用户名: 密码: 验证码:
西双版纳热带季节雨林、橡胶林及水稻田生态系统碳储量和土壤碳排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化对自然生态系统和人类社会的生存和发展产生极大影响,是科学家、社会公众和各国政府普遍关心的问题。因化石燃料的消耗和土地利用/覆盖变化而导致的大气CO2浓度升高是全球变暖的主要动因。土壤呼吸和植被碳储存对陆地生态系统中的碳循环具有重要影响,是全球变化研究中的重要内容。
     基于前期的生物量调查资料和野外实地调查,对西双版纳热带季节雨林、处于不同演替时期的热带次生林和不同年龄的橡胶林生物量中积累的碳进行了估算,定位样地中季节雨林生物量中碳储量为180.46 tC hm-2,7、15、22和40年橡胶林碳储量分别为18.36、75.36、169.75和362.18 tC hm-2,平均年积累碳速率为7.78 tC hm-2 a-1。
     1m深土层中土壤有机碳储量为:季节雨林80.1 tC hm-2,15年橡胶林144.3 tC hm-2,水稻土103.0 tC hm-2。
     季节雨林土壤呼吸日变化不明显,但呈现明显的季节变化,与水热条件和植物生长季相密切相关。土壤、土壤+凋落物、土壤+凋落物+幼苗处理的CO2年排放量分别为9.5、12.7和14.6tC hm-2 a-1,Q10分别为2.03、2.36和2.08。橡胶林土壤呼吸也表现出明显的季节变化,但由于人为施肥、除草、松土管理等因素的影响,与温度、水分的相关性不甚明显, CO2年排放量约为10.97 tC hm-2 a-1,Q10为1.65-1.86。
     稻田土壤呼吸和生态系统呼吸日变化明显,在淹水的生长季节,生态系统呼吸、土壤呼吸分别与稻田淹水深度呈显著负相关。土壤含水量较低的水稻种植前休闲季节,土壤呼吸与土壤含水量呈正相关。水稻收割后的休闲季节,土壤含水量较高,土壤呼吸主要受温度影响,Q10为2.46-3.67。稻田生态系统在常规施肥条件下土壤呼吸CO2年排放量为6.37 tC hm-2 a-1,NEE为2.24 tC hm-2 a-1,为一碳汇。
     用涡度相关法研究的结果表明,季节雨林NEE呈现明显的日变化、季节变化和年际变化,西双版纳特殊的气候环境及与之相适应的物候变化,吸收CO2的植物光合作用与排放CO2的植物呼吸、土壤呼吸、凋落物及细根分解过程,它们之间的相互联系和消长,共同决定了西双版纳热带季节雨林的NEE变化格局。2003-2006年的结果表明西双版纳热带季节雨林是一弱的碳汇(1.1872 tC hm-2 a-1),并存在季节变化,在4-8月的雨季为碳源,在其他季节则为碳汇。
Global change, with great impacts on natural ecosystems and human society, is a great concern of scientists, common people and governments around the world. The increasing CO2 concentration in atmosphere, induced from fossil fuel burning and land use/land cover change, is one of the main factors related to global warming. The research on soil respiration and carbon sequestration in vegetation is important for understanding carbon cycle in terrestrial ecosystem.
     Based on the biomass data from previous studies and the dada collected in this study, we estimated the carbon stock in the biomass of tropical seasonal rain forests, secondary forests and rubber tree plantation of different age. The carbon stock in the biomass of tropical seasonal rain forest was 180.46 tC hm-2,and that of rubber tree plantation at the age of 7, 15, 22 and 40-year-old was 18.36, 75.36, 169.75 and 362.18 tC hm-2, respectively. The mean carbon increase rate of rubber tree plantation was 7.78 tC hm-2 a-1.
     The carbon stock in the soil at the depth of 1m of tropical seasonal rain forest, 15-year-old rubber tree plantation and paddy soil was 80.1, 144.3 and 103.0 tC hm-2, respectively.
     The diurnal change of soil respiration rate of tropical seasonal rain forest was small, but the seasonal change was great, in relation to temperature, soil moisture and plant phenology. The annual CO2 emission from soil, soil with litter, and soil with litter & seedlings treatment was 9.5, 12.7 and 14.6 tC hm-2 a-1,respectively. Q10 value was 2.03, 2.36 and 2.08, respectively.
     The soil respiration rate of rubber tree plantation changed seasonally, with no close relationship to temperature and soil moisture. The annual CO2 emission from soil was 10.97 tC hm-2 a-1. Q10 was 1.65 to 1.86.
     The diurnal change of soil respiration rate and rice ecosystem respiration rate were obvious. In growing season, soil respiration rate and rice ecosystem respiration rate related negatively to depth of water. In the relative dry period before rice transplanting, soil respiration rate related positively to soil moisture. In the wet period after rice harvest, soil respiration rate was mainly affected by temperature. Q10 was 2.46 to 3.67. The annual CO2 emission from rice ecosystem with normal nitrogen fertilizer dosage was 6.37 tC hm-2 a-1. NEE was 2.24 tC hm-2 a-1. This rice ecosystem served as a carbon sink.
     We studied carbon flux in tropical seasonal rain forest by eddy covariance technique. NEE changed obviously at diurnal, seasonal and inter-annual scale. The temporal change of NEE was shaped by local specific climate and related plant phenology, balance between photosynthesis and plant respiration, soil respiration, litter decomposition, fine root decomposition. The result showed that the tropical seasonal rain forest in Xishuangbanna was a carbon sink from 2003 to 2006, and changed seasonally, as a carbon source in wet season (from April to August), a carbon sink in other seasons.
引文
蔡祖聪,1997。氮肥施用与大气甲烷循环。见:黄昌勇,谢正苗,徐建明主编,土壤化学研究与应用。北京:环境科学出版社
    蔡祖聪,Arivn R M, 1999。土壤水分状况对CH4氧化、N2O和CO2排放的影响,土壤, 289-294, 298
    窦军霞,张一平,马友鑫等,2002。热带季节雨林林窗区域土壤-植物-大气连续体热力效应初步分析,环境科学,23(6):91-96
    窦军霞,张一平,于贵瑞,赵双菊,宋清,2007。西双版纳热带季节雨林水热通量,生态学报,27(8):3099-3109
    方精云,陈安平,2001。中国树林植被的动态变化及其意义。植物学报,43: 967
    房秋兰,沙丽清,2005a。西双版纳季节雨林细根周转的研究,山地学报,23(4):488-494
    房秋兰,沙丽清,2005b。西双版纳橡胶林细根生物量及周转的研究,中南林学院学报,25(5):40-44
    房秋兰,沙丽清,2006。西双版纳热带季节雨林与橡胶林土壤呼吸研究,植物生态学报,30(1):97-103
    冯耀宗著,2007。人工群落,昆明:云南科技出版社
    冯志立,唐建维,郑征,宋启示,曹敏,张建侯,解继武,1999。西双版纳热带次生林演替初期山黄麻先锋群落生物量动态,生态学杂志,18(5):1-6
    冯志立,郑征,张建侯,曹敏,沙丽清,邓继武,1998。西双版纳热带湿性季节雨林生物量及其分配规律研究,植物生态学报,22(6):481-488
    黄耀,2003。地气系统碳氮交换——从实验到模型,北京:气象出版社
    贾开心、郑征、张一平,2006。西双版纳橡胶林生物量随海拔梯度的变化,生态学杂志,25 (9):1028~1032
    蒋菊生,王如松,2002。橡胶林固定CO2和释放O2的服务功能及其价值估计,生态学报, 22(9):1545-1551
    李明锐,沙丽清,2005。西双版纳不同土地利用方式下土壤中的氮净矿化和硝化作用研究,应用生态学报,16(1):54-58
    李闵,袁方,2008。橡胶林-绿色沙漠,中国国家地理,(40):60-79
    李意德,吴仲民,曾庆波,周光益,陈步峰,1998。尖峰岭热带山地雨林生态系统碳平衡的初步研究,生态学报,18(4):371-378
    刘光菘、蒋能惠、张连第、刘兆礼,1996。土壤理化分析与剖面描述,北京:中国标准出版社
    刘惠,赵平,王跃思,林永标,饶兴权,2006。华南丘陵区农林复合生态系统稻田二氧化碳排放及其影响因素,生态学杂志,25(5):471-476
    刘文杰,张克映,王昌命,李红梅,段文平,2001a。西双版纳热带雨林林冠层雾露形成的小气候特征研究,生态学报,21(3): 165-170
    刘文杰,张克映,张光明,李红梅,段文平,2001b。西双版纳热带雨林干季林冠雾露水资源效应研究,资源科学, 23(2): 75-80
    刘文杰,张一平,刘玉洪,段文平,2003a。热带季节雨林和人工橡胶林林冠截留雾水的比较研究,生态学报,23(11):2379-2386
    刘文杰,张一平,刘玉洪,李红梅,段文平,2003b。西双版纳热带季节雨林林冠穿透雾水的观测研究,植物生态学报,27(6):749-756
    刘文杰,张一平,李红梅,段文平,2004。西双版纳热带季节雨林内雾特征研究,植物生态学报,28(2):264-270
    刘文杰,李鹏菊,李红梅,张一平,段文平,2006。西双版纳热带季节雨林林冠截留雾水和土壤水的关系,生态学报,26(1):9-15
    全国土壤普查办公室,l998。中国土壤,北京:中国农业出版社
    沙丽清,邓继武,谢克金,孟盈,1998。西双版纳次生林火烧前后土壤养分变化的研究,植物生态学报,22(6):513-517
    沙丽清,孟盈,冯志立,郑征,曹敏,刘宏茂,2000。西双版纳不同热带森林下土壤氮矿化和硝化作用研究,植物生态学报,24(2):161-165
    沙丽清、郑征、冯志立、刘玉洪、刘文杰、孟盈、李明锐,2002。西双版纳热带季节雨林生态系氮的生物地球化学循环研究,植物生态学报,26(6):689-694
    沙丽清,郑征,唐建维,王迎红,张一平,曹敏,王锐,刘广仁,王跃思,孙扬,2004。西双版纳热带季节雨林土壤呼吸研究,中国科学D辑,34(增刊Ⅱ):167-174
    孙文娟,黄耀,陈书涛,邹建文,郑循华,2005。稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系。生态学报,25(50):1152-1158
    唐建维、张建侯、宋启示、曹敏、冯志立、党承林、吴兆录,1998。西双版纳热带次生林生物量的初步研究,植物生态学报,22:489-498
    唐建维、张建候、宋启示、黄自云、李自能、王利繁、曾荣,2003。西双版纳热带人工雨林生物量及净第一性生产力的研究,应用生态学报,14:1-6
    王吉涛,郭敏。版纳橡胶业“生物富州”的第一支柱,云南信息报,2008年3月1日,第4版
    王淼,姬兰柱,李秋荣,肖冬梅,刘海良,2005。长白山红松林树干呼吸研究,应用生态学报, 16(1):7-13
    王明星, 2001。中国稻田甲烷排放,北京:科学出版社
    王绍强,周成虎,李克让,朱松丽,黄方红,2000。中国土壤有机碳库及空间分布特征分析,地理学报, 55(5): 533-544
    王迎红,2005。陆地生态系统温室气体排放观测方法研究、应用及结果比对分析。中国科学院研究生院博士学位论文
    王跃思,刘广仁,王迎红,孙扬,薛敏,2003。一台气相色谱仪同时测定陆地生态系统CO2、CH4和N2O排放,环境污染治理技术与设备,4(10):84-90
    吴仲民,1997。尖峰岭热带森林土壤C储量和CO2排放量的初步研究,植物生态学报, 21(5): 416-423
    西双版纳自然保护区综合考察团,1987。西双版纳自然保护区综合考察报告集, 昆明:云南科技出版社
    严玉平,沙丽清,曹敏,2006。西双版纳三种树木树干呼吸日变化特征,山地学报,24(3):268-276
    杨光明、武文明、沙丽清,2007。西双版纳地区稻田CH4排放通量研究。25(4):461-468
    杨景成,2003。土地利用变化对西双版纳地区土壤及植被碳含量的影响。中国科学院研究生院博士学位论文
    杨景成,黄建辉,唐建维,潘庆民,韩兴国,2005。西双版纳农田弃耕后橡胶园的建立对碳的固存作用,植物生态学报, 29:296-303
    杨昕,王明星,2001。陆面碳循环研究中若干问题的评述,地球科学进展, 16: 427-435
    于贵瑞,牛栋,王秋凤,2001。《联合国气候变化框架公约》谈判中的焦点问题,资源科学,23(6):11-16
    于贵瑞主编,2003。全球变化与陆地生态系统碳循环和碳蓄积,北京:气象出版社
    云南省统计局,1998。云南省统计年鉴,北京:中国统计出版社
    云南省统计局,2004。云南省统计年鉴,北京:中国统计出版社
    张克映,1966。滇南气候的特征及其形成因子的初步分析,气象学报, 33(2): 210-230
    张雷明,于贵瑞,孙晓敏等,2006。中国东部森林样带典型生态系统碳收支的季节变化。中国科学D,36(增刊II):45-59
    张敏,2007。热带橡胶林种植对土壤有机碳组成和降解的影响机制。中国科学院研究生院博士学位论文
    张一平,王进欣,马友鑫,刘玉洪,李佑荣,2002。西双版纳热带次生林近地层温度时空分布特征,林业科学,38(6):1-5
    张一平,窦军霞,马友鑫,刘玉洪,郭萍,2003。西双版纳热带次生林林窗小气候要素立体空间分布特征,应用生态学报,14(12):2129-2135
    张一平,窦军霞,刘玉洪,马友鑫,2004a。热带季节雨林林窗辐射特征研究,应用生态学报,15(6):929-934
    张一平,赵双菊,窦军霞,刘玉洪,2004b。热带季节雨林热力效应时空分布特征初探,北京林业大学学报,26(4):1-7
    张一平,窦军霞,于贵瑞,赵双菊,宋清海,孙晓敏,2005。西双版纳热带季节雨林太阳辐射特征研究,北京林业大学学报,27(5):17-25
    张一平,宋清海,于贵瑞,孙晓敏,窦军霞,2006。西双版纳热带季节雨林风时空变化特征初步分析,应用生态学报,17(1):11-16
    张一平,沙丽清,于贵瑞,宋清海,唐建维,扬效东,王跃思,郑征,赵双菊,杨振,孙晓敏,2006。热带季节雨林碳通量年变化特征及影响因子初探,中国科学D,36(增刊II):139-152
    张小全,武曙红,何英,侯振宏,2005。森林、林业活动与温室气体的减排增汇,林业科学,41(6):150-156
    赵双菊,张一平,于贵瑞,宋清海,孙晓敏,2006。西双版纳热带季节雨林晴天CO2交换的日变化和季节变化特征,植物生态学报,30 (2):295-301
    郑循华,徐仲均,王跃思,韩圣慧,黄耀,蔡祖聪,朱建国,2002。开放式空气CO2浓度增高影响稻田-大气CO2净交换的静态暗箱法观测研究。应用生态学报,13(10):1240-1244
    郑征,冯志立,曹敏,刘宏茂,刘伦辉,2000。西双版纳原始热带湿性季节雨林生物量及净初级生产力。植物生态学报,24(2):197-203
    郑征,刘宏茂,刘伦辉,曹敏,冯志立。西双版纳原始热带季节雨林生物量研究,广西植物,1999,19 (4):309-314
    中国国家发展和改革委员会,2007。中国应对气候变化国家方案
    周存宇,2006。鼎湖山森林土壤CO2, N2O, CH4排放/吸收通量及其动态,中国科学院研究生院博士论文
    周玉荣,于振良,赵士洞,2000。我国主要森林生态系统炭贮量和碳平衡,植物生态学报,24(5):518-522
    周钟毓,2000。中国天然橡胶业50年,热带农业科学,(5):63-85
    邹建文,黄耀,宗良纲,郑循华,王跃思,2003。稻田CO2、CH4和N2 o排放及其影响因素。环境科学学报,23(6):758-764
    邹建文,焦燕,王跃思,黄耀,2002。稻田CH4、N2O和CO2排放通量分析方法研究。南京农业大学学报,25(4):45-48
    朱华,王洪,李保贵,许再富,1998。西双版纳热带季节雨林的研究,广西植物,18(4):372-384
    Baath E, Wallander H, 2003. Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system. Global Change Biol., 9: 1788–1791
    Behling H, 2002. Carbon storage increases by major forest ecosystems in tropical South America since the Last Glacial Maximum and the early Holocene. Global and Planetary Change, 33: 107-116
    Bolin B, 1977. Changes of land biota and their importance for the carbon cycle. Science, 196: 613-615
    Boone R D,Nadelhofer K J,Canary J D, et a1., 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature,396:570-572
    Bouma T J, Nielsen K L, Eissenstat D M, Lynch J P, 1997. Estimating respiration of root in soils: interactions with soil CO2, soil temperature, and soil water content. Plant and Soil, 195: 221-232
    Bouma T J, Bryla D R, 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant and Soil, 227: 215-221
    Brown S, Iverson L R, Prasad A, Liu D, 1993. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International 4: 45-59
    Cao M,Zhang J H,Feng Z L, Deng J W & Deng X B, 1996. Tree species composition of a seasonal rain forest in Xishuagbanna, Southwest China. Tropical Ecology, , 37: 183-192
    Cao M & Zhang J H, 1997. Tree species diversity of tropical forest vegetation in Xishuangbanna, SW China. Biodiversity and Conservation, 6: 995-1006
    Cicerone R J & Oremland R S, 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycle, 2: 299-327
    Curiel Yuste J, Janssens I A, Carrara A, Ceulemans R, 2004. Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biol., 10: 161–169
    Dale V H, 1993. Ecological principles and guidelines for managing the use of land. Ecological Applications, 10(3): 639-670
    Davidson E A & Ackerman I L, 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20: 161-193
    Davidson E A, Belk E, Boone R D, 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol., 4: 217–227
    Davidson E A, Verchot L V, Cattanio J H, Ackerman I L, Carvalho J E M, 2000.
    Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48: 53–69
    Dixon R K, Brown S, Houghton R A, et al., 1994. Carbon pool and flux of global forest ecosystems. Science, 263: 185
    Dixon R K, Brown S, Houghton R A, Solomon A M, Trexler M C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science, 263: 185-190
    Dong Y, Scharffer D, Lobert J M, et al. 1998. Fluxes of CO2, CH4 and N2O from a temperate forest soil: the effects of leaves and humus layers. Tellus, 50B: 243-252
    Dou J X,Zhang Y P, Fen Z W, Liu W J,2005. Variations in photosynthetic photon flux density within a tropical seasonal rain forest of Xishuangbanna, Southwestern China. Journal of Environmental Sciences, 17(6):966-969
    Dou J X, Zhang Y P, Yu G R, Zhao S J, Wang X, Song Q H, 2006b. A preliminary study on the heat storage fluxes of a tropical seasonal rain forest in Xishuangbanna. Sciences in China D, 49 (Supp II): 163-173
    Detwiler R P & Hall C A S, 1988. Tropical Forests and the Global Carbon Cycle. Science, 239: 42-47
    Falge E, Baldocchi D, Tenhunen J, et al., 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113: 53-74
    Fan S et al., 1998. North American carbon sink. Science, 282: 442
    Fan S M, Wofsy S C, Bakwin P S, et al. 1990. Atmosphere—biosphere exchange of CO2 and O3 in the Central Amazon forest. J Geophys Res, 95 (D10): 16851-16864
    Fang C, Moncrieff J B, Gholz H L, Clark K L, 1999. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205: 135-146
    Fang J Y, et al., 1998. Changes in forest biomass carbon storage in China between 1949 and. Science, 292: 2320-2322
    FAO, 2000. Forest Resources Assessment 2000 (FRA 2000). FAO, Rome FAO &.IAEA, 1992. Measurement of methane and nitrous oxide emissions from agriculture. A Joint Undertaking by the Food and Agriculture Organization of the United States and the International Atomic Energy Agency. International AtomicEnergy Agency, Vienna, 5-6
    Galloway W, Schlesinger H, Levy II H, Michaels A, Schnoor J L, 1995. Nitrogen fixation: anthropogenic enhancement-environmental response, Global Biogeochemical Cycles 9 (2): 235-252
    Gholz H L, 1986. Organic matter dynamics of fine roots in plantations of slash pine in north Florida. Canadian Journal of Forestr Research, 16: 529-538
    Goulden M L, Wofsy S C, Harden J W, Trumbore S E, Crill P M, Gower S T, Fries T, Daube B C, Fan S M, Sutton D J, Bazzaz A, Munger J W, 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science, 279: 214-217
    Goulden, M L, Miller S D, da Rocha H R, Menton M C, Freitas H C, Figueira A M S, de Sousa C A D,2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications, 14: S42-S54
    Grace J, 2005. Role of forest biomes in the global carbon balance. In: Griffths H & Gjarvis P (eds), The carbon balance of forest biomes. New York: Taylor & Francis Group, 19-45
    Griffis T J, Black T A, Morgenstern K, et al., 2003. Ecophysiological controls on the carbon balances of threee southern boreal forests. Agricultural and Forest Meteorology, 117: 53-71
    Hashimoto S, Tanaka N, Suzuki M, Inoue A, Takizawa H, Kosaka I, Tanaka K, Tantasirin C, Tangtham N, 2004. Soil respiration and soil CO2 concentration in a tropical forest, Thailand. J For Res, 9:75-79
    Hogberg P, Nordgren A, Buchmann N, Taylor A F S, Ekblad A, Hogberg M N, Nyberg G, Ottosson-Lofvenius M & Read D J, 2001. Large-scale forest girdling shows that current photosynthesis drivers soil respiration. Nature, 411: 789-791
    Holmen K, 1992. The global carbon cycle. In: Butcher et al. (eds), Global Biogeochemical Cycle. San Diego: Academic Press, 239-262
    Houghton R A, 1995a. Carbon sequestration in an aggrading forest ecosystem in the Southeastern USA. Soil Science Society of American Journal, 59: 1459-1467
    Houghton R A, 1995b. Land-use change and the carbon cycle. Global Change Biology, 1: 275-287
    Houghton R A, 1997. Terrestrial carbon storage: Global lessons for Amazonian research. Cienciae Cultura Sao Paulo, 49: 58-72
    Houghton R A, Hackler J L, Lawrence K T, 1999. The US carbon budget: contributions from land-use change. Science, 285: 574-578
    Huang Y, Gao L Z, Jin Z Q, Jin Z Q, Chen H, 1998. Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Agricultural and Forest Meteorology, 91: 251-262
    Hutyra, L R, Munger J W,Saleska S R, Gottlieb E, Daube B C, Dunn A L, Amaral D F, de Camargo P B, Wofsy S C,2007. Seasonal controls on the exchange of carbon and water in an Amazonian rainforest, Journal of Geophysical Research, 112: G03008.
    IPCC, 1992. Climate Change 1992:The supplementary report to the IPCC Scientific assessment. New York:Cambridge University Press
    Janssens I A, Lankreijer H, Matteucci G, et al. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7: 269–278
    Janssens I A, Pilegaard K, 2003. Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biol., 9: 911–918
    Jia S, Akiyama T, Mo W, Inatomi M, Koizumi H, 2003. Temporal and spatial variability of soil respiration in a cool temperate broad-leaved forest. 1. Measurement of spatial variance and factor analysis. Jpn. J. Ecol. 53, 13–22 (in Japanese with English summary)
    Jordan C F, 1985. Nutrient cycling in tropical forest ecosystems. John Wiley & Sons Keeling C D, Piper S C, Heimann M, 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382: 146-149
    King A, Emanuel W, William R and Post W M, 1992. Project in future concentrations of atmospheric CO2 with global carbon cycle models: The importance of simulating historical changes. Environmental Management., 16: 91-108
    Korschens M, 1998. Soil organic matter and sustainable land use. Advances in GeoEcology, 31: 423-430
    Lasco R D, Guillermo I Q, Cruz R V O, Bantayan N C, Pulhin F B, 2001a. Carbon stocks assessment of secondary tropical forest in Mt Makiling Forest Reserve. Philippines Journal of Tropical Forest Science, 16(1): 35-45
    Lasco R D, Sales R F, Extrella R, Saplaco S R, Castillo A S A, Cruz R V O, Pulhin F B, 2001b. Carbon Stock Assessment of Two Agroforestry Systems in a Tropical Forest Reserve in the Philippines. The Philippine Agriculturist, 84(4): 401~407
    Lavigne M B, Little C H A, Riding R T, 2004. Changes in stem respiration rate during cambial reactivation can be used to refine estimates of growth and maintenance respiration. New Phytologist, 162: 81-93
    Law B E, Kelliher F M, Baldocchi D D, Anthoni P M, Irvine J, Moore D, Van Tuyl S, 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric. Forest Meteorol., 110: 27–43
    Li H M, Aide T M, Ma Y X, Liu W J, Cao M, 2007. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers Conserv, 16: 1731–1745
    Li H M, Aide T M, Ma Y X, Liu W J, 2008. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. Forest Ecology and Management, 255: 16–24
    Linn D M & Doran J W, 1984. effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Sci Soc Am J, 48: 1267-1272
    Li Y, Xu M, Sun O, et al. 2004. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biology and Biochemistry, 36: 2111–2114
    Liu W J, Zhang Y , Li H , Meng F R, Liu Y H, Wang C M, 2005. Fog and rainwater chemistry in the tropical seasonal rain forest of Xishuangbanna, Southwest China. Water, Air, and Soil Pollution, 167: 295-309
    Liu W J, Liu W Y, Li P J, Gao L, Shen Y X, Wang P Y, Zhang Y P, Li H M, 2007.
    Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agricultural and Forest Meteorology, 143: 80-91
    Lloyd J, Taylor J A, 1994. On the temperature dependence of soil respiration.Functional Ecology. 8:315-323
    Londo A J, Messina M G, Schoenholtz S H, 1999. Forest harvesting effects on soil temperature, moisture, and respiration in a Bottomland hardwood forest. Soil Sci Soc Am J, 63: 637-644
    Loescher H W, Oberbauer S F, Gholz H L, et al., 2003. Environmental controls on net ecosystem- level carbon exchage and productivity in a Central American tropical wet forest. Global Change Biology, 9: 396-412
    Malhi, Y, Nobre A D, Grace J, Kruijt B, Pereira M G P, Culf A & Scott S, 1998. Carbon dioxide transfer over a Central Amazonian rain forest. Journal of Geophysical Research-Atmospheres, 103: 31593-31612
    Marland G., Boden T A & Andres R J, 2000. Global, regional and national CO2 emissions. In: Trends: a compendium of Date on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Labrotary, US Department of Energy, Oak Ridge, Tennessee
    Matson P A, 1997. Agricultural intensification and ecosystem properties. Science, 277: 504-509 Mclaugherty C A, Aber J D, 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecosystems, 63(5): 1481-1490
    Meyer W B, Turner B LⅡ, 1992. Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23: 39-61
    Molles Jr. M C, 2002. Ecology, Concepts and Applications. Second Edition. Beijing: Higher Education press, 436
    Mo W H, Lee M S, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H, 2005. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agricultural and Forest Meteorology, 134: 81–94
    Miyata A, Leuning R, Denmead O T, Kim J, Harzzonoy Y, 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology, 102: 287-303
    Niklinska M,Maryanski M,Imskowski R, 1999. Effect of temperature on humus respiration rate and nitrogen mineralization:implications for global climate change. Biogeochemistry,44:239-257
    Nilsson S. & Schopfhauser W, 1995. The carbon sequestration potential of a global afforestation program. Climatic Change, 30: 267-293
    Ohashi M, Gyokusen K, Saito A, 1999. Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. For Ecol Manage, 123: 105-114
    Pacala et al., 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science, 292: 2316-2320
    Paustian K, Vernon Cole C, Sauerbeck D & Sampson N, 1998. CO2 Mitigation by Agriculture: An Overview. Climatic Change, 40: 135-162
    Pruyn M L, Harmon M E, Gartner B L, 2003. Stem respiratory potential in six softwood and four hardwood tree species in the central cascades of Oregon. Oecologia, 137: 10-21
    Rayment M B, Jarvis P G, 2000. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biol Biochem, 32: 35-45
    Raich J W, Schlesinger W H, 1992. The global carbon dioxide fluxin soil respiration and its relationship to vegetation and climate. Tellus 44B: 81–99
    Raich J W & Potter C S, 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9: 23-36
    Raich J W, Potter C S & Bhagawati D, 2002. Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8: 800-812
    Reinch P B, Walter M B, Wllsworth D S, et al., 1998. Relationshiop of leaf dark respiration to leaf nitrogen, specific leaf area and life-span: a test across biomes and functional group. Oecologia, 114: 471-482
    Rey A, Pegoraro E, Tedeschi V, et al. 2002. Annual variation in soil respiration and its components in an oak coppice forest in central Italy. Global Change Biology, 8: 851-866
    Saleska S R, Miller S D, Matross D M, et al., 2003. Carbon in Amazon Forests:Unexpected seasonal fluxes and disturbance-induced losses. Science, 302: 1554-1557
    Santantonio D, 1978. Seasonal Dynamics of Fine Roots in Mature Stands of Douglas Fir of Different Water Regiones-A Preliminary Report. In: Reidacker A et al., Symposium of Root Physiology and Symbiosis, Seichamps. France: Centre Nationale de Recherches Forestieres, 190-203
    Schlentner R E, Van Cleve K, 1984. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can J For Res, 15: 97–106
    Schlesinger W H, 1997. Biogeochemistry: An analysis of global change. San Diego: Academic Press
    Sedjo R A, 1993. The carbon cycle and global forest ecosystem. Water, Air and Soil Population, 70: 295
    Singh B, Nordgren A, Lofvenius M O, Hogberg M N, Llander P E, Hogber P, 2003.
    Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell and Environment, 1-10
    Skopp J, Jawson M D, Doran J W, 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J, 54: 1619-1625
    Tian H, Mellilo J M, Kichilghter D W, et al., 1998. Effects of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396: 664-667
    Thaler P, Pagès L, 1998. Modelling the influence of assimilate availability on root growth and architecture. Plant and Soil, 201:307-320
    Trumbore S E, Harden J W, 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research,102: 28817-28830
    Vitousek P M, 1994. Beyond Global Warming: Ecology and Global Change. Ecology, 75(7): 1861-1876
    Vitousek P M, et al., 1997. Human domination of earth’s ecosystems. Science, 277: 494-499
    Vitousek P M, et al., 2000. Global change and wildness science. USDA Forest Service Proceedings , RMRS-P-15-VOL-1
    Vourlitis, G L,Filho N P, Hayashi M M S, et al., 2001. Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian transitional tropical forest. Functional Ecology, 15: 388-395
    Wang M, Guan D X, Wang Y S, et al., 2006. Estimate of productivity in ecosystem of the broad-leaved Korean pine mixed forest in Changbai Mountain. Science in China Series D: Earth Sciences, 49(Supp.II): 74-88
    Wang Y F, Owen S M, Li Q J, Uelad J, 2007. Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: chemical speciation and environmental control. Global Change Biology, 13: 2270–2282
    Warring R H, Running S W, 1998. Forest ecosystem: analysis at multiple scales. San Diego:Academic Press: 286-2320
    Werner C, Zheng X H, Tang J W, Xie B H, Liu C Y, Kiese R, Butterbach-Bah K, 2006.
    N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant Soil, 289: 335–353
    Whitmore T C, 1993. An introduction to tropical rain forest. Oxford: Clarendon Press
    Whittaker R H, Likens G E, 1975. The biosphere and man. In: Lieth H, Whittaker R H (eds), Primary Productivity of the Biosphere. Springer. New York: 305-328
    Widen B, 2002. Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest. Agric. Forest Meteorol., 111: 283–297
    Wright R F, et al., 1995. Interaction of a acid rain and global changes: effects on terrestrial and aquatic ecosystems. Water, Air and Soil Pollution, 85: 89-99
    Xing G X, 1998. N2O emission from cropland in China. Nutrient Cycling in Agroecosystems, 52:249-254
    Xu M, Qi Y, 2001. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochem. Cycles 15: 687–696
    Yuste J C, Janssens I A, Carrara A, et al., 2004. Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global ChangeBiology,10:161–169
    Zhang J H & Cao M, 1995. Tropical forest vegetation of Xishuangbanna and its secondary changes, with special reference to some problems in local nature conservation. Biological conservation, 73: 229-238
    Zhang Y P, Sha L Q, Yu G R, Song Q H, Tang J W, Yang X D, Wang Y S, Zheng Z, Zhao S J, Yang Z, Sun X M, 2006. Annual variations of carbon flux and impact factors in the tropical seasonal rain forest of Xishuangbanna, SW China. Sciences in China D, 49 (Supp II): 150-162
    Zhou C Y, Zhou G Y, Zhang D Q, et al., 2005. CO2 efflux from different forest soils and impact factors in Dinghu Mountain, China. Science in China (Series D), 48(Suppl.I): 198-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700