用户名: 密码: 验证码:
稻田湿地处理农村生活污水脱氮除磷及其径流试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农村生活污水的排放对地表水环境的恶化有着十分显著的贡献,富营养化现象的发生与农村生活污水氮磷的大量排放有着密切的关系。本研究运用田间试验、室内模拟、微观示踪等方法,考察了太湖地区稻田湿地处理农村生活污水氮素的降解行为和脱氮机理,研究了稻田湿地田面水磷素的浓度特征及去除过程,明确了稻田湿地氮素的迁移、转化、分配及平衡过程,分析了稻田湿地径流氮素及磷素的流失特征、产生条件及其影响因素,建立了径流氮磷浓度与施肥降雨间隔时间、淹水深度、降雨强度及降雨时间等影响因素之间的线性回归方程,并采用野外田间试验数据对模拟方程进行了验证。主要研究结论如下:
     1、稻田湿地处理农村生活污水田间试验表明,7月13日水稻移栽后,由于水稻土壤的吸附,稻田湿地田面水总氮(TN)含量迅速下降,但追肥后又快速上升,且TN含量顺序为:地表水(SW)>灰水(GW)>生活污水(DW)>黑水(BW)>对照(CK)。经过水稻的一个生长周期的处理,氮去除率顺序为:BW(96.8%)>DW(96.2%)>GW(95.6%)>SW(94.1%)>CK(93.8%),同时,11月13日各处理出水化学需氧量(COD)均稳定在20 mg L~(-1)左右,可满足地表水环境质量Ⅳ类标准。计算发现,来自农村生活污水的氮素去除率(62.9%-69.3%)显著高于源自尿素的氮素去除率(27.5%-32.7%),表明源自农村生活污水中的氮素相对化肥氮更易于被稻田湿地去除。田面水总氮负荷(TNL)具有与TN相似的变化特征,同时,COD与TN浓度及TNL具有正相关性。此外,GW、DW和BW的水稻产量要显著高于CK、SW以及当地平均水稻产量,说明稻田湿地处理农村生活污水不但能生态高效脱氮,而且可以增加水稻产量。
     2、与氮肥不同,7月13日磷肥施用后COD变化不大,但总磷(TP)迅速升高,随后逐渐下降,并在10月15日左右COD和TP浓度逐渐趋于稳定,CK、SW、GW、DW和BW出水中的COD分别为:13.54、20.98、20.87、21.09和17.86 mg L~(-1),TP去除率顺序为:GW(98.17%)>DW(97.28%)>BW(97.04%)>SW(96.78%)>CK(75.20%)。同时,GW、DW和BW中来自农村生活污水中磷的去除率(60.3%-71.4%)显著性(P≤0.05)高于化肥磷的去除率(26.8%-36.7%),表明相对于磷肥,农村生活污水中磷的形态更易于被稻田湿地去除。随着水稻的生长,磷素从根部分别向茎部、叶部迁移,最后在谷籽中富积。除CK外,其它处理稻田湿地总磷负荷(TPL)和TP浓度随时间非线性下降,直到10月1日达到稳定。此外,五个处理的水稻产量差异不显著(P≤0.05),说明采用农村生活污水替代地表水灌溉稻田湿地可在保证水稻产量的同时高效除磷。
     3、~(15)N示踪试验表明,对照处理(CK)、普通尿素处理(UR)与同位素尿素处理(~(15)NUR)的氨挥发量在10月1日达到了一个稳定值10.3 mg pot~(-1),最终UR与~(15)NUR氨挥发量分别占施入肥料氮总量的43.54%和41.18%。追肥后UR和~(15)NUR田面水TN浓度快速上升,分别达到了最大值19.52和18.64 mg L~(-1),而CK仅为3.78 mg L~(-1),并在10月1日后达到了稳定值,分别为0.32、1.05和0.93 mg L~(-1)。分蘖期水稻植株吸收的氮素浓度逐渐上升,并在孕穗期达到了较高的水平,CK、UR、~(15)NUR的吸氮量分别为:45.3、165.4和173.6 mg pot~(-1)。从水稻各生长期吸氮量的变化来看,秧苗期吸氮量低,孕穗期吸氮量最高,成熟期下降,且水稻吸氮总量为:~(15)NUR>UR>CK。CK中的氮残留量最低(0.064 g pot~(-1)),UR的残留量及残留率比~(15)NUR分别高0.171 g pot~(-1)和1.4%,但氮肥利用率、氮素回收率却分别低3.95%、2.55%。同时,UR和~(15)NUR的硝化反硝化损失率分别为5.81%和5.69%,其产量较CK分别增加了33.69%和29.90%,再次说明施氮对增加水稻产量是十分必要的。
     4、人工降雨模拟试验表明,稻田湿地径流是一种典型的机会径流。产流时间随降雨强度增大而减少,径流TN与降雨强度呈正相关性,与施肥降雨时间间隔和淹水深度呈明显的负相关性,与降雨时间基本无关。同时,时间间隔对径流TN的影响最大,淹水深度次之,降雨强度再次之,降雨时间最小。在各种试验条件下的径流TN都超过地表水环境质量标准中规定的TN标准限值2 mg L~(-1),并可用线性回归方程y=-2.124x_1-1.147x_2+0.097x_3+0.001x_4+32.987来模拟四个影响因素作用下的机会径流TN流失浓度,这在田间试验得到了很好的验证。NO_3~-和NH_4~+是稻田湿地径流氮素流失的主要形态,各处理条件下NO_3~-和NH_4~+比重分别在32%-75%、24%-66%之间波动;TN流失负荷随时间间隔的延长明显降低,NO_3~-流失风险主要发生在前7 d内,其后流失风险将大大降低。
     5、稻田湿地是一个天然的弱碱性缓冲系统,早期径流中溶解态磷(DP)比重较大(83%左右),后期颗粒态磷(PP)比重逐渐升高(38%左右),但总体上DP还是主要流失形态。径流TP与降雨强度、时间间隔及降雨时间呈正相关性,与淹水深度负相关。与TN相似,时间间隔对径流TP浓度的影响最大,淹水深度次之,降雨强度再次之,降雨时间最小。在各种试验条件下,径流TP都超过了地表水Ⅴ类标准限值0.4 mg L~(-1),并可采用线性回归方程,y=-0.548x_1-0.243x_2+0.014x_3-0.001x_4+7.386来模拟径流TP浓度。稻田湿地磷素的流失风险主要发生在施肥后前10 d内,其后将大大降低。因此,施肥后短期径流会导致氮磷等肥料养分的大量流失,但可通过淹水深度的合理调配来避免径流发生,可以实现稻田湿地从氮磷库的输出源转变为吸收氮磷的汇,从而生态高效去除农村生活污水的氮磷,减轻农村生活污水面源污染。
Rural domestic wastewater discharge is the leading source of water quality impacts to rivers and lakes in many countries,and a lot of N and P discharged from rural domestic wastewater are closely related to eutrophication.The overall objectives of this research has been to investigate the degradation behavior of N and the N-removal mechanism during the treatment of rural domestic wastewater by the paddy wetlands,and study the floodwater P concentration character and P-removal process,and discover the features of N transference, transformation,distribution and balance,and analysis the runoff characteristics,production conditions and influencing factors of N and P in the paddy wetlands,and establish the linear regression equation among runoff concentration,rain-fertilization interval,floodwater depth, rainfall intensity and rainfall time,and verify it by the data from the field experiment in field scale and microscopic scale.The followings were the main results.
     1.The results from the field experiment of rural domestic wastewater treatment by the paddy wetlands showed that floodwater TN concentration decreased quickly after transplantation,due to the adsorption of the paddy soil,but increased greatly after topdressing, and the sequence was SW>GW>DW>BW>CK.After a growth period,N-removal efficiency was in the following sequence of BW(96.8%)>DW(96.2%)>GW(95.6%)>SW(94.1%)>CK(93.8%),and COD of the effluent was stabilized at about 20 mg L~(-1),which met gradeⅣof surface water discharge standard.N-removal rate from rural domestic wastewater (62.9%-69.3%) was higher significantly(P≤0.05) than that from urea(27.5%-32.7%),which showed that N from rural domestic wastewater was removed preferentially compared with that from urea by the paddy wetlands.TN load in the paddy wetlands floodwater had the similar variation characteristics with TN,and COD had a positive relation with TN and TN load.Moreover,the rice yields of GW,DW and BW were higher significantly than that of CK, SW,which indicated the paddy wetlands could not only remove effectively N from rural domestic wastewater,but also could improve the rice yield.
     2.Different from N fertilizer,COD concentration in the paddy wetlands floodwater changed little after P fertilizer application,but TP concentration rapidly rose,and gradually decreased,and was at about Oct.15.COD of CK,SW,GW and BW treatments were 13.54, 20.98,20.87,21.09,17.86 mg L~(-1) respectively,and dephosphorization rates were in the following order at:GW(98.17%)>DW(97.28%)>BW(97.04%)>SW(96.78%)>CK(75.20%). Dephosphorization rate from rural domestic wastewater(60.3%-71.4%) was higher significantly(P≤0.05) than that from P fertilizer(27.5%-32.7%),which showed that P from rural domestic wastewater was removed preferentially.P transferred from roots to stems and leaves,as the rice grown,and accumulated in the grain lastly.TP and TP load in the paddy wetlands floodwater linearly decreased with time except CK treatment,and was stabilized on Oct.1.In addition,the rice yields of five treatments had not significant difference,which suggested irrigating the paddy wetlands by rural domestic wastewater instead of surface water could remove P and keep the rice yield simultaneously.
     3.The results of ~(15)N isotopic tracer experiment showed NH_3 volatilization losses of CK, UR and ~(15)NUR treatments was stabilized at 10.3 mg pot-1 until Oct.1,finally those of UR and ~(15)NUR treatments account for 43.54%and 41.18%of the input total N,respectively. After fertilizer application,TN concentration of UR and ~(15)NUR treatments rose quickly and reached the max value of 19.52,18.64 mg L~(-1),respectively,but only 3.78 mg L~(-1) for CK,and was stabilized on Oct.1 at the value of 0.32,1.05,0.93 mg L~(-1),respectively.N concentration of the rice plant rose gradually at tillering stage,and reached the maximum value at the booting stage,absorptive N concentration of CK,UR and ~(15)NUR treatments were 45.3,165.4, 173.6 mg pot~(-1),respectively.N content of the rice plant was the lowest at the seedling stage, the highest at the booting stage and decreased in the mature stage,and followed the sequence of ~(15)NUR>UR>CK.Soil residual N content of CK was the lowest of 0.064 g pot~(-1),and residual N content and rate of UR were higher by 0.171 g pot~(-1),1.4%than those of ~(15)NUR, respectively,but N utilization efficiency and recovery rate were lower by 3.95%,2.55%, respectively.At the same time,nitrification and denitrification loss rates of UR and ~(15)NUR were up to 5.81%,5.69%,respectively,and their rice yields increased by 33.69%,29.90%, respectively,which showed it was necessary for urea application to increase rice yield again.
     4.The results of indoor artificial rainfall experiment showed that the runoff of the paddy wetlands is a kind of opportunity runoff,which happened occurred accidentally.Producing runoff time decreased,as rainfall intensity increased,and runoff TN concentration had a positive correlation with rainfall intensity,and had a negative correlation with rain-fertilization interval and floodwater depth,and had no correlation with rainfall time. Rain-fertilization interval had the most important influence on runoff TN concentration, floodwater depth the second,rainfall intensity the third,rainfall time the least,under all tested conditions,runoff TN concentration was above the limited value(2 mg L~(-1)) of surface water environment quality standard,and could be simulated by the linear regression equation of y=-2.124x_1-1.147x_2+0.097x_3+0.001x_4+32.987 under the effect of four factors,which was verified well by the field experiment.NO_3~- and NH_4~+ were the major N forms in the runoff of the paddy wetlands,and NO_3~- and NH_4~+ rates fluctuated in the range of 32%-75%,24%-66%, respectively.TN loss load in the paddy wetlands decreased obviously,as rain-fertilization interval increased,and there had been a great NO_3~- runoff risk within 7 days,then the N loss risk would decrease greatly.
     5.The paddy wetlands is a natural weak alkaline system,DP rate was high(about 83%) in the early runoff period,and PP rate increased gradually(about 38%),and DP was the major P form in the runoff.TP had a positive correlation with rainfall intensity,rain-fertilization interval and rainfall time,and had a negative correlation with floodwater depth.Similar to TN concentration,rain-fertilization interval had the most important influence on runoff TP concentration,floodwater depth the second,rainfall intensity the third,rainfall time the least, and TP concentration was all above the limited value(0.4 mg L~(-1)) of surface water quality standard gradeⅤ,and could be simulated by the linear regression equation of y=-0.548x_1-0.243x-2+0.014x_3-0.001x_4+7.386.Runoff P loss risk increased,mainly when rain-fertilizer interval was less than 10 days,after that it would decrease greatly.So,it will lead to great losses of N and P in the paddy wetlands,when runoff occurred shortly after fertilizer application.Runoff can be avoided by the adjustment of floodwater depth,and the paddy wetlands can be changed from output sources of N and P pools to the absorpted sinks, and highly-efficient denifrification and dephosphorization of rural domestic wastewater can be realized,and non-point source pollution of rural domestic wastewater was decreased.
引文
Akira W., Masahiro K., Ayumi T., et al., 2008. Spatial and seasonal variations in CH_4 in groundwater used for agriculture in central Japan. Agric. Ecosyst. Environ. 127: 207-214.
    Ambus P., Petersen S.Q., Soussana J.F., 2007. Short-term carbon and nitrogen cycling in urine patches assessed by combined carbon-13 and nitrogen-15 labelling. Agric. Ecosyst. Environ., 121: 84-92.
    
    Antil R.S., Gangwar M.S., Kunmar V., 1992. Transformation and movement of urea in soil as influenced by water application rate, moisture management regime, and initial moisture content. Arid Soil Research and Rehabilitation, 6: 319-325.
    
    Austin F., Alaerts G.,Veenstra S., 1996. Performance of duckweed-covered sewage-lagoons- II: nitrogen and phosphorus balance and plant production[J]. Water Res., 34: 2734-2741.
    
    Baker J.L., Timmons D.R., 1994. Fertilizer management effects on leaching of labeled nitrogen for no-till corn in field lysimeters[J]. J. Environ. Qual., 23: 305-310.
    
    Barbara C.,Stefaan D.N., Pascal B., et al., 2008. Manipulating the N release from ~(15(N-labelled celery residues by using straw and vinasses in Flanders (Belgium)[J]. Agric. Ecosyst. Environ., 123: 151-160.
    
    Barbarick, K.A., Ippolito, J.A., 2008. Continuous biosolids application affects grain elemental concentrations in a dryland-wheat agroecosystem. Agric. Ecosyst. Environ., 129: 340-343.
    
    Bechmann M., Eggestad H.O., Vagstad N., 1998. Nitrogen balances and leaching in four agricultural catchments in southeastern Norway[J]. Environ. Pollut. 102: 493-499.
    
    Bouwman A.F., Van D.G., Van D.H., 2005. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970-2030 [J]. Pedosphere, 15 (2): 137-155.
    
    Bergstrom L., Brink, N., 1986. Effects of differentiated application of fertilizer N leaching tosses and distribution of inorganic N in Soil [J]. Plant and Soil, 93(3): 333-345.
    
    Becher S., Lars R.B., Simard R., 2000. Nitrification potential and urease activity in a mineral subsoil[J]. Soil Biol. Biochem., 30: 1333-1341.
    Bindu T., Sylas V.P., Mahesh M., et al., 2008. Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system[J]. Ecol. Eng., 33: 68-82.
    Can M.Y., Yildiz E., 2006. Phosphate removal from water by fly ash: Factorial experimental design[J]. Journal of Hazardous Materials, B135: 165-170.
     Cao Z.H., Detdatta S.K., Fillery I.R.P., 1984. Effect of placement methods on floodwater properties and recovery of applied (~(15)N labeled urea) in wetland rice[J]. J. Soil Sci. Soc., 48: 196-203.
    Cestari A.R., Vieira E.F.S., Mota J.A., 2008. The removal of an anionic red dye from aqueous solutions using chitosan beads [J]. Journal of Hazardous Materials, 160: 337-343.
    Chen Z.X., Ma S.W., Liu L.L., 2008. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China[J]. Bioresour.Tech., 9: 6702-6707.
    Cao Z.H., Detdatta S.K., Fillery I.R.P., 1984. Effect of placemeilt methods on floodwater properties and recovery of applied (~(15)N labeled urea) in wetland rice[J]. Soil Sci. Soc. J., 48: 196-203.
    Bravin M.N., Travassac F., Floch M.L., et al., 2008. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study[J]. Plant and Soil, 312: 207-218.
    
    Calvert D.V., 1975. Nitrate, phosphate, and potassium movement into drainage lines under three soil management systems[J]. J. Environ. Qual., 4(2): 183-185.
    
    Carpenter M.L., 1998. Loblolly pine needles retain urea fertilizer that can be lost as ammonia[J]. Soil Sci.Soc.Am.J, 69(5): 1525-1531.
    Chaiprapat S., Sdoodee S., 2007. Effects of wastewater recycling from natural rubber smoked sheet production on economic crops in southern Thailand[J]. Resources, Conservation and Recycling, 51: 577-590.
    Chealier P.S., chrader L.E., 2007. Genotype difference in nitrate absorption-and partitioning of N among parts in maize[J]. Crop Sci., 17: 897-901.
    Carpenter S.R., Carcao N.F., Correll D.L., et al., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecol. Appl., 8(3): 559-568.
    Choi W.J., Chang S.X., 2005. Nitrogen dynamics in co-composted drilling wastes:Effects of compost quality and ~(15)N fertilization[J]. Soil Biology Biochemistry, 37: 2297-2305.
    
    Coal F.J, Izuno F.T., Bottcher A.B., 1994. Phosphorus in drainage water from sugarcane in the Everglades Agriculture Area as affected by drainage rate[J]. J.Environ.Qual., 23: 121-126.
    
    Cookson W.R., Rowarth J.S., Cameron K.C., 2000. The effect of autumn applied ~(15)N-labelled fertilizer on nitrate leaching in a cultivated soil during winter[J]. Nutri. Cycl. Agroecosyst, 56: 99-107.
    
    Coss M.J., Howse K.R., Lane P.W., 1993. Losses of nitrate-N in water draining from under autumn-sown crops established by direct drilling or mould board ploughing [J]. Soil Sci, 44(1): 35-48.
    
    Daniel T.C., Sharpley D.R., Edwards R.,1994. Minimizing surface water eutriophication from agriculture by phosphorus management[J]. J. Soil Water Conserv., 49:30-38.
    
    David D., Jorge S., 2008. Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system, Agric. Ecosyst. Environ., 126, 275-280.
    
    Eblers W., 1975. Observations on earthworm channels and infiltration on tiled and untilled losses soil[J]. Soil Sci, 119:242-249.
    
    Edwards P., 1994. Cultivation of duckweeds in septage-loaded earthen ponds[J]. Bioresource Technol., 40: 109-117.
    
    Edwards W.M., Owens L.B., 1991. Large storm effects on total soil erosion[J]. J. Soil Water Conserv., 46, 75-77.
    
    Foley J.L., Silburn D.M., 2002. Hydraulic properties of rain impact surface seals on three clay soils-influence of raindrop impact frequency and rainfall intensity during steady state[J]. Aust.J.Soil Res., 40: 1069-1083.
    
    Foy B, Binford G.D., David D.B., 1995. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application[J]. J. Environ. Qual., 25: 1339-1343.
    
    Fujii T., Nakayama N., Nishida M., et al., 2008. Novel capsid genes (g~(23)) of T4-type bacteriophages in a Japanese paddy field. Soil Biol. Biochem. 40, 1049-1058.
    
    Gaines T.P., Gaines S.T., 1994. Soil texture effect on nitrate leaching in soil percolates[J]. Communication Analysis, 25(13-14): 2561-2570.
    
    Gao C.,Zhu J.G., Zhu J.Y., et al., 2004.·Nitrogen export froman agriculture watershed in the Taihu Lake area, China[J].·Environmental Geochemistry and Health, 26: 199-207.
    
    Gao X.J., Hu X.F., Wang S.P., et al., 2002. Nitrogen losses from flooded rice field[J]. Pedosphere, 12(2): 151-156.
    
    Gascho G.J., Wauchope R.D., Davis J.G., et al., 1998. Nitrate-nitrogen, soluble, and bioavailable phosphorus runoff from simulated rainfall after fertilizer application[J]. Soil Sci.Soc. Am. J., 62 (6): 1711-1718.
    
    Gong Z.T., 1985. Wetland soils in China. Werland:Characterization Classification and Utilization, IRRI, Philippines.
    
    Greenland D.J., 1998. The sustainability of rice farming. London: CAB International Publication in Association with the International Rice Research Institute.
    
    Guo H.Y., Zhu J.G., Wang X.R., et al., 2004. Case study on nitrogen and phosphorus emissions from paddy field in Taihu region[J].·Environ·Geochem·Health, 26: 209-219.
    
    Ichino K., Hatano K., 1994. Big irrigation system suppresses the potential activity of nutrient removal of paddy fields. In: Abstracts of Annual Meeting of the Geochemical Society of Japan, 258-259.
    
    Ikuo K., Akira F., 2006. Long-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation system[J]. Wat. Res., 40: 569-578.
    
    Hanssen J.F., Paruch A., 2005. Composting of human waste[M]. Oslo, Norway Oslo Press. Hasegawa H., Furukawa Y., Kimura S.D., 2005. On-farm assessment of organic amendments effects on nutrient status and nutrient use efficiency of organic rice fields in Northeastern Japan[J]. Agric. Ecosyst. Environ., 108: 350-362.
    
    Heistad A., Jenssen P. D., Frydenlund A. S., 2001. A new combined distribution and pretreatment unit for wastewater soil infiltrateion systems. In: Mancl K(ed). Onsite wastewater treatment. Proc. 9~(th) Int. Conf. on Individual and Small Community Sewage Systems, ASAE, 200-206.
    
    Helliwell R.C., Ferrier R.C., Kernan M.R., 2001. Interaction of nitrogen deposition and land use on soil and water quality in Scotland: issues of spatial variability and scale[J].The Science of the Total Environment, 29(1): 51-63.
    
    Hill D. T., Payne V. W. E., Rogers J. W., et al., 2006. Ammonia effects on the biomass production of five constructed weland plant species[J]. Bioresource Technology, 62: 109-113.
    
    Hofstra N., Bouwman A.F., 2005.·Denitrification in agricultural soils: Summarizing published data and estimating global annual rates[J].·Nutrients Cycling in Agroecosystem, 72(3): 267-278.
    
    Ikuo T., Akira F., 2006. Long-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation system[J]. Wat. Res., 40: 569-578.
    Jurgen K., Christine I., 1999. Treatment of domestic and agricultural wastewater by reed bed systems[J]. Ecol. Eng., 12: 13-25.
    
    Jenssen P. D., 2001. Design and performance of ecological sahitation system in Norway. Paper presented at the First International Conference on Ecological Sanitation. Nanjing, China.
    
    Jenssen P.D., Heyerdahl P.H., Warner W.S., et al., 2003. Local recycling of wastewater and organic waste—a step towards the zero emission community. In: Lekkas T D (ed). Proc. 8th International Conference Environmental Science and Technology, Lemnos Island, Greece, 89-96.
    
    Jenssen P.D., Vrale L., 2003. Greywater treatment in combined biofilter/constructed wetlands in cold climate. In: Werner C et al. (ed). Ecosan-closing the loop. Proc. 2nd Int. Symp. Ecological Sanitation.Lubeck GTZ, Germany, 875-881.
    
    Jeon J. H., Yoon C.G., Ham J.H., 2004. Model development for nutrient loading estimates from paddy rice fields in Korea[J]. Journal of Environmental Science and Health-Part B: Pesticides, Food Contaminants, and Agricultural Wastes, B39 (5-6): 845-860.
    
    Jordan C.,Guckin S.O., Smith R.V., 2000. Increased predicted losses of phosphorusto surface water from soils with high Olsen-P concentration)[J]. Soil Use and Management, 16: 27-35.
    
    Ju X.T., Gao Q., Christie P., et al., 2007. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A ~(15)N tracer study[J]. Environ Poll., 146: 534-542.
    
    Kaoru A., Yasuo O., 2007. Wastewater treatment by using kenaf in paddy soil and effect of dissolved oxygen concentration on efficiency [J]. Ecol Eng., 29: 125-132.
    
    Kobayashi J., Sakai M., Kajihara H., et al., 2008. Temporal trends and sources of PCDD/Fs, pentachlorophenol and chlomitrofen in paddy field soils along the Yoneshiro River basin, Japan[J]. Environ. Pollu. 5: 1-10.
    
    Kwong K.F., Bholah A., Bholah L., et al., 2002. Overland water and salt flows in a set of rice paddies[J}. Agri. Ecosyst. Environ.. 91:147-157.
    
    Karathanasis A.D., Potter C.L., Coyne M.S., 2003. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater[J]. Ecol. Eng., 20: 157-169.
    Kee N.G., Kwong K.F., Bholah A., et al., 2002. Nitrogen and phosphorus transport by surface runoff from a silty clay loam soil under sugarcane in the humidtropical environment of Mauritius[J]. Agri. Ecos.Enviro., 91: 147-157.
    
    Kumar R., Ambasht R.S., Srivastava A., et al., 1997. Reduction of nitrogen losses through erosion by Leonotis nepetaefolia and Sida acuta in simulated rain intensities[J]. Ecol. Eng., 8(3): 233-239.
    
    Kuo S., Barker A.S., 1982. The effect of soil drainage on phosphorus status and availability to corn in long-term manure-amended soils[J]. Soil Sci.Soc.Am.J, 46: 744-747.
    
    Lesage E., Rousseau D.P.L., Meers E., et al., 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. of the Total Environ., 380: 102-115.
    Li C.F., Cao C.G., Wang J.P., et al., 2008. Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J]. Plant and Soil, 307: 207-217.
    Liu M.Q., Chen X.Y., Qin J.T., et al., 2008. A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields[J]. Appl. Soil Ecol., 40: 250-259.
    Lydia J.K., Jurg K., 2007. Engineered ecosystem for sustainable on-site wastewater treatment[J]. Wat. Res., 41: 1823-1831.
    Lemann H., Arth I., Liesack W., 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores[J]. Appl. Environ. Microb., 66: 754-762.
    Li C.L., Hao X.Y., Zhao M.L., et al., 2008. Influence of historic sheep grazing on vegetation, and soil properties of a Desert Steppe in Inner Mongolia[J]. Agric. Ecosyst. Environ., 128: 109-116.
    Liu J.T., Qiu C.Q., Xiao B.D., et al., 2000. The role of plants in channel-dyke and field irrigation systems for domestic wastewater treatment in an integrated eco-engineering system[J]. Ecol. Eng., 16: 235-241.
    
    Luederritz V., Eckert E., Martina L. W., et al., 2001. Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands[J]. Ecol. Eng., 18: 157-171.
    
    Mathieu O., He'nault C.,Le've^que J., et al., 2006. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using ~(15)N tracers[J]. Environ. Pollu., 144: 933-940.
    
    Martin E.T.,1997. Controlled-release and stabilized fertilizers in agriculture[M]. Paris: International fertilizer industry association.
    Mathieu O., Le've^que J., He'nault C.,et al., 2006. Emissions and spatial variability of N_2O, N_2 and nitrous oxide mole fraction at the field scale, revealed with ~(15)N isotopic techniques[J]. Soil Biology Biochemistry, 38: 941-951.
    Marco A.B., Eliseo C.,Steve T., et al., 2004. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico[J]. Ecol. Eng., 23: 299-311.
    Marumoto T., 1984. Mineralization of C and N from microbial biomass in paddy soil[J]. Plant and Soil, 76: 165-173.
    Matthias H., 2006. Biodiversity and nutrition in rice-based aquatic ecosystems [J]. Journal of Food Composition and Analysis, 19: 747-751.
    
    Meals D.W., Cassell E.A., Hughell, D., et al., 2008. Dynamic spatially explicit mass-balance modeling for targeted watershed phosphorus management I. Model development[J]. Agric. Ecosyst. Environ., 127: 189-200.
    Mikkelsen D.S., Dedatta S.K., 1979. Ammonia volatilization from wetland rice soils.In: International Rice Research Institute. ed. Nitrogen and Rice[J]. Manila Philippines, 3: 135-156.
    Minh N.N., Stefan D., JOrn K., 2009. Simulation of retention and transport of copper, lead and zinc in a paddy soil of the Red River Delta, Vietnam[J]. Agric. Ecosyst. Environ., 129: 8-16.
    Nakayama N., Asakawa S., Kimura M., 2008. Frequency of phage-infected bacterial cells in the floodwater of a Japanese paddy field[J]. Soil Biol. Biochem., 23: 1-6.
    Nash D.M., Halliwell D.J.,1999. Fertiliser and phosphorus loss from productive grazing systems[J]. Aust.J.Soil Res., 37(3): 403-429.
    
    Nkrumah M., Griffith S.M., Ahmad N., 1989. Lysimeter and field studies on ~(15)N in a tropical soil. II .Transformation of (NH_2)_2CO-~(15)N in tropical loam in lysimeter and field plots[J]. Plant and Soil, 114:13-18.
    
    Novotny V., Chesters G. 1981. Handbook of nonpoint pollution:source and manangement[M]. Van nostrand reinhold company, 16:384-387.
    
    Ocio S.B., Alonso-Gaite A., Alvarez-Benedi J., 2005. Characterization of nitrogen transformations, sorption and volatilization processes in urea fertilized soils[J]. Vadose Zone J., 4 (2): 329-336.
    
    Olness A.E., Smith S.J., Rhoades E.D., et al., 2005. Nutrient and sediment discharge from agricultural watersheds in Oklahoma[J]. J Environ. Qual., 4(2): 331-336.
    Pan G.X., Smith P., Pan W.N., 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agric. Ecosyst. Environ., 129: 344-348.
     Przepi'orski J., 2006. Enhanced adsorption of phenol from water by ammonia-treated activated carbon[J]. J. Hazardous Materials, B135: 453-456.
    Pardo L.H., Hemond H.F., Montoya J.P., et al., 2007. Natural abundance ~(15)N in soil and litter across a nitrate-output gradient in New Hampshire[J]. Forest Ecology and Management, 251:217-230.
    Pote D.H., Daniel T.C., Nichols D.J., et al., 1999. Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff[J].J Environ. Qual., 28(1):170-175.
    Putthacharoen S., Howeler R.H., Jantawat S., et al., 1998. Nutrient uptake and soil erosion losses in cassava and six other crops in a Psamment in eastern Thailand [J]. Field Crops Research, 57(1): 113-126.
    Rains K.C., Bledsoe C.S., 2007. Rapid uptake of ~(15)N-ammonium and glycine-~(13)C, ~(15)N by arbuscular and ericoid mycorrhizal plants native to a Northern California coastal pygmy forest [J]. Soil Biolo. Biochem., 39: 1078-1086.
    Ramos M.C., Martne Z., Casasnovas J.A., 2004. Nutrient losses from a vineyard soil in northeastern Spain caused by an extraordinary rainfall event[J]. Biol. Fertil. Soils, 5: 79-90.
    
    Revsbech N.P., Pedersen O., Reichardt W., et al., 1999. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions[J]. Biol. Fertil. Soils, 29: 379-385.
    Risto K.R., Patrick W.H.J., Vaio N., 2000. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil[J]. Soil Biol. Biochem., 7: 87-94.
    Rodriguez, S.B., Alonso-Gaite, A., Alvarez-Benedi, J., 2005. Characterization of nitrogen transformations, sorption and volatilization processes in urea fertilized soils [J]. Vadose Zone J., 4 (2): 329-336.
    Russow R., Spott O., Stange C.F., 2008. Evaluation of nitrate and ammonium as sources of NO and N_2O emissions from black earth soils (Haplic Chernozem) based on ~(15)N field experiments[J]. Soil Biolo. Biochem., 40:380-391.
    Saggar S., Tate K.R., Giltrap D.L., et al., 2008. Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review[J]. Plant and Soil, 309: 25-42.
    
    Shakir K., Ghoneimy H.F., Elkafrawy A.F., et al., 2008. Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite[J]. J. Hazardous Materials, 150: 765-773.
    Sims J.T., Simard R.R, Haygarth P.M., 2000. Potential for preferential pathways of phosphorus transport[J]. J. Environ. Qual., 29: 97-105.
    Sparks D.L., Page A.L., Helmke P.A., et al., 1996. Methods of soil analysis: part 3, Chemical methods Madison[M]. WI: Soil Science Society of America, Washington.
    Schindler F.M., Borum J., Hygard M., 1974. Nutrient control of algal growth in estuarine waters:Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae[J]. Mar. Ecol. Prog. Ser., 142: 261-272.
    Schindler F.M., Borum J., Hygard M., 1977. Nitrification potential and urease activity in a mineral subsoil[J]. Soil Biol. Biochem., 30: 1333-1341.
    Shelley P.E., Driscoll E.D., Sartor J.D., 1987. Probabilistic characterization of pollutant discharges from highway stormwater runoff[J].Sci of the Total Envir., 59(3):401-410.
    Sharpley A.N., 1992. Dependence of runoff phosphorus on extractable soil phosphorus[J]. J Environ. Qual., 24(5): 920-926.
    
    Sharpley A.N., Smith S.J., Jones O.R., 1992. The transportation of bioavailable phosphorous in agriculture in runoff [J]. J. Environ. Qual., 21: 30-35.
    
    Sharpley A.N., Withers P.J.A., 1994. The environmentally-sound management of agriculture phosphorus. Fert. Res., 39: 133-146.
    Shigeru T., Shigeru U., Shinichi O., 2003. Short-and long-term effects of rice straw application on nitrogen uptake by crops and nitrogen mineralization under flooded and upland conditions[J]. Plant and Soil, 251:291-301.
    Sims J.T., Simard R.R., Haygarth P.M., 2000. Potential for preferential pathways of phosphorus transport. J. Environ. Qual., 29, 97-105.
    
    Silburn D.M., Glandville S.F., 2002. Management practices for control of runoff losses from cotton furrows under storm rainfall[J]. Aust. J. Soil Res., 40: 1-20.
    
    Singh M., Bhattacharya A.K., Nair T.V.R., 2002. Nitrogen loss through subsurface drainage effluent in coastal rice field from India[J]. Agri. Water Manag.. 52: 249-260.
    
    Smith K.A., Jackson D.R., Pepper T.J., 2001. Nutrient Losses by Surface Run-off Following the Application of Organic Manures to Arable Land.1.Nitrogen[J]. Environ. Pollut., 112: 41-51.
    
    Stijn W., Kris P., Pascal B., et al., 2003. Identification and quantification of nitrogen removalin a rotating biological contactor by ~(15)N tracer techniques[J]. Water Research, 37: 1252-1259.
    
    Tesch C.,Carlson R., 2003. Assessment of WaterQuality in the Sunnyside Area, Washington County, Idaho. ISDA Technical Results Summary, 19: 1-14.
    
    Tian M., Merckx R., Vlassak K., 1996. Influence of carbon availability on the production of NO, N_2O, N_2 and CO_2 by soil cores during anaerobic incubation[J]. Plant and Soil, 181, 145-151.
    
    Trehan R.,Ttinga J., Christoph M., 2007. ~(15)N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils[J]. Soil Biol. Biochem., 39,2351-2361.
    
    Torbert H.A., Prior S.A., Rogers H.H., 1996. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality[J]. J. Environ, Qual., 25(4): 720-726.
    
    Turtola H.S., Rowell D.L., Simth J., 1995. Transformations of nitrogen-15-labelled urea in a flooded soil as affected by floodwater algae and green manure in a growth chamber[J]. Biol. Fertil. Soils, 31 :53-59.
    
    Turner D.A., Chen D., Galbally I.E., et al., 2008. Spatial variability of nitrous oxide emissions from an Australian irrigated dairy pasture[J]. Plant and Soil, 309,77-88.
    
    Vymazal J., Cooper P. F., Chesters G.,1998. Constructed wetlands for wastewater treatment in Europe. Leiden:Backuya publishers.
    
    Walters D.T., Malzer G.L., 1990. Nitrogen management and nitrification inhibitor effects on nitrogen-15 urea: Nitrogen leaching and balance[J]. Soil Sci, Soc. Am,J., 54: 112-130.
    
    Wang H., Mason J.A., Balsam W.L., 2006. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess[J]. Geoderma. 136: 388-400.
    
    Wang K., Zhang Z.J., Zhu Y.M., et al., 2001. Surface water phosphorus dynamics in rice fields receiving fertilizer and manure phosphorus [J]. Chemosphere, 42: 209-214.
    
    Wang J.Y., Wang S.J.,Chen Y., 1994. Study on leaching loss of nitrogen in ricefield by using large undisturded monolish lysimenters[J]. Pedosphere, 4(1): 87-92.
    
    Web J., Henderson D., Anthony S.G., 2001. Optimizing livestock manure applications to reduce nitrate and ammonia pollution: scenario analysis using the MANNER model[J]. Soil Use and Management, 17: 188-194.
    Xie X.J.,Ran W.,Shen Q.R.,et al.,2004.Field studies on 32P movement and P leaching from flooded paddy soils in the region of Taihu Lake,China.Environmental Geochemistry and Health,26(2/3):237-243.
    Yang Y.,Zhang H.C.,Hu X.J.,et al.,2006.Characteristics of growth and yield formation of rice in rice-fish farming system[J].Sci.Agric.Sinica.,2:103-110.
    Zhang H.C.,Cao Z.H.,Wang G.P.,2003.Winter runoff losses of phosphorus from paddy soils in the Taihu lake region of south China[J].Chemosphere,52:1461-1466.
    Zhang H.C.,Cao Z.H.,Shen Q.R.,et al.,2003.Effect of phosphorus fertilizer application on phosphorus(P)losses from paddy soils in Taihu Lake region[J].Chemosphere,50:695-701.
    Zhang J.G.,2000.Rice-wheat cropping system in China[M].In:Hobbs,P.R.,Gupta,R.K.(Eds.),Soil and Crop Management Practices for Enhanced Productivity of the Rice-Wheat Cropping System in the Sichuan Province of China.Rice-Wheat Consortium Paper Series 9.Rice-Wheat Consortium for the Indo-Gangetic Plains,New Delhi,1-10.
    Zhang Z.J.,Zhu Y.M.,Cheng J,et al.,2002.Phosphorus export from a paddy rice field during flood events[J].Soil Use Manage,18:316-323.
    Zhang Z.J.,Zhu Y.M.,Guo P.Y.,et al.,2004.Potential loss of phosphorus a rice field in Taihu Lake basin[J].J.Environ.Qual.,33:1403-1412.
    Zhu J.G.,Liu G.,Han Y.,et al.,2003.Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation[J].Chemosphere,50:725-732.
    Zuo Q.,Lu C.A.,Zhang W.L.,2003.Preliminary study of phosphorus runoff and drainage from a paddy field in the Taihu Basin[J].Chemosphere,50:689-694.
    白永刚,吴浩汀,2005.太湖地区农村生活污水处理技术初探[J].电力环境保护,21(2):44-45,61.
    曹志洪,林先贵,2006.太湖流域土-水间的物质交换与水环境质量[M].北京:科学出版社.
    曹志洪,林先贵,杨林章,等,2005.论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征[J].土壤学报,42(5):799-804.
    曹志洪,林先贵,杨林章,等,2006.论“稻田圈”在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义[J].土壤学报,43(2):256-260.
    陈荷生,2001.太湖生态修复治理工程[J].长江流域资源与环境,10(2):173-178.
    陈欣,范兴海,李东,2000.丘陵坡地地表径流中磷的形态及其影响因素[J].中国环境科学,20(3):284-288.
    陈文亮,唐克丽,2000.SR型野外人工模拟降雨装置[J].水土保持研究,7(4):106-110.
    陈兴华,王方成,杨树果,等,2008.应用人工湿地“稻田系统”处理北部高寒地区小城镇综合污水[J].20(1):77-80.
    陈子元,曹亚澄,1983.核技术及其在农业中的应用[M].北京:科学出版社.
    程文娟,史静,夏运生,等,2008.滇池流域农田土壤氮磷流失分析研究[J].水土保持学报,22(5):52-55.
    樊小林,王成,葛玉斌,等,1998.控释肥料与平衡施肥和提高肥料利用率[J].植物营养与肥料学报,4(3):219-223.
    冯伟,吴新民,潘根兴,等,2008.皖江湿地及其开垦为稻田后土壤种子库结构比较[J].生态学杂志,27(6):874-879.
    封幸兵,李佛琳,杨跃,等,2005.以~(15)N研究烤烟对饼肥和秸秆肥中氮素的吸收与分配[J].华中农业大学,24(6):604-609.
    冯忠民,1998.浙江省节水技术与农业可持续发展的探讨.见:程家安,周伟军主编.跨世纪农业发展研究.北京:中国环境科学出版社.
    冯忠民,陈江斌,2003.我国七大江河洪水资源化途径的探讨.见:水利部防洪抗旱减灾工程技术研究中心编.2002防洪抗旱减灾进展.郑州:黄河水利出版社.
    冯忠民,张兴平,吕芳,等,2005.水稻田在农业环境保护中的特殊功能[J].中国稻米,2:5-6.
    符建荣,2001.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报,7(2):145-152.
    傅涛,倪九派,魏朝富,2003.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,9(1):71-74.
    高超,张桃林,庄玉荣,等,2002.1980年以来我国氮素管理的现状与问题[J].南京大学学报(自然科学版),38(5):716-721.
    高超,朱继业,朱建国,等,2005.极端降水事件对农业非点源污染物迁移的影响[J].地理学报,60(6): 991-997.
    高效江,胡雪峰,王少平,等,2001.淹水稻田中氮素损失及其对水环境影响的试验研究[J].农业环境保护,20(4):196-198,205.
    龚琴红,田光明,2004.垂直流湿地对生活污水中磷的去除效果研究[J].农业环境科学学报,23(6):1046-1049.
    巩万合,顾培,沈仁芳,2007.长江三角洲地区竹林经营中的氮磷流失负荷概算[J].土壤,39(6):874-878.
    龚子同,陈鸿昭,张甘霖,等,2007.保护耕地:问题、症结和途径——谈我国1.2亿公顷耕地的警戒[J].生态环境,16(5):1570-1573.
    贺缠生,傅伯杰,陈利顶,1998.非点源污染的管理及控制[J].环境科学,19(5):87-91.
    何绪生,张广平,吴思远,等,1998.控效肥料的研究进展[J].植物营养与肥料学报,4(2):97-106.
    韩晓增,王守宇,宋春雨,等,2003.黑土区水田化肥氮去向的研究[J].应用生态学报,14(11):1859-1862.
    黄见良,邹应斌,彭少兵,Buresh R J.,2004.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,10(6):579-584.
    黄晶晶,林超文,陈一兵,等,2006.中国农业面源污染的现状及对策[J].安徽农业通报,12(12):47-48.
    黄进宝,范晓晖,张绍林,等,2007.太湖地区黄泥土壤水稻氮素利用与经济生态适宜施氮量[J].生态学报,27(2):588-595.
    黄瑛,黄梅,童泽霞,等,2003.湿地农业生态系统农药的零星输入的生态效益分析[J].湖南农业科学,186(3):45-46.
    黄丽,张光远,丁树文,1999.侵蚀紫色土壤颗粒流失研究[J].水土保持学报,5(1):35-39.
    黄满湘,章申,唐以剑,2001.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,10(2):6-10.
    黄满湘,章申,2003.应用大型原状土柱渗漏计测定冬小麦—夏玉米轮作期硝态氮淋失[J].环境科学学报,23(1):11-16.
    黄满湘,张国梁,张秀梅,等,2003.官厅流域农田地表径流磷流失初探[J].生态环境,12(2):139-144.
    黄沈发,沈根祥,唐浩,等,2005.上海郊区稻田氮素流失研究[J].环境污染与防治,27(9):651-654.
    黄树辉,蒋文伟,吕军,等,2005.氮肥和磷肥对稻田N_2O排放的影响[J].中国环境科学,25(5):540-543.
    纪雄辉,郑圣先,鲁艳红,等,2007.控释氮肥对洞庭湖区双季稻田表面水氮素动态及其径流损失的影响[J].应用生态学报,18(7):1432-1440.
    金洁,杨京平,施洪鑫,等,2005.水稻田面水中氮磷素的动态特征研究[J].农业环境科学学报,24(2):351-367.
    焦少俊,胡夏民,潘根兴,等,2007.施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J].生态学杂志,26(4):495-500.
    乐小芳,2004.我国农村生活方式对农村环境的影响分析[J].农业环境与发展,4:42-45.
    李华,2007.主要生物因子与稻田氮、磷转化及流失的关系研究[D].浙江大学博士学位论文.
    李佩武,姚玉君,1994.于桥水库以上流域地形、坡度与N、P输出的关系初探[J].天津师大学报(自然版),14(4):50-54.
    李佩武,1994.降雨径流过程中氮磷输出趋势分析[J].天津农业科学,12(1):1-10.
    李如忠,洪天求,2006.巢湖流域农业非点源污染控制对策研究[J].合肥工业大学学报(社会科学版),20(1):105-109.
    李裕元,邵明安,2002.模拟降雨条件下施肥方法对坡面磷素流失的影响[J].应用生态学报,13(11):1421-1424.
    李荣刚,2000.高产农田氮素肥效与调控途径——以江苏太湖稻麦两熟农区为例推及全省[D].中国农业大学博士学位论文.
    李荣刚,夏源陵,吴安之,2001.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,29(2):21-25.
    梁涛,张秀梅,章申,2002.西苕溪流域不同土地类型氮元素输移过程[J].地理学报,57(4):389-396.
    梁新强,陈英旭,李华,等,2006.雨强及施肥降雨间隔对油菜田氮素径流流失的影响[J].水土保持学报,20(6):14-16.
    梁新强,田光明,李华,2005.天然降雨条件下水稻田氮磷径流流失特征研究[J].水土保持学报,19(1):59-63.
    凌启鸿,2004.论水稻生产在我国南方经济发达地区可持续发展中的不可替代作用.中国稻米,1:5-8.
    刘德林,聂军,肖剑,2002.~(15)N标记水稻控释氮肥对提高氮素利用效率的研究[J].激光生物学报,11(2):87-92.
    刘立军,徐伟,桑大志,等,2006.实地氮肥管理提高水稻氮肥利用效率[J].作物学报,32(7):987-994.
    刘惠,赵平,林永标,等,2006.华南丘陵地区农林复合生态系统晚稻田甲烷和氧化亚氮排放[J].14(4):269-274.
    刘强,荣湘民,朱红梅,等,2001.不同水稻品种在不同栽培条件下氮代谢的差异[J].湖南农业大学学报(自然科学版),27(6):415-419.
    鲁如坤,张汀平,曹志洪,等,1982.农业化学手册[M].北京:科学出版社.
    鲁如坤主编,1999.土壤农业化学分析方法[M].北京:中国农业科技出版社.
    罗良国,闻大中,沈善敏,2000.北方稻田生态系统养分渗漏规律研究[J].中国农业科学,33(2):68-74.
    马保国,杨太新,郭凤台,等,2005.麦稻轮作体系中磷素平衡的研究[J].农业环境科学学报,24(2):371-374.
    马立珊,钱敏仁,王刚平,等,1988.太湖流域水环境硝态氮和亚硝态氮污染的研究[J].环境科学,8(2):60-65.
    马立珊,王祖强,张水铭,等,1997.苏南太湖水系农业面源污染及控制对策研究[J].环境科学学报,17(1),39-47.
    马琨,王兆骞,陈欣,2002.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报,16(3):16-19.
    满苏尔.沙比提,王雯静,2007.新疆湿地资源时空变化特征及其保护[J].水资源保护,23(6):84-88.
    彭琳,王继增,卢宗藩,1994.黄土高原旱作土壤养分剖面运行与坡面流失的研究[J].西北农业学报,3(1):62-66.
    单保庆,尹澄清,于静,2001。降雨.径流过程中土壤表层磷迁移过程的模拟研究.环境科学学报,21(1):7-12.
    单保庆,尹澄清,白颖,2000.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,20(1):33-37.
    盛海君,夏小燕,杨丽琴,等,2004.施磷对土壤速效磷含量及径流磷组成的影响[J].24(12):2837-2840.
    盛学良,舒金华,彭补拙,等,2002.江苏省太湖流域总氮、总磷排放标准研究[J].地理科学,22(4):449-452.
    司友斌,王慎强,陈怀满,2000.农田氮磷的流失与水体富营养化[J].土壤,4:188-193.
    史龙新,李向阳,王宁,等,2006.太湖地区农村面源污染控制技术与对策[J].中国水利,17:11-14.
    水和废水组写组,2003.水和废水监测分析法(第四版)[M].北京:中国环境科学出版社.
    宋勇生,范晓晖,2003.太湖地区稻田氮肥吸收及其利用的研究[J].应用生态学报,14(11):2081-2083.
    宋勇生,范晓晖,林德喜,等,2004.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,41(2):265-269.
    孙海国,雷烷群,1998.植物残体对土壤结构性状的影响仁[J].生态农业研究,6(3):39-42.
    孙彭立,王晓军,张方云,等,1995.氮素化肥的环境污染[J].环境污染与防治,17(1):38-41.
    孙亚兵,冯景伟,田园春,等,2006.自动增氧型潜流人工湿地处理农村生活污水的研究[J].环境科学学报,26(3):404-408.
    谭周进,周卫军,张杨珠,等,2007.不同施肥制度对稻田土壤微生物的影响研究[J].植物营养与肥料学报,13(3):430-435.
    田平,陈英旭,田光明,等,2006.杭嘉湖地区淹水稻田氮素径流流失负荷估算[J].应用生态学报,17(10):1911-1917.
    田玉华,尹斌,贺发云,等,2007.太湖地区稻季的氮素径流损失研究[J].土壤学报,44(6):1070-1075.
    田玉华,尹斌,贺发云,等,2009.太湖地区水稻季氮肥的作物回收和损失研究[J].植物营养与肥料学报,15(1):55-61.
    童泽橄,鲁昆成,2005.水稻为主的湿地治污绿色生态工程初论[J].环境科学动态,3:41-43.
    王波,陈海霞,刘金根,等,2008.稻田人工湿地处理畜禽粪便能力研究[J].江苏农业科学,2:206-209.
    王德荣,张平,徐文兵,等,2001.水资源与农业可持续发展[M].北京:北京出版社.
    王珂,1997.应用污染模型和地理信息系统评价和管理农业面院污染[J].环境污染与防治,19(6):30-33.
    王建勋,1999.生态环境中的畜牧业污染问题[J].新疆环境保护,21(3):56-58.
    王鹏,徐爱兰,2008.太湖流域典型圩区农田氮素地表径流迁移特征[J].农业环境科学学报,27(4):1335-1339.
    王岩,徐阳春,沈其荣,2002.有机、无机肥料~(15)N在土壤不同粒级中的分布及其生物有效性[J].土壤通报,33(6):410-413.
    王晓玲,2004.自然湿地辟为稻田价值评估[J].吉林师范大学学报(自然科学版),湿地科学,3:22-24.
    邬伦,李佩武,1996.降雨-产流过程与氮磷流失特征研究[J].环境科学学报,16(1):111-116.
    吴献花,侯长定,王林,等,2002.人工湿地处理污水的机理[J].玉溪师范学院学报,18(1):103-105.
    吴振斌,陈辉蓉,等,2001.人工湿地系统对污水磷的净化效果[J].水生生物学报,25(1):56-62.
    谢红梅,朱波,2003.农田非点源氮污染研究进展[J].生态环境,12(3):349-352.
    夏光,2006.2005年中国环境报告[J].开放导报,1:20-25.
    聂光明,张平,王刚,等,1980.应用~(15)N标记法对氮肥的吸收固定与损失规律及氮肥增效剂效果的研究[J].土壤肥料,(3):27-30.
    夏立忠,杨林章,2003.太湖流域非点源污染研究与控制[J].长江流域资源与环境,12(1):45-49.
    邢光熹,曹亚澄,施书莲,等,2001.太湖地区水体氮的污染源和反硝化[J].中国科学,31(2):130-137.
    徐爱兰,王鹏,2008.太湖流域典型圩区农田磷素随地表径流迁移特征[J].农业环境科学学报,27(3):1106-1111.
    徐琪,杨林章,董元华,等,1998.中国稻田生态系统[M].北京:中国农业出版社.
    徐晓荣,李恒辉,陈良,2000.利用~(15)N研究氮肥对土壤及植物内硝酸盐的影响[J].核农学报,14(5):301-304.
    晏娟,沈其荣,尹斌,等,2009.应用~(15)N示踪技术研究水稻对氮肥的吸收和分配[J].核农学报,23(3):487-491.
    晏维金,尹澄清,孙濮,等,1999.磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,10(3):312-316.
    杨富亿,李秀军,王志春,等,2003.盐碱化湿地稻—鱼复合生态系统微生物特征[J].1(2):105-110.
    杨俊,龚琴红,2007.人工湿地在我国农村生活污水治理中的应用[J].农业环境与发展,2:71-74.
    杨林章,王德建,夏立忠,2004.太湖地区农业面源污染特征及控制途径[J].中国水利,20:29-30.
    杨雅杰,2003.应用~(15)N-尿素研究硅对水稻吸收肥料氮的影响[J].黑龙江农业科学,(3):15-16.
    杨延兵,高荣岐,尹燕枰,等,2008.不同品质小麦氮素分配及利用率的~(15)N示踪研究[J].麦类作物学报,28(5):830-835.
    姚敏和崔保山,2006.哈尼梯田湿地生态系统的垂直特征[J].生态学报,26(7):2115-2124.
    雍太文,杨文钰,任万军,等,2009.“小麦/玉米/大豆”套作体系中不同作物间的相互作用及氮素的转移、吸收[J].核农学报,23(2):320-326.
    袁东海,王兆骞,陈欣,2003.不同农作方式下红壤坡耕地土壤磷素流失特征[J].应用生态学报,14(10):1661-1664.
    于兴修,杨桂山,梁涛,2002.西苕溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护,21(5):424-427.
    章明奎,方利平,2005.河岸水稻缓冲带宽度对排水中氮磷流失的影响[J].水土保持学报,19(4):10-13.
    赵建宁,沈其荣,冉炜,2005.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失[J].农村生态环境,21(3):29-33
    赵铮红,潘毅,2001.浙江省农村生态环境现状与保护对策[J].能源工程,6:24-27.
    中国科学院南京土壤研究所,1980.土壤理化分析[M].上海:上海科学技术出版社.
    张恩苏,吴建富,刘经荣,等,2001.应用~(15)N对棉田生态系统中氮素的吸收利用和去向的研究[J].江西农业大学学报,23(1):57-61.
    张福珠,熊先哲,戴同顺,1984.应用~(15)N研究土壤-植物系统中氮素淋失动态[J].环境科学,5(1):21-24。
    张国梁,章申,1998.农田氮素淋失研究进展[J].土壤,6:291-297.
    张甘霖,2001.皖南丘陵地区小流域氮素径流输出动态变化[J].农村生态环境,17(3):1-4.
    张刚,王德建,陈效民,2008.稻田化肥减量施用的环境效应[J].中国生态农业学报,16(2):327-330.
    张焕朝,张红爱,曹志洪,2004.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J].南京林业大学学报(自然科学版),28(5):6-10.
    张巍,王学军,江耀慈,等,2001.太湖零点行动前后水质状况对比分析[J].农村生态环境,17(1):44-47.
    张维理,徐爱国,冀宏杰,等,2004.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,37(7):1026-1033.
    张兴昌,邵明安,2000.黄土丘陵区小流域土壤氮素流失规律[J].地理学报,55(5):617-626.
    张瑜芳,张蔚秦,沈荣开,1996.排水农田氮素运移、转化及流失规律的研究[J].水动力学研究与进展,11(3):251-260.
    张志剑,2001.水田土壤磷素流失的数量潜能及控制途径的研究[D].浙江大学博士学位论文.
    张志剑,董亮,2001.水稻田面水氮素的动态特征、模式表征及排水流失研究[J].环境科学学报,21(4):475-480.
    张志剑,阮俊华,朱荫湄,2003.稻田层间流活性磷素的动态变化[J].环境科学,24(2):46-49.
    张志剑,王光火,王珂,等,2001.模拟水田的土壤磷素溶解特征及其流失机制[J].土壤学报,38(1):139-142.
    张志剑,王兆德,姚菊祥,等,2007.水文因素影响稻田氮磷流失的研究进展[J].生态环境,16(6):1789-1794.
    郑世宗,陈雪,张志剑,2005.水稻薄露灌溉对水体环境质量影响的研究[J].中国水利水电,3:7-11.
    邹长明,秦道珠,徐明岗,等,2002.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南京农业大学学报,25(4):6-10.
    周建斌,李生秀,陈竹君,等,2003.利用~(15)NO_3~-标记法研究土壤微生物量氮的化学及生物有效性[J].土壤学报,40(6):888-893.
    周健民,2000.中国农田生态系统养分平衡状况及管理对策[M].南京:河海大学出版社.
    周丕生,裴蓓,史益敏,等,2003.应用核素~(15)N研究郁金香氮素的累积与分配[J].上海交通大学学报 (农业科学版),21(4):309-312.
    周瑞庆,王长民,袁杰,等,1991.应用~(15)N示踪技术研究水稻对氮素的吸收利用[J].湖南农学院学报,17(4):665-669.
    朱荫湄,1995.河流湖泊的富营养化:肥料施用和环境[M].北京:中国科学技术出版社.
    朱有为,段丽丽,1998.浙江省畜牧业发展的生态环境问题及其控制对策[J].环境污染与防治,21(1):40-43.
    朱兆良,1992.农田生态系统中化肥氮的去向和氮素管理[M].南京:江苏科学技术出版社.
    朱兆良,孙波,杨林章,等,2005.我国农业面源污染的控制政策和措施[J].科技导报,23(4):47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700