用户名: 密码: 验证码:
非线性混沌系统分析和控制问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌学是一门新兴的非线性科学,它的研究热潮始于二十世纪七十年代,但是其渊源可以追溯到十九世纪三十年代。最近几十年来,在国内外众多学者的不懈努力下,混沌理论得到了迅速的发展,其研究内容也越来越广泛、深入。同时随着各学科间的相互交叉与渗透,混沌理论在许多领域得到了有效的应用。混沌研究对于现代科学的影响不仅限于自然科学,而是几乎覆盖了所有学科领域。那么从控制论的角度出发,自然考虑到混沌系统的控制问题,其中包括混沌的控制(混沌的抑制),混沌的反控制(混沌的产生和加强)以及混沌同步的控制等。
     与此同时,分数阶系统的研究在近年来逐渐成为了热点。然而分数阶微积分的概念并不是一个全新的概念,它产生于三百多年前,可以说与整数阶微积分有着同样的历史渊源。分数阶微积分实际上是研究和应用任意阶微分和积分的理论,它是整数阶微积分的自然延伸。上个世纪后期,分数阶微积分的应用研究取得的一些成果,引起了不同学科领域学者们的广泛关注,使其应用领域有了显著地增加。现在人们已经认识到现实系统中许多是分数阶的,但迄今为止,所有的控制系统均是整数阶描述的,这实际上是忽略了系统的真实性。之所以将其考虑为整数阶,是因为系统本身的复杂性和缺乏有效的数学工具。随着分数阶微积分理论的发展,近些年来将分数阶微积分理论应用于控制理论和控制实践的研究已经开始,并不断取得进展。分数阶微积分的发展,为以整数阶微积分理论为基础的控制理论和控制工程提供了一个新的发展空间。其中,分数阶与混沌系统的结合,由于它们自身特性上的联系,如:分维,自相似等等,也变得越来越紧密。但是由于混沌系统和分数阶系统理论都还不成熟,很多问题还有待进一步地研究和探讨。
     基于以上的阐述,论文的主要研究工作和创新包括以下两个方面:一方面是对整数阶非线性混沌系统的控制问题进行研究;另一方面是探讨控制和分析分数阶非线性混沌系统。具体可以分为:
     -利用微扰判据的Melnikov方法讨论周期扰动参数引导Lorenz混沌系统进入低周期轨道的参数条件。
     -提出了利用奇异单输入状态反馈混沌化系统的方法;并在Marroto定理基础上,从理论上证明经过反馈以后的闭环系统确实存在有Li-Yorke意义上的混沌。
     -首次针对一类分数阶混沌系统,提出了利用状态的PIα调节器实现控制混沌的方法。同时从理论上证明了一个非线性分数阶系统的稳定性定理;在这个基础上,证明了所提出控制混沌方法的有效性。
     -在整数阶系统分析基础上,将谐波平衡原则进行推广,用以分析非线性分数阶系统的混沌参数域。
     -提出了两种方法来控制一类非同元次分数阶混沌系统的同步,并且根据不同方法的特性,分别在理论上给予证明。
Chaology is a rising nonlinear science. Its research upsurge started from 1970s’, butits origin could be traced back to 1830s’. In recent years, chaos theory is developed rapidlyunder the incessant efforts of scholars over the world, and the research areas of chaologyare also expanded thoroughly. With the intercrossing and penetration of different knowl-edge, chaos theory has been applied in many other fields effectively. The in?uences of chaosresearch towards modern sciences are not bounded in natural science, but cover almost allfields of science. Well, from the point of cybernetic, it yields a natural yet nontrivial ques-tion whether one can control chaos, including chaos control (chaos inhibition) anti-chaosControl(chaos producing and enhancing), and chaos synchronization.
     Meanwhile, in recent years, the fractional-order systems become a hot research topic.The concepts of fractional derivatives and integral were proposed three hundred years ago.Fractional calculus is the theory on the research and application of derivatives and integralof arbitrary order. It is a natural extension of the classical mathematics. In the last three orfour decades, many researchers have made a great effort to apply this knowledge in practiceand in different research fields. Now, the application domains of fractional calculus have in-creased significantly. Real systems in general are fractional-order systems, although in sometypes of systems the order is very close to an integer order. The control systems used so farwere all considered as integer-order systems, regardless of the reality, the reason is the highercomplexity and the absence of adequate mathematical tool. Since major advances have beenmade in fractional calculus in the last few years, the knowledge of fractional calculus be-gins to be applied in control theory and control engineering. It provides new landscape forcontrol theory and control engineering based on integer-order differential equations. Amongthose, the research of the fractional-order systems and chaos systems become increasinglyclose, because of their own nature, such as the fractal dimension, self-similarity and so on.However, as the theory of chaotic systems and fractional-order systems being in developing,many issues still need further study and discussion.
     Based on above, the research and contributions in this dissertation are divided into twoaspects: one is about controlling chaos in the integer-order nonlinear chaos systems; theother is study and discussion the analysis and controlling the fractional-order nonlinear chaossystems. Specifically,
     - By using Melnikov method of perturbation criteria, the conditions of periodicparamtric perturbations to control chaos in Lorenz system are discussed.
     - The single input state feedback approach for chaotifying a stable system is presented..Based on the Marotto theorem, it is proven theoretically that the closed-loop systemis chaotic in the sense of Li and Yorke.
     - The PI~αregulator of system states to control a kind of fractional-order chaos systemsis first introduced in this dissertation. At same time, a stability theorem of nonlinearfractional-order differential equations is proven theoretically. Then, according to that,a new criterion is derived for designing the controller gains for stabilization this kindof fractional-order chaos systems.
     - Based on the integer-order system, the harmonic balance principle is used to analyzethe parameter domain of nonlinear fractional-order system.
     - Twoapproachestosynchronizeakindofincommensuratefractional-orderchaoticsys-tem are addressed in this thesis. According to the different characteristic, the differentprocesses of theoretical proof are presented respectively.
引文
[1] A.V.Hold. Chaos. Manchester University Press, 1986.
    [2] 王东生,曹磊. 混沌、分形及其应用. 中国科学技术大学出版社, 1995.
    [3] 陈奉苏. 混沌学及其应用. 中国电力出版社, 1998.
    [4] 吴祥兴,陈忠. 混沌学导论. 上海科学技术文献出版社, 1997.
    [5] 郝柏林. 从抛物线谈起-混沌动力学引论. 上海科技教育出版社, 1993.
    [6] 陈式刚. 映象与混沌. 国防工业出版社, 1992.
    [7] 程极泰. 浑沌的理论与应用. 上海科学技术文献出版社, 1992.
    [8] B.L.Hao. Elementary symbolic dynamics and chaos in dissipative systems. Utopia Press, 1989.
    [9] T. Matsumoto,L.O.Chua,M. Komuro. The double scroll. IEEE Transcations on Circuits andSystems, August.
    [10] L.O.Chua,M. Komuro,T. Matsumoto. The double scroll family. part i and ii. IEEE Transcationson Circuits and Systems, CAS-33(11):1072–1118, 1985.
    [11] S.F.Lacroix. Traite′ du calcul diffe′rentiel et du calcul inte′gral. Paris:Courcier, 1819.
    [12] B. Ross. Fractional Calculus and its Applications. Berlin: Springer Verlag, 1975.
    [13] K. B. Oldham,J. Spanier. The Fractional Calculus: Integrations and Diffrentiations of ArbitraryOrder. New York: Academic Press, 1974.
    [14] B. B. Mandelbort. The Fractal Geometry of Nature. New York: W.H.Freeman and Company, 1982.
    [15] 高安秀树. 分数维. 北京: 地震出版社, 1989.
    [16] 王东生,曹磊. 混沌、分形及其应用. 合肥: 中国科学技术出版社, 1995.
    [17] S. G. Samko,A. A. Kilbas,O. I. Marichev. Integral and Derivatives of Fractional Order andSome of Their Applications. Minsk: Naukai Tekhnika, 1987.
    [18] S. G. Samko,A. A. Kilbas,O. I. Marichev. Fractional Integrals and Derivatives. Yverdon,Switzerland: Gordon and Breach, 1993.
    [19] K. S. Miller,B. Ross. An Introduction to the Fractional Calculus and Fractional DifferentialEquations. New York: Wiley-Interscience Publication, 1993.
    [20] V. S. Kiryakova. Generalized Fractional Calculus and Applications. New York: John Wiley andSons, 1994.
    [21] I. Podlubny. Fractional Differential Equations. San Diego: Academic Press, 1999.
    [22] R. R. Nishimoto. Fractional Calculus (Integration and Differentiation of Arbitrary Order). Ko-riyama: Descartes Press Cor., 1984.
    [23] R. R. Nishimoto. Fractional Calculus (Integration and Differentiation of Arbitrary Order)Vol 2.Koriyama: Descartes Press Cor., 1987.
    [24] H. T. Davis. The Theory of Linear Operators. Bloomington, Indiana: The Principa Press, 1936.
    [25] M. M. Dzherbashian. Integral Transforms and Representations of Functions in the Complex Plane.Moscow: Nauka, 1966.
    [26] M. Caputo. Elasticita′ e Dissipazion. Bologna: Zanichelli, 1969.
    [27] Schuster H.G. Deterministic chaos: an introduction. Weinheim: Physik-Verlag, 1984.
    [28] Hirsch M.W.,Smale S. Differential equations: dynamical systems and linear algebra. New York:Academic Press, 1974.
    [29] Hartley TT,Lorenzo CF,Qammer HK. Chaos in a fractional order chua’s system. IEEE TransCAS-I, 42:485–90, 1995.
    [30] Arena P,Caponetto R,Fortuna L,Porto D. Chaos in a fractional order duffing. system, Pro-ceedings of the Euro-pean Conference on Circuit Theory and Design, pages 1259–1262, 1997.
    [31] Ahmad WM,Sprott JC. Chaos in fractional-order autonomous nonlinear system. Chaos, Solitonsand Fractals, 16:339–351, 2003.
    [32] Ahmad WM,Harb WM. On nonlinear control design for autonomous chaotic systems of integerand fractional orders. Chaos, Solitons and Fractals, 18:693–701, 2003.
    [33] Ahmad WM,El-Khazali R,El-Wakil. Fractional-order wien-bridge oscillator. ELECTRONICSLETTERS, 3718:1110–1112, 20012003.
    [34] Li C G,Chen G R. Chaos and hyperchaos in the fractional-order Ro¨ssler equations. Physica A,341:55–61, 2004.
    [35] Arena P,Caponetto R,Fortuna L,Porto D. Bifurcation and chaos in noninteger order cellularneural networks. International Journal of bifurcation and chaos, 7:1527–1539, 1998.
    [36] Arena P,Fortuna L,Porto D. Chaotic behavior in noninteger-order cellular neural networks.Phys Rev E, 61:776–781, 2000.
    [37] Gao Xin,Yu Jue-Bang. Chaos and chaotic control in a fractional-order electronic oscillator. Chi-nese physics, 14(5):908–913, 2005.
    [38] Lu J G,Chen G R. A note on the fractional-order chen system. Chaos, Solitons and Fractals,27:685–688, 2006.
    [39] Li C G,Chen G R. Chaos in the fractional order chen system and its control. Chaos Solitons andFractals, 22:549–554, 2004.
    [40] Li C P,Peng G J. Chaos in chen’s system with a fractional order. Chaos Solitons and Fractals,22:443–450, 2004.
    [41] Li C,Liao X,Yu J. Synchronization of fractional order chaotic systems. PHYSICAL REVIEWE, 68:067203–1–067203–3, 2003.
    [42] Jun Guo Lu. Chaotic dynamics and synchronization of fractional-order arneodo’s systems. Chaos,Solitons and Fractals, 26:1125–1133, 2005.
    [43] Jun Guo Lu. Chaotic dynamics and synchronization of fractional-order genesio-tesi systems. Chi-nese Physics, 14(08):1517–1521, 2005.
    [44] Jun Guo Lu. Synchronization of a class of fractional-order chaotic systems via a scalar transmittedsignal. Chaos, Solitons and Fractals, 27:519–525, 2006.
    [45] Chaotic dynamics of the fractional-order Lu¨ system and its synchronization. Physics Letters A,354(4):305–311, 2006.
    [46] Ott E,Grebogi C,Yorke J.A. Controlling chaos. PHYSICAL REVIEW LETTERS, 64:1196–1199,1990.
    [47] Pecora L.m.,Carroll T.L. Synchronization in chaotic systems. PHYSICAL REVIEW LETTERS,64:821–824, 1990.
    [48] 胡岗,萧井华,郑志刚. 混沌控制. 上海科技教育出版社, 2000.
    [49] Pyragas K. Continuous control of chaos by self-controlling feedback. Phys.Lett.A, 170:421–428,1992.
    [50] Athalye A.M.,Grantham W.J. Notch filter feedback control of a chaotic system. Pros.OfAmri.Control Conf.:Seattle, pages 837–841, 1995.
    [51] Grantham W.J.,Athalye A.M. Notch filter control for k-period motion in a chaotic system. Con-trol and Chaos, pages 142–157, 1997.
    [52] Chen L.Q.,Liu Y.Z. A modified open-plus-closed-loop approach to control chaos in nonlinearoscillations. Physics Letters A, 2(45):87–90, 1998.
    [53] Saverio Mascolo,Giuseppe Grassi. Controlling chaos via backstepping design. Physical ReviewE, 56(5):6166 –6169, 1997.
    [54] Ramakrishna Ramaswamy,Sudeshna Sinha,Neelima Gupte. Targeting chaos through adaptivecontrol. Physical Review E, 57(3):2507~2510, 1998.
    [55] 盛军翰,马军海. 非线性动力系统分析引论. 科学出版社, 2001.
    [56] 王光瑞,于熙龄,陈式刚. 混沌控制、同步与利用. 国防工业出版社, 2001.
    [57] Tang D.Y.,Dykstra R.,Hamilton M.W.,Heckenberg N.R. Stages of chaotic synchronization.Chaos, 8(3):697–701, 1998.
    [58] Janson N.B.,Balanov n.B.,Anishchenko V.S.,McClintock P.V.E. Phase synchronization be-tween several interacting processes from univariate date. Physical Review Letters, 86(9):1749–1752, 2001.
    [59] John R.T.,Gregory D.,Van W. Chaotic communication using generalized synchronization.Chaos,Solitons and Fractals, pages 145–152, 2001.
    [60] Pikovsky A.,Rosenblum M.,Kurths J. Phases synchronization in regular and chaotic systems.International Journal of bifurcation and chaos, 10(9):2291–2305, 2000.
    [61] Caputo M, Mainardi F. Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento,(Ser.II)1:161–198, 1971.
    [62] A. Erde′lyi (Editor). Tables of Integral Transforms. New York: McGraw-Hill, 1954.
    [63] M. Abramowitz,I. A. Stegun. Handbook of Mathematical Functions. Moscow: Nauka, 1979.
    [64] R. R. Nigmatullin. A fractional integral and its physical interpretation. Theoretics and MathematicsPhysics, 90(3):242–251, 1992.
    [65] R. S. Rutman. On physical interpretations of fractional integration and differentiation. Theoreticsand Mathematics Physics, 105(3):393–404, 1992.
    [66] F. BenAdda. Geometric interpretation of the fractional derivative. Journal of Fractional Calculus,11:21–52, 1997.
    [67] F. J. Molz,Fix G. J.,S Lu. A physical interpretation for fractional derivative in levy diffusion.Applied Mathematics Letters, 15:907–911, 2002.
    [68] I. Podlubny. Geometrical and physical interpretation of fractional integration and fractional differ-entiation. Fractional Calculus and Applied Analysis, 5(4):357–366, 2002.
    [69] E. Hille,J. D. Tamarkin. On the theory of linear integral equations. Ann Math, 31:479–528, 1930.
    [70] J. H. Barret. Differential equations of non-integer order. Canad Journal Math, 6:529–541, 1954.
    [71] M. Yamamoto R. Goren?o. On regularized inversion of abel integral operators. in:Analysis andMechanics of Continuous Media, 3:162–182, 1995.
    [72] A. Erde′lyi(Editor). Higher Transcendental Functions. New York: McGraw-Hill, 1953.
    [73] R. P. Agarwal. A propos d’une note de m. pierre humbert. C R Acad Sci, 236(21):2031, 1953.
    [74] P. Humbert,R. P. Agarwal. Sur la fonction de mittag-lef?er et quelques-unes de sesge′ne′ralisations. Bulletin des Sciences Mathe′matiques, 77(10):180–185, 1953.
    [75] ZENG Qing shan,CAO Guang-yi,ZHU Xin-jian. External stability of fractional-order controlsystems. Journal of Harbin Institute of Technology, 13(1):32–36, 2006.
    [76] 刘延柱,陈立群. 非线性动力学. 上海交通大学出版社, 2000.
    [77] 刘曾荣. 混沌的微扰判据. 上海科技教育出版社, 1994.
    [78] Yu X. Controlling chaos using input-output linearization approach. International Journal of bifur-cation and chaos, 7(7):1659–1664, 1997.
    [79] Zeng Y,Singh S.N. Adaptive control of chaos in lorenz system. Dynamics and Control, 7(2):143–154, 1997.
    [80] Yang S.K,Chen C.L,Yau H.T. Control of chaos in lorenz system. Chaos, Solitons and Fractal,13:767–780, 2002.
    [81] Yau H.T,Yan J.J. Design of sliding mode controller for lorenz chaotic system with nonlinearinput. Chaos, Solitons and Fractals, 19:891–898, 2004.
    [82] Shihua Chen,Qunjiao Zhang,Jin Xie,Changping Wang. A stable-manifold-based method forchaos control and synchronization. Chaos, Solitons and Fractals, 20:947–954, 2004.
    [83] Chen Maoyin,Zhou Donghua,Shang Yun. Nonlinear feedback control of lorenz system. Chaos,Solitons and Fractals, 21:295–304, 2004.
    [84] Mirus K.A,Sprott J.C. Controlling chaos in low- and high-dimensional systems with periodicparametric perturbations. Phys.Rev.E., 59(5):5313–5323, 1999.
    [85] Singer J,Wang Y.Z,Bau H.H. Controlling a chaotic system. Phys.Rev.Lett, 66:1123, 1991.
    [86] 李继彬,赵晓华,刘正荣. 广义哈密顿系统理论及其应用. 科学出版社, 1994.
    [87] Li J,Zhang J. New treatment on bifurcations of periodic solutions and homoclinic orbits at highr in the lorenz equations. SIAM Journal of Applied Mathematics, 53:1059–1071, 1993.
    [88] G. Chen,D. Lai. Feedback control of lyapunov exponents for discrete-time dynamical systems.International Journal of bifurcation and chaos, 6:1341–1349, 1996.
    [89] G. Chen,D. Lai. Anticontrol of chaos via feedback. Proc. of IEEE Conf. on Decis. Contr., SanDiego, Dec, pages 367–372, 1997.
    [90] G. Chen,D. Lai. Feedback anticontrol of chaos. International Journal of bifurcation and chaos,8:1585–1590, 1998.
    [91] X. F. Wang, G. Chen. On feedback anticontrol of discrete chaos. International Journal of bifur-cation and chaos, 9:1435– 1441, 1999.
    [92] X. F. Wang, G. Chen. Chaotification via arbitrarily small feedback controls. International Journalof bifurcation and chaos, 10:549–570, 2000.
    [93] Devaney.R.L. An Introduction to Chaotic Dynamical Systems. Addison-Wesley Pub. Co., NewYork, 1987.
    [94] T. Y. Li,Yorke. J. A. Period three implies chaos. Am. Math, 82:481–485, 1975.
    [95] 郑大钟. 线性系统理论. 清华大学出版社:北京, 1990.
    [96] Marotto. F. R. Snap-back repellers imply chaos in Rn. J. of Math. Anal. Appl, 3:199–223, 1978.
    [97] Shiraiwa. K,Kurata. M. A generalization of a theorem of marotto. Nagoya Math.J., 82:83–97,1981.
    [98] Ushio.T,Hirai.K. Chaos in nonlinear sampled-data control systems.
    [99] Ushio.T,Hirai.K. Chaotic behavior in piecewise-linear sampled-data control systems. Int.J. Non-lin. Mech., 20:493–506, 1985.
    [100] L. Chen,Aihara.K. Chaos and asymptotical stability in discrete-time neural networks. Physica,D,104:286–325, 1997.
    [101] J. G. Chen,Hsu.S.B.,Zhou. Snapback repelleras a cause of chaotic vibration of the wave equa-tion with a van der pol boundary condition and energy injection at the middle of the span. J.Math.Phys., 39:6459–6489, 1998.
    [102] X.F.Wang,G.Chen. Chaotifying a stable lti system by tiny feedback control. IEEE Trans. on Circ.Syst, 47:410–415, 2000.
    [103] Charef A,Sun H.H,Tsao Y.Y,Onaral B. Fractal system as represented by singularity function.IEEE Transactions on Automatic Control, 37(9):1465–1470, 1992.
    [104] Peter Lancaster,Miron Tismenetsky. The Theory fo Matrices. Orlando: Academic Press, 1985.
    [105] Genesio R,Tesi A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinearsystems. Automatica, 28:531–548, 1992.
    [106] Genesio R,Tesi A,Villoresi F. A frequency approach for analyzing and controlling chaos in non-linear circuits. Circuits and Systems I: Fundamental Theory and Applications,IEEE Transactionson, 40(11):819–828, 1993.
    [107] Lu Jun-Guo. Chaotic dynamics and synchronization of fractional-order genesio–tesi systems. Chi-nese physics, 14(8):1517–1521, 2005.
    [108] Basso M,Genesio R. Analysis and Control of Limit Cycle Bifurcations, in Bifurcation Control:Theory and Applications. Springer-Verlag, Berlin, 2003.
    [109] Vidyasagar M. Nonlinear system analysis. Prentice-Hall Englewood Cliffs, 1978.
    [110] Thompso J M T,Stewart H B. Nonlinear dynamics and Chaos. New York: Wiley, 1986.
    [111] Ilia Grigorenko,Elena Grigorenko. Chaotic dynamics of the fractional lorenz system. PHYSICALREVIEW LETTERS, 91:034101–1–034101–4, 2003.
    [112] W. H. Deng,C. P. Li. Chaos synchronization of the fractional Lu¨ system. Physica A, 353:61–72,2005.
    [113] T. Liao,S. Lin. Adaptive control and synchronization of lorenz systems. J. Franklin Institute,336:925–937, 1999.
    [114] A.S. Hegazi,H.N. Agiza,M. El-Dessoky. Adaptive synchronization for Ro¨ssler and chua’s cir-cuit systems. International Journal of bifurcation and chaos, 12(7):1579–1597, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700