用户名: 密码: 验证码:
感应电动机分岔现象分析及混沌控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了感应电动机及其传动系统的分岔现象,探讨了感应电动机混沌控制及实际应用的理论与方法。
     文中首先介绍感应电动机的建模及计算机仿真技术,建立了任意速参考坐标系下的电动机统一数学模型,由此根据感应电动机的不同控制策略和运行状态,导出状态变量方程描述的时域模型作为后继研究的基础。
     其次分析了感应电动机及其传动系统的分岔现象。一是应用Lyapunov方法及中心流形定理研究了感应电动机本体的运动稳定性,揭示了感应电动机在输入功率不足以驱动负载时,电动机运行过程中将出现鞍结分岔,这对于分析感应电动机应用于垂直牵引如电梯、起重机的运动过程,避免发生故障具有重要的实际意义;二是针对常用的感应电动机间接磁场定向控制(IFOC)系统,研究了转子电阻这一个难以准确实时检测或估计的时变参数的影响,得出当PI速度调节器的参数设计不适应转子电阻的变化时,系统将出现Hopf分岔而发生振荡,由此得到Hopf分岔产生的条件,从而提出了PI速度调节器参数设计新方法,增强了系统运行的稳定性和可靠性,弥补了IFOC系统的不足。
     诱发感应电动机的混沌运动或感应电动机的混沌反控制是一个很有实际意义的课题,如感应电动机的一个重要应用领域是驱动振动设备,提高振动的工作效率可以节省大量的电能。为此本文通过对IFOC系统的反馈控制实现了感应电动机的混沌振动,即混沌反控制,研究证实混沌振动可以有效地提高振动效率,并降低振动噪声,文中用Lyapunov指数和维数及功率谱方法量化了混沌反控制系统的性态,为其工程应用打下基础。
     然后基于混沌理论提出了两种新的PWM产生策略——混沌SPWM和混沌SVPWM。针对常规PWM逆变器由于开关频率固定,输出波形在开关频率及倍频周围含有幅值较高的谐波成分的固有缺点,混沌SPWM和混沌SVPWM通过控制逆变器开关频率按混沌规律变化,改变逆变器输出谐波的频谱分布,降低谐波峰值,有效地抑制谐波的影响,减少感应电动机电流和转矩脉动,具有较好的实际应用价值。实验和仿真验证了研究的正确性。
     最后,为进一步探索感应电动机的混沌控制,在A.Duchateau et al的多模型控制策略基础上提出了一种新的混沌控制方法。多模型控制策略是一种改进的OGY方法,通过在混沌系统的一条收敛轨道上设置一系列的局部线性模型,由线性反馈控制律把混沌系统引导到不动点。而本文的控制律由人工免疫算法产生,研究表明基于人工免疫算法的混沌多模型微扰控制方法能有效控制混沌并减少混
Bifurcation phenomenon in induction motor drives, together with theories and methods for chaotic control and its applications to induction motor drives are studied in this dissertation.
    Firstly, Modeling and simulation techniques of induction motor are introduced. State equations based on reference frame transformation theory are employed as mathematical model to induction motor operating under different control strategies for the further research work.
    Secondly, Bifurcations in induction motor and drives are concerned with. Stability of induction motor is analyzed with Lyapunov stability theory and center manifold theorem. It is shown that saddle-node bifurcation happens in induction motor when there is not enough input power to drive load. The result is useful in motion analysis of vertical traction such as elevator and crane that should avoid the occurrence of operation fault. Moreover, bifurcation in indirect field oriented control (IFOC) of induction motor drive is also analyzed. In IFOC system, with poor PI speed controller setting, oscillations may occur due to the existence of Hopf bifurcation provided the motor rotor resistance is not exactly estimated. Conditions for the emergence of Hopf bifurcation are derived and, guidelines for proper PI speed controller setting are proposed to improve stability and reliability of IFOC.
    Thirdly, recent research has shown that chaotic oscillation could actually promote oscillating efficiency, save energy and reduce noise. Induction motor is widely used in driving oscillating machines. Thus, how to make it chaotic or how to obtain anti-control of chaos in it is a significant work. In this dissertation, anti-control of chaos in an induction motor is realized by a feedback control to IFOC. The chaotic drive's characteristics are measured by Lyapunov exponents, Lyapunov dimensions and power spectra of time series. The study, which our researches are preceding, lays the foundation for oscillating engineering applications.
    Fourthly, two new PWM schemes: chaos-based SPWM and chaos-based SVPWM are brought forward. There are cluster harmonics around the multiples of switching frequency in conventional SPWM and SVPWM output waves owing to their fixed switching frequencies. Chaos-based PWM strategies utilize a chaotic changing switching frequency to spread the harmonics continuously to a wideband area so that
引文
[1] 格莱克,张淑誉译.混沌:开创新科学.上海:上海译文出版社,1990.
    [2] 王兴元著.复杂非线性系统中的混沌.北京:电子工业出版社,2003:2.
    [3] 苗东升.混沌学的辩证思想.内蒙古大学学报(哲学社会科学版),1994,(4):55-60.
    [4] Li T. Y. and Yorke J. A. Period three implies chaos. Amer Math Monthly, 1975, 82:481-485.
    [5] Guanrong Chen. Chaotification via feedback control: theories, methods, and applications. PhysCon, St. Petersburg, Russia, 2003: 468-474.
    [6] 陈士华,陆君安编著.混沌动力学初步.武汉:武汉水利电力大学出版社,1998:38-43.
    [7] 吕金虎,陆君安,陈世华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002:27-46.
    [8] S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini and D. Maza. The control of chaos:theory and applications. Physics Reports 329, 2000: 103-197.
    [9] Yu-Chu Tian and Furong Gao. Adaptive control of chaotic continous-time systems with delay. Physica D, 1998, 117: 1-12.
    [10] Shyi-Kae, Chieh-Li Chen and Her-Terng Yau. Control of chaos in Lorenz system.Chaos, Solitons and Fractals, 2002, 13: 767-780.
    [11] Chen CL and Xu RL. Tracking control of robot manipulator using sliding mode controller with performance robustness. ASME J Dynamic Systems, Measurement,Control, 1999, 121:1-7.
    [12] V. Cimagalli, S. Jankowski, M. Giona and T. Calascibetta. Neural networks reconstruction and prediction of chaotic dynamics. Proceedings of the IEEE International Symposium on Neural Networks, Baltimore, MD, June, 1992: 75-80.
    [13] T. W. Frison. Controlling chaos with a neural network. Proc. of Int'l Conf. on Circuits and Systems, Seattle, WA, May, 1993: 2176-2179.
    [14] Po Ki Yuen and Haim H. Bau. Controlling chaotic convection using neural nets theory and experiments. Neural Networks, 1998, 11: 557-559.
    [15] Frison T M. Controlling chaos with neural network. Proceeding of International Conference on Neural Networks, Baltimore, MO, June, 1993: 75-80.
    [16] Guanrong Chen and Xiaoning Dong. Identification and control of chaotic??systems: an artificial neural network approach. Proceedings of the IEEE International Symposium on Circuits and Systems, Seattle, WA, April 29-May 3, 1995, 2: 1177 -1182.
    
    [17] Paolo Arena, Luigi Fortuna and Mattia Frasca. Chaos control by using motor maps. Chaos, 2002, 12(3): 559-573.
    
    [18] Kumpati S. Narendra and Kannan Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Transactions on neural Networks, 1990, 1(1): 4-26.
    
    [19] Guanrong Chen. Control and anticontrol of chaos. COC'97, St. Petersburg, Russia, 1997:181-186.
    
    [20] Ott Edward, Grebogi Celso and Yorke James A.. Controlling chaos. Physical Review Letter, 1990, 64 (11): 1196-1199.
    
    [21] Jackson E A. The entrainment and migration control of multiple attractor system. Physics Letter A ,1990, 151 (1): 478-484.
    
    [22] K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A. 1992, 170: 421-428.
    
    [23] K. Pyragas and A. Tamasevicius. Exprimental control of chaos by delayed self-controlling feedback. Phys. Lett. A. 1993, 180: 99-102.
    
    [23] K. Pyragas. Time-delays feedback control method and unstable controllers. PhysCon, St. Petersburg, Russia, 2003: 456-467.
    
    [24] Guanrong Chen and Xinghuo Yu. On time-delayed feedback control of chaotic systems. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, 1999, 46 (6): 767-772.
    
    [25] M. E. Bleich and J. E. S. Socolar. Stability of periodic orbits controlled by time-delayed feedback. Phys. Lett. A, 1996, 210 (1-2): 87-94.
    
    [26] W. Just, T. Bernard, M. Ostheimer, E. Reibold and H. Benner. Mechanism of time-delayed feedback control. Phys. Rev. Lett., 1997, 78: 203-206.
    
    [27] W. Just, E. Reibold, H. Berner, K. Kacperski, P. Fronczak and J. Holyst. Limits of time-delayed feedback control. Phys. Lett. A, 1999, 254 (3-4): 158-164.
    
    [28] H. Nakajima. On analytical properties of delayed feedback control of chaos. Phys. Lett. A, 1997, 232 (3-4): 207-210.
    
    [29] Guanrong Chen and Dejian Lai. Anticontrol of chaos via feedback. Proceedings of the 36~th Conference on Decision & Control, San Diego, California USA, December, 1997: 367-372.
    
    [30] G. Chen and D. Lai. Feedback control of Lyapunov exponents for discrete-timedynamic systems. International journal bifurcation and chaos, 1996, 6: 1341-1349.
    
    [31] X. F. Wang and G. Chen. On feedback anticontrol of discrete chaos. International journal bifurcation and chaos, 1999, 9: 1435-1442.
    
    [32] Ling Yang, Zengrong Liu and Guanrong Chen. Chaotifying a continuous-time system via impulsive input. International journal bifurcation and chaos, 2002, 12(5): 1121-1128.
    
    [33] Xiaofan Wang. Guangrong Chen and Xinghuo Yu. Chaotification of continuous-time systems via time-delayed feedback. COC 2002, St. Petersburg, Russia, 2002:213-216.
    
    [34] Guo-qun Zhong, Kim F. Man and Guanrong Chen. Generating chaos via a dynamical controller. International journal bifurcation and chaos, 2001, 11(3): 865-869.
    
    [35] D. C. Hamill and D. J. Jefferies. Subharmonics and chaos in a controlled switched-mode power converter. IEEE Trans. Circuits Syst., 1988, 35 (8): 1059-1061.
    
    [36] J. R. Wood. Chaos: A real phenomenon in power electronics. Proc. IEEE APEC'89, 1989: 115-123.
    
    [37] J. H. B. Deane and D. C. Hamill. Instability, subharmonics, and chaos in power electronic systems. IEEE Trans. Power Electronics, 1990 (5): 260-268.
    
    [43] Y. Kuroe and S. Hayashi. Analysis of bifurcation in power electronic induction motor drive systems. Proc. IEEE PESC'89, 1989: 923-930.
    
    [44] N. Hemati. Strange attractors in brushless DC motors. IEEE Trans. Circuits and Systems 1: Fundamental Theory and Application, 1994, 41 (1): 40-45.
    
    [45] I. Nagy. Improved current controller for PWM inverter drives with the background of chaotic dynamics. IECON'1994, 1994:561-566.
    
    [46] K. T. Chau, J. H. Chen, C. C. Chan and David T. W. Chan. Modeling of subharmonics and chaos in DC motor drives. IECON '1997, 1997: 523-528.
    
    [47] J. H. Chen, K. T. Chau, Q. Jiang, C. C. Chan and S. Z. Jiang. Modeling and nalysis of chaotic behavior in switched reluctance motor drives. IECON' 2000, 2000: 1551-1556.
    
    [48] S. Y. R. Hui, S. Sathiakumar and Y. Shrivastava. Progressive change of chaotic PWM patterns in DC/AC random PWM schemes using weighted switching decision. PESC'97, 1997: 1454-1461.
    
    [49] I. Nagy. Tolerance band based current control of induction machines highlighted with the theory of chaos. CIEP, Puebla, MEXICO, August 21-25, 1994: 155-160.
    
    [50] Z. Suto, I. Nagy and E. Masada. Avoiding chaotic processes in current control ofAC drive. PESC'98, 1998: 255-261.
    [51] Andreas Magauer and Soumitro Banerjee. Bifurcations and chaos in the tolerance band PWM techique. IEEE Trans. on Circuits and Systems, 2000, 47 (2): 254-259.
    [52] 曹志彤,郑中胜.电机运动系统的混沌特性.中国电机工程学报,1998,18(5):318-322.
    [53] Toshiyyuki Asakura, Keizo Yoneda and Yoshinobu Satio. Chaos detection in velocity control of induction motor and its control by using neural network.Proceedings of ICSP2000:1633-1638.
    [54] Kazuhisa Mitobe and Norihiko Adachi. Bifurcation in an adaptive DC servo system. International Journal of Control, 1991, 54 (4): 831-847.
    [55] 毛宗源,邱焕耀.感应电动机解耦变结构控制系统抖振和消除的研究.自动化学报.1994,20(2):169-176.
    [56] Z. Li, B. Zhang and Z. Y. Mao. Strange attractor in permanent-magnet synchronous motor. IEEE 1999 Int. Conference on Power Electronics and Drive Systems, Hong Kong, 1999, 150-155.
    [57] Li Z, Zhang B and Mao Z Y. Study on chaos and stability in permanent-magnet synchronous motors. Journal of South China University of Technology (Natrual Science Edition), 2000, 28 (12): 125-130.
    [58] 张波,李忠,毛宗源,庞敏熙.一类永磁同步电动机混沌模型与霍夫分叉.中国电机工程学报,2001,21(9):13-17.
    [59] Z. Li, B. Zhang, Z. Y. Mao and M. H. Pong. Bifurcation analysis of the permanent magnet synchronous motor models based on the center manifold theorem.Control Theory and Application, 2000, 17 (3): 317-320.
    [60] Z. Li, J. B. Park, Y. H. Joo, B. Zhang, Z. Y. Mao and G. R. Chen. Bifurcation and chaos in a permanent-magnet synchronous motor. IEEE Translations on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 2002, 49 (3): 383-387.
    [61] Li Z, Zhang B and Mao Z Y. Numerical algorithm of Poincare map and its application in analyzing the chaotic phenomena of the permanent-magnet synchronous motor. Control Theory and Application, 2001, 18 (5):796-800.
    [62] 张波,李忠,毛宗源.利用时间序列重构永磁同步电动机混沌吸引子,控制与决策,2001,(3):31-34.
    [63] 张波,李忠,毛宗源,侯小梅,庞敏熙.利用Lyapunov指数和容量维分析永磁同步电机仿真中的混沌现象.控制理论与应用,2001,18(4):589-596.
    [64] 张波,李忠,毛宗源.永磁同步电动机的混沌特性及其反混沌控制.控制理论与应用,2002,19(4):545-548.[65] 张波,李忠,毛宗源.永磁同步电动机的混沌模型及其模糊建模.控制理论与应用,2002,19(6):841-844.
    [66] 李忠,张波,毛宗源.永磁同步电动机系统的纳入轨道和强迫迁徙控制.控制理论与应用.2002,19(1):53-56.
    [67] 张波,李忠,毛宗源,庞敏熙.Poincare映射的数值算法及其在永磁同步电机混沌分析中的应用.控制理论与应用,2001,18(5):796-800.
    [68] 张波,李忠,毛宗源,庞敏熙.电机传动系统的不规则运动和混沌现象初探.中国电机工程学报,2001,21(7):40-45.
    [69] 龙运佳,王书茂,王聪玲,张平.混沌振动压路机.建筑机械,1998,(6):18-22.
    [70] 龙运佳,张平,王聪玲,苏元升.无簧混沌振动器.力学与实践,1997,19(1):42-44
    [71] Ito Shunji and Narikiyo Tatsuo. Abrasive machine under wet condition and constant pressure using chaotic rotation. Journal of the Japan Society for Precision Engineering, 1998, 64 (5): 748-752.
    [72] 张健.三相异步电机电磁噪声的控制.中小型电机,2002,29(2):71-72.
    [73] 刘骏跃.电动机的噪声控制.煤矿机械,2001,8:67-68.
    [74] 黄礼文,王宗培.电动机噪声理论与控制技术的进展,电工技术学报,2000,15(5):34-38.
    [75] 周启章.鼠笼式异步电动机的噪声电机设计.交流逆变器供电,1995,3:3-5.
    [76] 辜承林编著.机电动力系统分析.武汉:华中理工大学出版社,1998:112.
    [77] 陈伯时,陈敏逊编著.交流调速系统.机械工业出版社,2002:182-206.
    [78] 张少军,杜金城编著.交流调速原理及应用.中国电力出版社,1998:99-117.
    [79] 李永东主编.交流电机数字控制系统.北京:机械工业出版社,2002:365-384.
    [80] Chee-Mun Ong. Dynamic simulation of electric machinery. New Jersey: Prentice-Hall PTR, 1998: 426-433.
    [81] 王沫然编著,陈怀琛审校.Simulink 4建模及动态仿真.北京:电子工业出版社,2002:175-176.
    [82] 薛定宇,陈阳泉著.基于MTLAB/Simulink的系统仿真技术及应用,北京:清华大学出版社,2002:296-311.
    [83] M. Depenbrock. Direct self-control (DSC) of inverter-fed induction machine.IEEE Transactions on Power Electronics, 1988, 3 (4): 420-429.
    [84] 李红梅,李忠杰,刘良成.逆变器供电下异步电动机低频振荡现象的研究.电工技术学报,2000,15(3):16-19.
    [85] Bayer K H and Blashke F. Stability problem with the control of induction motors??using the method of field orientation. Conf. Record of IEEE Industry Application Society Annual Meeting, 1989: 384-389.
    [86] Krishan R. and Bharadwaj A. S.. A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drives systems. IEEE Trans.on Power Electronics, 1991, 6 (4): 695-703.
    [87] 盛昭瀚,马军海.非线性动力系统分析引论.北京:科学出版社,2001:23.
    [88] 马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001:223-234.
    [89] Paul A. S. De Wit, Romeo Ortega and Iven Mareels. Indirect field-oriented control of induction motors is robustly globally stable. Automatica, 1996, 32 (10):1393-1402.
    [90] A. S. Bazanella and R. Reginatto. Robustness margins for indirect field-oriented control of induction motors. IEEE Tran. on Automatic Control, 2000, 45 (6):1226-1231.
    [91] A. S. Bazanella, R. Reginatto and R. Valiati. On Hopf bifurcations in indirect field oriented control of induction motors: Designing a robust PI controller,Proceedings of the 38# conference on decision & control phoenix, Arizona USA,December 1999: 689-694.
    [92] Francisco Gordillo, Francisco Salas, Romeo Ortega and Javier Aracil. Hopf bifurcation in indirect field-oriented control of induction motors. Automatica, 2002,38 (5): 829-835.
    [93] Guanrong Chen. Control and anticontrol of chaos. Proc. 1st Int. Conf. Control of Oscillations and Chaos, St. Petersburg, Russia, Aug 1997: 181-186.
    [94] Alan Wolf, Jack B. Swift, Harry L. Swinney and John A. Vastano. Determining Lyapunov exponents from a time series. Physica 16D, 1985: 285-317.
    [95] J. P. Eckmann and D. Ruelle. Ergodic theory of chaos. Rev. Mod. Phys. 1985, 57(3): 617-656.
    [96] 刘延柱,陈立群编著.非线性振动.北京:高等教育出版社,2001:57.
    [97] 彭芳麟,管靖,胡静,卢圣治.理论力学计算机模拟.北京:清华大学出版社.2002:173-182.
    [98] 龙运佳.混沌工程学.中国工程科学,2001,3(2):10-15.
    [99] Andrzej M. Trzynadlowski, John K. Pedersen and Stanislaw Legowski. Random pulse width modulation techniques for converter-fed drive system-A review. IEEE Transactions on Industry Applications, 1994, 30 (5): 1166-1175.
    [100] 李永东主编.交流电机数字控制系统.北京:机械工业出版社,2002:??153-161.
    [101] H. Wong, Y. Chan and S. W. Ma. Electromagnetic interference of switching mode power regulator with chaotic frequency modulation. Proc. 23rd International Conference on Microelectronics, Nis, Yugoslavia, May 2002: 577-580.
    [102] A. Bellini, G. Franceschini, R. Rovatti, G. Setti and C. Tassoni. Generation of low-EMI PWM patterns for induction motor drives with chaotic maps. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001: 1527-1532.
    [103] Sergio Callegari, Riccardo Rovatti and Gianluca Setti. Spectral properties of chaos-based FM signals: theory and simulation results. IEEE Transactions on Circuits and Systems-1: Fundamental Theory and Applications, 2003, 50 (1): 3-15.
    [104] T. G. Habetler and D. M. Divan. Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier. IEEE Trans. Power Electron., 1991, 6 (3):356-363.
    [105] 余群明,王耀南.类噪声混沌编码在图像联想记忆中的应用研究.系统工程与电子技术,2002,24(11):16-21.
    [106] 徐爱卿.Intel 16位单片机(修订版).北京:北京航空航天大学出版社.2002:377-395.
    [107] John K. Pedersen and Frede Blaabjerg. Implementation and test of a digital quasi-random modulated SFAVM PWM in a high performance drive system.Proceedings of IECON' 92, 1992: 265-270.
    [108] A. M. Trzynadlowski, R. L. Kirlin and S. Legowski. Space vector PWM technique with minimum switching losses and variable pulse rate. Proceedings of IECON' 93, 1993: 689-694.
    [109] R. L. Kirlin, S. Kwok, S. Legowski and A. M. Trzynadlowski. Power spectrum of a PWM inverter with randomized pulse position. IEEE Trans. on Power Electronics,1994, 9 (5): 462-472.
    [110] S. H. Na, Y. G. Lim and S. H. Yang. Reduction of audible switching noise in induction motor drives using random position space vector PWM. IEE Proceedings of Electric Power Applications, 2002, 49 (3): 195-200.
    [111] Y. S. Lai. Sensorless speed vector-controlled induction motor drives using new random technique for inverter control. IEEE Trans. on Energy Conversion, 1999, 14 (4): 1147-1155.
    [112] Duchateau A., Bradshaw N. P. and Bersini H.. A multi-model solution for the control of chaos. International Journal of Control, 1999, 72 (7/8): 727-739.
    [113] Bersini Hugues. The endogenous double plasticity of the immune network and??the inspiration to be drawn for engineering artifacts. In: Dipankar Dasgupta. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999: 22-44.
    [114] 周伟良,何鲲,曹先彬,程慧霞.基于一种免疫遗传算法的BP网络设计.安徽大学学报(自然科学版),1999,23(1):63-66.
    [115] Fukuda Toyoo, Mori Kazuyuki and Tsukiyama Makoto. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm.In: Dipankar Dasgupta. Artificial Immune Systems and Their Applications. Berlin:Springer-Verlag, 1999:210-220.
    [116] Chun Jang-Sung, Kim Min-Kyu and Jung Hyun-Kyo. Shape optimization of electromagnetic devices using immune algorithm. IEEE Transactions on Magnetic,1997, 33 (2): 1876-1879.
    [117] Henon M.. A two-dimensional mapping with a strange attractor. Communication in Mathematical Physics, 1976, 50 (1): 69-77.
    [118] 钟晓敏,邵世煌,方建安.用遗传算法引导混沌轨道.控制与决策,1998,13(2):165-168.
    [119] 秦红磊,李晓白.一种基于帐篷映射的混沌搜索全局最优方法.电机与控制学报.2004,8(1):67-70.
    [120] Z. Suto and I. Nagy. Saddle-nodes and coexisting attractors in three-phase space vector modulated converters. IEEE ICIT'02, Bangkok, Thailand, 2002:1061-1066.
    [121] Z. Suto and I. Nagy. Analysis of nonlinear phenomena and design aspects of three-phase space-vector-modulted converters. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 2003, 50 (8): 1064-1071.
    [122] 李忠.永磁同步电机混沌模型及其混沌现象分析与控制.华南理工大学博士学位论文.2000:79-87.
    [123] 张锦炎,冯贝叶.常微分方程几何理论与分支问题(第二次修订本).北京:北京大学出版社,2000:339-348.
    [124] F. Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence. Berlin: Springer-Verlag, 1981: 366-381.
    [125] P. Grassberger, T. Schreiber and C. Schaffrath. Linear time sequence analysis. Int. J. Bifurcation Chaos, 1991, 10 (1): 127-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700