7]李仲来,煤气化技术综述.小氮肥设计技术,2002.23(3):7-17.
    [8]王洋,张建民,黄戒介,加压灰熔聚流化床粉煤气化技术的研究与开发.全国清洁能源技术研讨会论文集.
    [9]刘镜远,合成气工艺技术与设计手册.北京:化学工业出版社,2002:13-48.
    [10]房倚天,循环流化床煤/焦气化的研究.中国科学院山西煤炭化学研究所博士学位论文,1997.
    [11]沙兴中,杨南星,煤的气化与应用.上海:华东理工大学出版社,1995:1-2.
    [12]武利军,周静,刘璐,煤气化技术进展.洁净煤技术,2002.8(1):31-34.
    [13]张东亮,中国煤气化工艺(技术)的现状与发展.煤化工,2004.11(2):1-5.
    [14]任沛建,蔡元,张志斌,王红军,国产第一套粉煤气化制合成氨原料气工业化示范装置建设试验总结.小氮肥设计技术,2003.4:1-6.
    [15]彭万旺,步学朋,加压粉煤流化床气化技术试验研究.煤炭转化,1998.21(4):67-74.
    [16]H. K.V. Heek, H. Karl, M. Hein-Juerqen, Progress in the kinetics of coal and char gasification. Chem. Eng. Technol,1987.10(6):411-419.
    [17]H. K. Heek, V. H. J. Muhlen, Aspects of coal properties and constitution important for gasification. Fuel,1985.64(10):1405-1414.
    [18]L. R., Radovic, P. L. Walker, R. G. Jenkins, Importance of carbon active sites in the gasification of coal chars. Fuel,1983.62(7):849-856.
    [19]Y. Yang, A. P. Watkinson, Gasification reactivity of some Western Canadian coals. Fuel,1994.73(11):1786-1791.
    [20]G. Liu, A. G. Tate, G. W. Bryant, et al., Mathematical modeling of coal reactivity with CO2 at high pressures and temperature. Fuel,2000.79(10):1145-1154.
    [21]谢克昌,煤的结构与反应性.北京:科学出版社,2002.
    [22]肖新颜,李淑芬,煤焦与水蒸汽加压气化反应活性的研究.煤化工,1998.85(4):53-56.
    [23]向银花,房倚天,王洋,煤焦部分气化燃烧集成热中分析研究.燃料化学学报.,2000.28(5):435-438.
    [24]N.V. Russell, J. R. Gibbins, C. K. Man., J. Williamson, Coal char thermal deactivation under pulverized fuel combustion conditions. Energy & Fuels,2000. 14(4):883-888.
    [25]崔洪,徐秀峰,顾永达,煤焦C02气化的热重分析研究.煤炭转化,1996.19(2):75-85.
    [26]黄瀛华,任德庆,山下弘已,煤显微组分的工艺性质研究.燃料与化工,1994.25(4):166-169.
    [27]A. Megaritis, R. C. Messenbock, I. N. Chatrakis, High-pressure pyrolysis and CO2-gasification of coal maceral concentrates:conversions char combustion reactivities. Fuel.,1999.78(8):871-882.
    [28]S. Kasaoka, Y. Sakata, S. Kayano, Kinetic evaluation of reactivity of various coal chars for gasification with carbon dioxide in comparison with steam. International Chemical Engineering,1984.25(1):160-175.
    [29]谢克昌,煤的结构与反应性.北京:科学出版社,2002:556-557.
    [30]S. K. Choudhary, A. Ghosh, A Study of effect of mineral matter on coal char reactivity. Trans. Indian Inst. Met.44(3):209-221.
    [31]J. Adanez, D. De, F. Luis, Mineral matter effect on the reactivity of chars during gasification. Fuel processing technology,1990.24:298-304.
    [32]J. Ochoa, P. R. Bonelli, M. C. Cassanello, A. L. Cukierman, Effect of thermal and acid treatment on properties of Argentinian low rank coals. Energy Sources,2001. 23(4):383-392.
    [33]陈义恭,沙兴中,任德庆,加压下煤焦与二氧化碳反应的动力学研究.华东化工学院学报,1984.10(1):39-49.
    [34]D. P. Ye, J. B. Agnew, D. K. Zhang, Gasification of a south Australian low-rank coal with carbon dioxide and steam:kinetics and reactivity studies. Fuel,1998.77(11): 1209-1219.
    [35]D. P. Fung, C. S. D. Kim, Chemical reactivity of Canadian coal-derived chars. Fuel, 1984.63(9):1197-1201.
    [36]I. F. Morales, F. J. L. Garzon, A. L. Peinado, Study of heat-treated Spanish lignites characteristics and behaviour in CO2 and O2 gasification reactions. Fuel,1985.64(5): 666-673.
    [37]E. Furimsky, Catalytic effect of mineral matter of high ash Onakawana lignite on steam gasification. Canada Journal of Chemical Engineering,1986.64(2):293-298.
    [38]R.G. Jenkins, S. Nandi, P.L. Walker, Reactivity of heat-treated coal air at 500℃. Fuel,1973.52(4):288-293.
    [39]I. W. Smith, The intrinsic reactivity of carbons to oxygen. Fuel,1978.57(7): 409-414.
    [40]沙兴中,黄瀛华,曹建勤等,煤的品位及其中矿物质对气化反应活性的影响.燃料化学学报,1986.14(2):107-115.
    [41]谢克昌,赵明举,凌大琦,矿物质对煤焦表面性质和煤焦-C02气化反应的影响.燃料化学学报,1990.18(4):316-323.
    [42]J. C. Crelling, N. M. Skorupska, H. Marsh, Reactivity of coal macerals and litho types. Fuel,1988.67(6):781-785.
    [43]李凡,张永发,谢克昌,矿物质对煤显微组分气化的影响.燃料化学学报,1992.20(3):300-36.
    [44]S. H. Koyama, Miyadera, S. Nogita, Effect of temperature on coal gasification near the ash melting point.18th IECEC,1983.99(24):455-462.
    [45]L. R. Radovic, P.L. Walker, R. G. Jenkins, importance of catalyst dispersion in the gasification of lignite chars. Journal of Catalysis,1983.82(3):382-394.
    [46]李斌,杜霞茹,李庆峰等,灰分对高硫煤热解部分气化硫变迁的影响.环境科学,2004.25(1):149-153.
    [47]常丽萍,赵娅鸿,煤中固有矿物质在热解过程中对氮释放的影响.煤炭转化,2005.28(2):36-38.
    [48]A. T. Knight, G. D. Sergeant, Gasification rates of Australian coal derived chars. Proceedings-1983 International Conference on Coal Science, Pittsburgh,1983: 468-471.
    [49]张林仙,吴晋沪,王洋,无烟煤焦气化过程中孔结构的变化及对气化反应性影响的研究.燃料化学学报,2008.36(5):530-533.
    [50]王明敏,张建胜,张守玉等,热解条件对煤焦比表面积及孔隙分布的影响.煤炭学报,2008.33(1):76-79.
    [51]刘辉,吴少华,孙锐等,快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报,2005.25(12):p.86-90.
    [52]H. Liu, M. Kaneko, C. Luo, et al., Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel,2004.83(2):p. 1055-1061.
    [53]S. Kambara, T. Takarada, Y. Yamamoto, et al., Relation between Functional Forms of Coal Nitrogen and Formation of NOx Precursors during rapid pyrolysis. Energy & Fuels,1993.7(6):1013-1020.
    [54]F. Rubiera, A. Arenillas, C. Pevida, R. Garcia, J.J. Pis, K.M. Steel,J.W. Patrick, Coal structure and reactivity changes induced by chemical demineralisation. Fuel Processing Technology,2002.79(3):273-279.
    [55]周仕学,刘振学,于洪观,高硫强粘结性煤高温热解脱硫的研究.煤炭转化,2000.23(1):44-46.
    [56]D. H. Ahm, B. M. Gibbs, K. H. Ko, et al.. Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure. Fuel,2001.80(11): 1651-1658.
    [57]C.-Z. Li, Advances in the science of Victorian brown coal. Oxford, UK:Elsevier, 2004:85-125.
    [58]E. B. Ledesma, C.-Z. Li, P. F. Nelson, J. C. Mackie, Release of HCN, NH3, and HNCO from the Thermal Gas-Phase Cracking of Coal Pyrolysis Tars. Energy & Fuels,1998.12(3):536-541.
    [59]F.-J. Tian, J. Yu, L. J. McKenzie, J.-i. Hayashi, C.-Z. Li, Conversion of Fuel-N into HCN and NH3 during the Pyrolysis and Gasification in Steam:A Comparative Study of Coal and Biomass. Energy & Fuels,2007.21(2):517-521.
    [60]F.-J. Tian, J.-1. Yu, L. J. McKenzie, J.-i. Hayashi, C.-Z. Li, Formation of HCN and NH3 during the Reforming of Quinoline with Steam in a Fluidized-bed Reactor. Energy & Fuels,2006.20(1):159-163.
    [61]O. Masek, S. Hosokai, K. Norinaga, C.-Z. Li, J.-i. Hayashi, Rapid Gasification of Nascent Char in Steam Atmosphere during the Pyrolysis of Na-and Ca-Ion-Exchanged Brown Coals in a Drop-Tube Reactor. Energy & Fuels,2009.23: 4496-4501.
    [62]肖睿,金保升,周宏仓,黄亚继,仲兆平,章名耀,高温气化剂加压喷动流化床煤气化试验研究.中国电机工程学报,2005.25(23):100-105.
    [63]张荣光,唐海香,那永杰,吕清刚,常压循环流化床煤气化试验.加工转化,2006.32(6):49-52.
    [64]梁杰,刘淑琴,余力,项友谦,刘庄煤气化反应动力学特征的研究.中国矿业大学学报,2000.29(4):400-402.
    [65]赵炜,冯杰,常丽萍,谢克昌,刘美蓉,煤气化过程中生成氮化物的研究.燃料化学学报,2002.30(6):519-522.
    [66]褚廷湘,杨胜强,孙燕,孙京凯,刘增平,煤的低温氧化实验研究及红外光谱分析.中国安全科学学报,2008.18:171-176.
    [67]张文永,吴基文,赵志根,岱河煤矿煤、天然焦结构的红外光谱分析.矿业快报,2006(12):11-13.
    [68]刘玉法,高频-红外吸收光谱法测定煤中全硫.光谱实验室.21(2):303-305.
    [69]郭树才,煤化学工程.北京:冶金工业出版社,1991:205-249.
    [70]沙兴中,孙淑君,李延龙,展望21世纪中国洁净煤技术.洁净煤技术,1999.5(2): 5-8.
    [71]J. M. Jones, A. W. Harding, S. D. Brown, K. M. Thomas, Carbon,1995.33:833-843.
    [72]S. Middleton, J. W. Patrick, A. Walker, The release of coal nitrogen and sulfur on pyrolysis and partial gasification in a fluidized bed. Fuel,1997.76(13):1195-1200.
    [73]A. J. Bushell, J. Williamson, Proceedings of the Eighth International Conference on Coal Science,1995.24:1967-1970.
    [74]C. Soothill, D. Brown, Department of Trade and Industry's Topping Cycle Working Party, Final Report. DTI, UK,1993.
    [75]P. J. Dechamps, P.H. Mathieu, In:Combustion Technologies for a Clean Environment. Gordon and Breach,1995:53.
    [76]P. R. Solomon, T. H. Fletcher, and R.J. Pugmire, Progress in coal pyrolysis. Fuel, 1993.72(5):587-597.
    [77]R. Govind, J. Shah, Modeling.and simulation of an entrained flow coal gasifier. AIChE Journal,1984.30(1):79-92.
    [78]C. Y. Wen, T. Z. Chaung, Entrainment Coal Gasification Modeling. Ind. Eng. Chem. Process Des. Dev.,1979.18(4):684-695.
    [79]J. Adanez, J. L. Miranda, J. M. Gavilan, Kinetics of a lignite-char gasification by CO2. Fuel,1985.64(6):801-804.
    [80]C. A. Jenson, The kinetics of gasification of carbon contained in coal minerals at atmosphere pressure. Ind. Eng. Chem. Process Des. Dev..1975.14(3):308-314.
    [81]T. W. Kown, D. K. Song, P. C. F. David, Reaction kinetics of char-CO2 gasification. Fuel,1988.67(4):530-535.
    [82]K. Osafune, H. Marsh, Gasification kinetics of coal chars in carbon dioxide. Fuel, 1988.67(3):384-388.
    [83]M. Schnial, J. Luiz, F. Montero, et al., Kinetics of coal gasification. Ind. Eng. Chem. Process. Des. Dev.,1982.21(2):256-266
    [84]J. Ochoa, M. C. Cassanello, P. R. Bonelli, et al., CO2 gasification of Argentinean coal chars:a kinetic characterization. Fuel Processing Technology,2001.74(12):161.
    [85]S. Tanaka, T. U-emura, K. Ishizak, et al., CO2 Gasification of Iron-Loaded Carbons: Activation of the Iron Catalyst with CO. Energy & Fuels,1995.9(1):45-52.
    [86]于遵宏,龚欣,沈大才,加压下煤催化气化动力学研究.燃料化学学报,1990.18(4):324-329
    [87]S. K. Bhatia, D. D. Perlmutter, A random pore model for fluid-solid reactions:I. Isothermal kinetics control. AIChE Journal,1980.26(3):379-386.
    [88]S. K. Bhatia, D. D. Perlmutter, A random pore model for fluid-solid reactions:II. Diffusion and transport effects. AIChE Journal,1981.27(2):247-254.
    [89]刘旭光,李保庆,DEAM模型研究大同煤及其半焦的气化动力学.燃料化学学报,2000.28(4):289-293.
    [90]刘旭光,李保庆,分布活化能模型的理论分析及其在半焦气化和模拟蒸馏体系中的应用.燃料化学学报,2001.29(1):54-59.
    [91]徐晓,吴奇虎,煤利用化学.北京:化学工业出版社,1991.
    [92]T. P. Griffin, J. B. Howard, W. A. Peters, An Experimental and Modeling Studying of Heating Rate and Particle Size Effects in Bituminous Coal Pyrolysis. Energy & Fuels, 1997.7:297-305.
    [93]颜涌捷,王杰,从大伟,两种褐煤快速脱挥发分行为.华东化工学院学报,1992.18(1):21-25.
    [94]M. A. Hastaoglu, M. S. Hassam, Application of a General Gas-solid Reaction Model to Flash Pyrolysis of Wood in a Circulating Fluidized Bed. Fuel,1995.74(5): 697-700.
    [95]周静,龚欣,郭小雷,等.,氮气中煤低温加热性质变化.煤炭转化,2002.25(4):13-18.
    [96]周静,龚欣,于遵宏,反应气流量和煤样粒度对煤焦气化影响.煤炭转化,2003.26(2):34-38.
    [97]M. R. Khan, Significance of char active surface area for appraising the reactivity of low-and high-temperature chars. Fuel,1987.66(12):1626-1634.
    [98]A. Molina, F. Mondragon, Reactivity of coal gasification with steam and CO2. Fuel, 1998.77(15):1831-1839.
    [99]林荣英,张济宇,陈峰等,低活性无烟煤固定床二氧化碳催化气化反应动力学研究.燃料化学学报,2005.33(6):677-681.
    [100]许世森,张东亮,任永强,大规模煤气化技术.北京:化学工业出版社,2006.
    [101]谢建军,杨学民,吕雪松,丁同利,姚建中,林伟刚,煤热解过程中硫氮分配及迁移规律研究进展.化工进展,2004.23(11):1214-1218.
    [102]陈家仁,董耀,国内外煤炭气化的动向与中国特色的洁净煤技术.工动力,2003(3):33-40.
    [103]田红,蔡九菊,王爱华等,固定床煤气化过程机理模型综述.工业加热,2005.34(2):1-4.
    [104]C. Luo, Gasification kinetics of coal chars carbonized under rapid and slow heating conditions at elevated tempretures. Journal of Energy Resources Technology,2001. 123(3):21-26.
    [105]刘艳华,车得福,徐通模,煤中矿物质对燃煤污染物排放特性的影响.燃料化学学报,2005.33(1):18-23.
    [106]范晓雷,张薇,周志杰等,热解压力及气氛对神府煤焦气化反应活性的影响.燃料化学学报,2005.33(5):530-533.
    [107]J. Huang, A. P. Watkinson, Coal gasification in a stirred bed reactor. Fuel,1996. 75(14):1617-1624.
    [108]Y. Ohtsuka, Z. Wu, Nitrogen release during fixed-bed gasification of several coals with CO2:factors controlling formation of N2. Fuel,1999.78:521-527.
    [109]M. Haghighi, Z.-q. Sun, J.-h. Wu, J. Bromly, H. L. Wee, E. Ng, Y. Wang, D-k. Zhang, On the reaction mechanism of CO2 reforming of methane over a bed of coal char. Proceedings of the Combustion Institute,2007.31:1983-1990.
    [110]赵丽红,楚希杰,煤焦气化反应及硫的析出特性分析.煤炭科学技术,2010.38(3):116-119.
    [111]P. Chambrion, T. Kyotani, A. Tomita, Role of N-Containing Surface Species on NO Reduction by Carbon. Energy & Fuels,1998.12(2):416-421.
    [112]叶翠平,冯杰,谢克昌,煤的溶剂抽提与抽提物性质的研究煤炭转化,2002.25(3):1-5.
    [113]Y. Guo, R. M. Bustin, Micro-FTIR spectroscopy of liptinite macerals in coal. International Journal of Coal Geology,1998.36(4):259-275.
    [114]J. V. IBARRA, E. MUlqOZ, R. MOLINER, FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry,1996.24(7): 725-735.
    [115]G. P. Lis, M. Mastalerz, A. Schimmelmann, M.D. Lewan,B.A. Stankiewicz, FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance RO in type-Ⅱ kerogens from devonian black shales. Organic Geochemistry,2005.36(11): 1533-1552.
    [116]M. J. Iglesias, A. Jimhez, F. Laggoun-Defarge, I. Suarez-Ruiz, FTIR Study of Pure Vitrains and Associated Coals. Energy & Fuels,1995.9:458-466.
    [117]R. P. Suggatea, W. W. Dickinson, Carbon NMR of coals:the effects of coal type and rank. International Journal of Coal Geology,2004.57:1-22.
    [118]张双全,煤化学.中国矿业大学出版社,2004:48-50.
    [119]向军,胡松,孙路石,徐明厚,李培生,苏胜,孙学信,煤燃烧过程中碳、氧官能团演化行为.化工学报,2006.57(9):2180-2184.
    [120]王健生,徐怡庄,石景森,张莉,段小艺,杨丽敏,苏允兰,翁诗甫,徐端夫,吴瑾光,傅里叶变换红外光谱用于食管癌及癌旁正常组织结构的相关研究.光谱学与光谱分析,2003.23(5):863-865.
    [121]琚宜文,姜波,侯泉林,王桂梁,构造煤结构成分应力效应的傅里叶变换红外光谱研究.光谱学与光谱分析,2005.25(8):1216-1220.
    [122]张蕤,孙旭光,新疆吐哈盆地侏罗纪煤生烃模式的红外光谱分析.光谱学与光谱分析,2008.28(1):61-66.
    [123]余海洋,孙旭光,江西乐平晚二叠世煤成烃机理红外光谱研究.光谱学与光谱分析,2007.27(5):858-862.
    [124]张荣光,那永洁,吕清刚,循环流化床煤气化平衡模型研究.中国电机工程学报,2005.25(18):80-85.
    [125]向文国,牟建茂,狄藤藤,两种煤气化工艺下Ni基载氧体链式燃烧联合循环性能模拟.中国电机工程学报,2007.27(29):28-33.
    [126]向文国,狄藤藤,肖军,沈来宏,新型煤气化间接燃烧联合循环研究.中国电机 工程学报,2004.24(8):170-174.
    [127]黄亚继,金保升,仲兆平,肖睿,周宏仓,煤气化过程中痕量元素迁移规律与气化温度的关系.中国电机工程学报,2006.26(4):10-15.
    [128]关键,王勤辉,骆仲泱,岑可法,新型近零排放煤气化燃烧利用系统的优化及性能预测.中国电机工程学报,2006.26(9):7-13.
    [129]陈晓利,吴少华,李振中,庞克亮,王阳,陈雷,何翔,王婧,整体煤气化联合循环系统变工况特性研究.中国电机工程学报,2009.29(14):6-11.
    [130]夏鲲鹏,陈汉平,王贤华,张世红,高斌,刘德昌,气流床煤气化技术的现状及发展.煤炭转化,2005.8(4):69-73.
    [131]H. Freund, Gasification of carbon by C02:A transient kinetics experiment. Fuel, 1986.65(1):63-66.
    [132]白进,李文,白宗庆,李保庆,李春柱,兖州煤中矿物质在高温下的变化.中国矿业大学学报,2008.37(3):369-372.
    [133]刘心宇,陈国华,CaO-Al2O3-SiO2玻璃晶化过程的红外光谱分析.矿产综合利用,2003.3:20-23.
    [134]孟令芝,龚淑玲,何永炳,有机波谱分析.武汉大学出版社,2003:214-232.
    [135]彭琳,赵高凌,应浩,汪建勋,翁文剑,韩高荣,无碱铝硼硅系玻璃结构的红外光谱.硅酸盐学报,2007.35(7):856-861.
    [136]吴忠荣,程汉亭,SiO2-Al2O3-CaO-CaF2-P玻璃的红外光谱研究.生物医学工程研究,2006.25(3):166-169.
    [137]赵志明,王志光,A. Benyagoub等,高能Pb离子辐照注碳Si02的红外谱研究.高能物理与核物理,2005.29(8):824-829.
    [138]朱红,李虎林,欧泽深等,不同煤阶煤表面改性的FTIR谱研究.中国矿业大学学报,2001.30(4):366-370.
    [139]徐龙,杨建丽,李允梅等,兖州煤热解预脱硫行为(Ⅰ)热解过程中硫的迁移.化工学报,2003.54(10):1430-1435.
    [140]孙旭光,陈建平,郝多虎,塔里木盆地煤显微组分显微傅里叶红外光谱特征及意 义1).北京大学学报(自然科学版),2001.37(6):832-838.
    [141]胡松,煤颗粒的化学结构及其在燃烧过程中的演化行为.华中科技大学博士后出站报告,2006:59.
    [142]Kobayashi, H., J.B. Howard,A.F. Sarofim, Proc Combust Inst 1976.16:411-424.
    [143]J.G. Pitt, The kinetics of the evolution of volatile products from coal, Fuel 1962.41: 267-274.
    [144]P. R. Solomon, D. G. Hamblen, R. Carangelo, et al, Theory for NO Formation in turbulent coal flames,19th Symposium on combustion. The Combustion Institute, 1982:1139.
    [145]Smoot, L.D., Fundamentals of coal combustion. Amsterdam:Elsevier,1993.
    [146]S. Niksa, A. R. Kerstein, FLASHCHAIN theory for rapid coal devolatilization kinetics.1. Formulation. Energy & Fuels,1991.5(5):647-665.
    [147]P. R. Solomon, D.G. Hamblen, R. Carangelo, M. A. Serio, G. V. Deshpande, General model of coal devolatilization. Energy Fuels,1988.2(4):405-22.
    [148]T. H. Fletcher, A. R. Kerstein, R. J. Pugmire, D. M. Grant, Chemical percolation model for devolatilization.2. Temperature and heating rate effects on product yields. Energy & Fuels,1990.4(1):54-60.
    [149]M. S. Solum, R. J. Pugmire, D. M. Grant, Carbon-13 solid-state NMR of Argonne-premium coals. Energy & Fuels,1989.3(2):187-193.
    [150]D. B. Genetti, T. H. Fletcher, R. J. Pugmire, Development and Application of a Correlation of 13C NMR Chemical Structural Analyses of Coal Based on Elemental Composition and Volatile Matter Content. Energy & Fuels,1999.13(1):60-68.
    [151]K. Matsuoka, Z.X. Ma, H. Akiho, Z.G. Zhang, A. Tomita, T.H. Fletcher, M.A. Wojtowicz, N. S., High-Pressure Coal Pyrolysis in a Drop Tube Furnace. Energy Fuels,2003.17(4):984-990.
    [152]P. R. Solomon, M. A. Serio, R. M. Carangelo, R. Bassilakis, Analysis of the Argonne premium coal samples by thermo-gravimetric Fourier transform infrared spectroscopy. Energy Fuels,1990.4(3):319-333.
    [153]W. Xu, C. A. Tomita, Effect of temperature on the flash pyrolysis of various coals. Fuel,1987.66(5):632-636.
    [154]W. Xu, C. A. Tomita, Effect of coal type on the flash pyrolysis of various coals Fuel, 1987.66(5):627-631.
    [155]P. F. Nelson, M. J. Wornat, Detection of oxygenated organic species from the rapid pyrolysis of a brown coal by Fourier-transform infrared difference spectroscopy. Energy Fuels,1990.4(4):413-415.
    [156]S. Porada, The reactions of formation of selected gas products during coal pyrolysis. Fuel 2004.83(9):1191-1196.
    [157]H. Juntgen, Review of the kinetics of pyrolysis and hydro-pyrolysis in relation to the chemical constitution of coal. Fuel,1984.63:731-737.
    [158]P. R. Solomon, D. G. Hamblen, Chemistry of coal conversion. New York:Plenum, 1985:12.
    [159]P. R. Solomon, M. A. Serio, G. V. Deshpande, E. Kroo, Cross-linking reactions during coal conversion. Energy & Fuels,1990.4(1):42-54.
    [160]P. R. Solomon, M. A. Serio, E. M. Suuberg, Coal pyrolysis:experiments, kinetic rates and mechanisms. Prog. Energy Combust Sci.,1992.18:133-220.
    [161]K. Ofosu-Asante, L. M. Stock, R. F. Zabransky, Preparation and pyrolysis of O-(alkyl phenyl)methyl and O-(alkyl naphthyl)methyl Illinois No.6 coals. Role of dealkylation reactions in gaseous hydrocarbon formation. Energy & Fuels 1988.2(4): 511-522.
    [162]M. L. Obeng, M. Stock, Distribution of Pendant Alkyl Groups in the Argonne Premium Coals. Energy & Fuels 1996.10(4):988-995.
    [163]M. Dente, G. Bozzano, T. Faravelli, A. Marongiu, S. Pierucci,E. Ranzi, In:Marin G, editor. Advances in chemical engineering,,2007.32:52-166.
    [164]E. M. Suuberg, D. Lee, J. W. Larsen, Temperature dependence of cross-linking processes in pyrolysing coals. Fuel,1985.64(12):1668-1671.
    [165]M. A. Serio, D.G. Hamblen, J.R. Markham et al., Kinetics of volatile product evolution in coal pyrolysis:experiment and theory. Energy & Fuels,1987.1(2): 138-152.
    [166]S. Sommariva, T. Maffei, G. Migliavacca, i. Faravelli,E. Ranzi, A predictive multi-step kinetic model of coal devolatilization. Fuel,2010.89(2):318-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700