用户名: 密码: 验证码:
大跨度斜拉桥静动力可靠度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优美的造型和良好的结构性能等特点,使得斜拉桥成为大跨度桥梁极具竞争性的桥型之一。目前大跨度斜拉桥的设计和建设基本采用确定性方法,这与斜拉桥实际上受多种随机因素的影响不符,确定性的分析方法难以揭示出结构材料参数、几何形状和外荷载等的变异对斜拉桥安全性的内在影响。作为高次超静定柔性结构,大跨度斜拉桥结构响应复杂。基于概率理论的可靠度分析方法研究随机因素作用下的斜拉桥结构安全可靠性,为大跨度斜拉桥的设计、建设和养护提供更合理的依据。斜拉桥结构的体系可靠度和抗震可靠度分析是工程实践中亟待解决的问题之一。本文以建成的三座斜拉桥为工程背景,开展了斜拉桥结构的体系和抗震可靠度研究工作,取得了以下成果:
     (1)由虚功方程建立了平面梁单元T.L.列式的增量平衡方程,推导了平面梁与桁架单元的的弹性刚度矩阵和几何刚度矩阵,采用分段分块变刚度法计算梁单元的弹塑性刚度矩阵;推导了直接微分法计算结构响应梯度的公式;将有限元法与一次可靠度方法结合,建立了杆系结构的非线性有限元可靠度分析方法,采用Fortran90语言编制了基于直接微分法的有限元可靠度分析计算程序,并采用数值算例验证了所编程序的正确性和精度。
     (2)考虑随机场的影响,研究了超大跨度斜拉桥在正常使用状态下的可靠度,进行了随机变量分布参数敏感性分析,识别了对斜拉桥结构可靠度指标有较大影响的主要随机变量;总结了随机场离散变量的分布参数对斜拉桥结构可靠度指标的敏感性规律。
     (3)研究了超大跨度斜拉桥主塔、主梁和斜拉索承载能力极限状态下的可靠度,并对典型构件单元进行了随机变量分布参数敏感性分析,识别出对主塔、主梁和斜拉索不同单元可靠度指标影响最大的随机变量;总结了随机场离散变量分布参数对主塔、主梁和斜拉索等不同单元可靠度指标的敏感性规律。
     (4)考虑几何非线性的影响,基于p约界法搜索了斜拉桥结构的主要失效模式,然后将斜拉桥结构的失效等效为一个串并联系统,研究了超大跨度斜拉桥承载能力极限状态下的2级体系可靠度问题。
     (5)研究了基于神经网络和支持向量机的响应面可靠度分析方法,对传统的基于二次多项式的响应面法进行了改进,推导了神经网络和支持向量机响应面对随机参数的一阶和二阶导数,利用神经网络和支持向量机良好的泛化能力,解决多设计验算点的可靠度问题,并将神经网络和支持向量机方法应用于高度非线性极限状态曲面的可靠度计算问题。
     (6)从模式识别的角度,将Monte Carlo模拟等概率变换为一个二分类问题,研究了基于神经网络和支持向量机的模式识别可靠度分析方法,数值算例的结果表明,基于多层前向网和支持向量机的模式识别可靠度分析方法能有效提高Monte Carlo模拟的计算效率,而径向基函数神经网络不适合于模式识别可靠度分析方法。
     (7)分别从响应面拟合和模式识别不同角度研究了基于神经网络和支持向量机的重要抽样法,提出了改进的重要抽样(ISM)计算方法,大大提高了重要抽样法的计算效率。通过数值算例分析,验证了基于神经网络和支持向量机的重要抽样法的准确性和有效性;算例结果也说明,径向基函数神经网络不适合于模式识别重要抽样法。
     (8)九江大桥斜拉桥正常使用状态下可靠度的计算结果表明,基于神经网络和支持向量机的可靠度分析方法的计算效率和精度较好,可用于实际工程结构的可靠度分析,具有较高的实用价值。
     (9)将一次可靠度分析方法推广到大跨度斜拉桥的首次超越问题研究,针对设计验算点激励搜索困难的问题,提出基于神经网络的验算点激励法,为搜索精确的验算点激励提供了一个较好的初值;基于FORM首次超越概率分析方法研究了珠江黄埔大桥主塔关键截面的抗震可靠性。
     (10)将首次超越概率问题由一个动力可靠度问题转化为静力可靠度问题,研究了基于神经网络响应面法的动力可靠性分析方法,分析计算了珠江黄埔大桥主塔关键截面水平地震激励下的抗震可靠度。
With the prominently esthetic feature and excellently structural beahavior performance, cable-stayed bridges are one of the most competitive bridges for long-span bridges. Until now the design and construction of modern long-span cable-stayed bridge are basically adopted the deterministic method, which is not accordance with the structural behavior. The responses of cable-stayed bridge under environmental effects are essentially affected by many random factors such as external loadings, material parameters and geometry factors of the cable-stayed bridges. As a highly indeterminate and flexible structure, the structural responses of long-span cable-stayed bridges are complex. It is difficult to use the deterministic method to demonstrate the substantial influence on the cable-stayed bridge's security which results from the stochastic variations of structural material parameters, geometry factors and external loadings. The reliability analysis of structures provides some solutions for the structural security of long-span cable-stayed bridges which is under the effect of random factors, and the reliability analysis method also provides the design, construction and maintainence of long-span cable-stayed bridges with a more rational basis. And the systematic and seismic reliability analysis is one of problems which are needed to be solved for the design and construction of long-span cable-stayed bridges. With three completed cable-stayed bridges as the engineering background, the systematic and seismic reliability of long-span cable-stayed bridges were investigated and presented in this dissertation. The theoretical innovations and main technological results are summarized as follows:
     (1) Based on the incremental virtual work equation of 2-D continuum, the incremental equilibrium equations of a plane beam and truss element in T.L. formulation was developed. The elastic and geometric stiffness matrix were deduced, and the elasto-plastic stiffness matrix of the beam element was calculated with the fiber model. The formula of response gradients in Direct Differentiation Method was deduced. A nonlinear FEM/FORM reliability approach was proposed and a stochastic finite element program written in FORTRAN was developed. Several numerical examples were computed to validate the accuracy and high efficiency of the proposed approach and program.
     (2) Considering the influence of random fields, the reliability of the long-span cable-stayed bridge under the serviceability limit-state was studied, and the sensitivities of the reliability index with respect to the means and the standard deviations of the random variables were computed. The most sensitive random variables on the reliability index were distinguished. The rules of the sensitivity which results from the distributed parameters of the discrete random variables in the random field to the reliability index were summarized.
     (3) The element reliability indices of the pylons and the main girder and the cables of the long-span cable-stayed bridge under the ultimate limit-state were calculated, and the sensitivities of the random variable's distributed parameter about the typical component units are engaged. The random variables which have the greatest impact on the reliability index of different units about the pylons and the main girder and the cables of the long-span cable-stayed bridge were found out. The rules of the sensitivity in which the distributed parameters of the discrete random variables in random fields to the reliability index of different units about the tower and the girder and the cables were concluded.
     (4) With considering the influence of geometrical nonlinearity, the system reliability at level 2 of the long-span cable-stayed bridge was analyzed. The (3-unzipping method was used to search the main failure modes of the cable-stayed bridge which is regarded as a series-parallel system in the end.
     (5) The artificial neural network-based (ANN) Response Surface Method and the support vector machines-based (SVM) Response Surface Method were proposed to make some improvement about the traditional quadratic Response Surface Method. The first-order and the second-order gradients of the response based on ANN and SVM with respect to random variables are derived. The generalizing ability of ANN and SVM was used to resolve the problems with multiple design points in the limit state function and the highly nonlinear limit state function.
     (6) The ANN-based and SVM-based pattern recognition reliability methods were studied by transforming the Monte Carlo simulation to a two classification problem in the same probability. The results of the numerical examples showed that the MLP-based and SVM-based pattern recognition reliability methods can enhance the computational efficiency of Monte Carlo simulation. The radial basis function network is not suited for the pattern recognition reliability method.
     (7) The Important Sampling Method is improved by ANN-based and SVM-based important sampling methods from the viewpoints of the RSM and pattern recognition. The accuracy and efficiency of the ANN-based and SVM-base important sampling methods were verified by the results of the numerical examples. The radial basis function network can not be used as a classifier in the pattern recognition important sampling method.
     (8) The results of the reliability analysis of the Jiujiang Cable-Stayed bridge under the serviceability limit-state indicate that the accuracy and efficiency of the ANN-based and SVM-base reliability methods are verified. These methods can be used in structural reliability analysis of practical long-span bridges.
     (9) The first-order reliability method was used to study the first excursion question of long-span cable-stayed bridges. It is very difficult to determine the exact design point excitation. The artificial neural network-based design-point excitation method was suggested to give a favorable starting point to obtain the exact design point excitation. The first excursion probability of the crucial section of the tower in the Pearl River Huangpu Bridge was investigated by the first-order reliability method.
     (10) The first excursion question was converted from the dynamic reliability problem to a static reliability problem, and the artificial neural network-based response surface method was discussed. The method was used to investigate the seismic reliability of the crucial section of the tower of the Pearl River Huangpu Bridge under the ground motion excitation.
引文
[1]陈明宪.斜拉桥的发展与展望[J].中外公路,2006,26(4):76-86.
    [2]秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程应用[M].北京:清华大学出版社,2006.
    [3]Hasofer A. M., Lind N. C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division,1974,100(1):111-121.
    [4]Rackwitz R., Flessler B. Structural reliability under combined random load sequences[J]. Computers & Structures,1978,57(2):171-176.
    [5]Breitung K. Asymptotic Approximations for Multinormal Integrals[J]. Journal of Engineering Mechanics,1984,110(3):357-366.
    [6]Der Kiureghian A., Lin H. Z., Hwang S. J. Second-Order Reliability Approximations[J]. Journal of Engineering Mechanics,1987,113(8):1208-1225.
    [7]Bucher C. G., Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety,1990,7(1):57-66.
    [8]Zhang Y., Der Kiureghian A. First-excursion probability of uncertain structures [J]. Probabilistic Engineering Mechanics,1994,32(2):145-153.
    [9]Li C. C., Der Kiureghian A. Mean out-crossing rate of nonlinear response to stochastic input:Proceedings of ICASP7,7th International Conference On Applications of Statistics and Probability in Civil Engineering and Risk Analysis, Paris, France,1995[C].
    [10]Der Kiureghian A. The geometry of random vibrations and solutions by FORM and SORM[J]. Probabilistic Engineering Mechanics,2000,17(4):231-236.
    [11]Koo H., Der Kiureghian A., Fujimura K. Design-point excitation for non-linear random vibrations [J]. Probabilistic Engineering Mechanics,2005,8(3):255-264.
    [12]Ditlevsen O., Madsen H. O.结构可靠度方法[M].何军.上海:同济大学出版社,2005.
    [13]Liu P. L., Der Kiureghian A. Optimization algorithms for structural reliability [J]. Structural Safety,1991,48(5):885-892.
    [14]梅刚.基于非线性随机有限元的结构可靠度问题研究[D].北京:清华大学,2005.
    [15]Guan X. L., Melchers R. E. Effect of response surface parameter variation on structural reliability estimates[J]. Structural Safety,2001,16(3):229-230.
    [16]Hurtado J. E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[J]. Structural Safety, 2004,22(2):2298-2301.
    [17]苏成,李鹏飞,韩大建.结构可靠度计算的Neumann展开响应面法[J].华南理工大学学报(自然科学版),2009,37(9):13-17.
    [18]张明.结构可靠度分析—方法与程序[M].北京:科学出版社,2009.
    [19]Thoft-Christensen P., Murotsu Y. Application of structural systems reliability theory[M]. New York:Springer-Verlag,1986.
    [20]Moses F. System reliability developments in structural engineering[J]. Structural Safety, 1982,1:3-13.
    [21]王建军,于长波,李其汉.工程中的随机有限元方法[J].应用力学学报,2009,26(2):297-303.
    [22]武清玺.结构可靠性分析及随机有限元法理论·方法·工程应用及程序设计[M].北京:机械工业出版社,2005.
    [23]杨杰.非线性结构随机分析数值模拟的方法研究[D].成都:西南交通大学,2004.
    [24]Sudret B., Der Kiureghian A. Stochastic finite elements and reliability:a state-of-the-art report[R].Technical Report no UCB/SEMM-2000/08,University of California,BekeleyBerkeley,2000.
    [25]Yamazaki F., Shinozuka M., Dasgupta G. Neumann Expansion for Stochastic Finite Element Analysis[J]. Journal of Engineering Mechanics,1988,114(8):1335-1354.
    [26]黄炎生,韩大建.一种随机有限元新方法[J].华南理工大学学报,1995,23(1):100-105.
    [27]Ghanem R. G., Spanos P. D. Spectral Stochastic Finite-Element Formulation for Reliability Analysis[J]. Journal of Engineering Mechanics,1991,117(10):2351-2372.
    [28]Sudret B., Der Kiureghian A. Comparison of finite element reliability methods[J]. Probabilistic Engineering Mechanics,2002,32(2):145-153.
    [29]Der Kiureghian A., Ke J. B. The stochastic finite element method in structural reliability [J]. Probabilistic Engineering Mechanics,1988,53(4):929-935.
    [30]Liu P. L., Der Kiureghian A. Finite Element Reliability of Geometrically Nonlinear Uncertain Structures [J]. Journal of Engineering Mechanics,1991,117(8):1806-1825.
    [31]Imai K., Frangopol D. M. Reliability-Based Assessment of Suspension Bridges: Application to the Innoshima Bridge[J]. Journal of Bridge Engineering, 2001,6(6):398-411.
    [32]Imai K., Frangopol D. M. System reliability of suspension bridges[J]. Structural Safety, 2002,60(3):373-392.
    [33]Teigen J. G., Frangopol D. M., Sture S.,等. Probabilistic FEM for Nonlinear Concrete Structures. Ⅰ:Theory[J]. Journal of Structural Engineering,1991,117(9):2674-2689.
    [34]Teigen J. G., Frangopol D. M., Sture S.,等. Probabilistic FEM for Nonlinear Concrete Structures. Ⅱ:Applications [J]. Journal of Structural Engineering, 1991,117(9):2690-2707.
    [35]Haukaas T., Der Kiureghian A. Parameter Sensitivity and Importance Measures in Nonlinear Finite Element Reliability Analysis[J]. Journal of Engineering Mechanics, 2005,131(10):1013-1026.
    [36]Barbato M. Finite element response sensitivity probabilistic response and reliability analyses of structural systems with applications to earthquake engineering[D]. San Diego: Uiversity of California, San Diego,2007.
    [37]Gu Q. Finite element response sensitivity and reliability analysis of Soil-Foundation-Structure-Interaction (SFSI) systems[D]. San Diego:Uiversity of California, San Diego,2008.
    [38]李桂青.结构动力可靠性理论及其应用[M].北京:地震出版社,1993.
    [39]Clough R. W., Penzien J. Dynamics of structures[M]. New York:McGraw-Hill,1993.
    [40]Koo H. FORM,SORM and Simulation Techniques for Nonlinear Random Vibrations[D]. CA:University of California, Berkeley,2003.
    [41]Wen Y. K. Method for random vibration of hysteretic systems [J]. Journal of the engineering mechanics division,1976,102(2):249-263.
    [42]Hagen O., Tvedt L. Vector Process Out-Crossing as Parallel System Sensitivity Measure[J]. Journal of Engineering Mechanics,1991,117(10):2201-2220.
    [43]Bayer V., Bucher C. Importance sampling for first passage problems of nonlinear structures [J]. Probabilistic Engineering Mechanics,1999,6(1):37-44.
    [44]Au S. K., Beck J. L. First excursion probabilities for linear systems by very efficient importance sampling[J]. Probabilistic Engineering Mechanics,2001,29(3):222-237.
    [45]陆立新,吴斌,欧进萍.结构动力可靠度的重要抽样法的探讨[J].世界地震工程,2007,23(3):74-78.
    [46]Katafygiotis L., Cheung S. H. Domain Decomposition Method for Calculating the Failure Probability of Linear Dynamic Systems Subjected to Gaussian Stochastic Loads[J]. Journal of Engineering Mechanics,2006,132(5):475-486.
    [47]Pradlwarter H. J., SchuAller G. I. Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation[J]. Probabilistic Engineering Mechanics, 1999,168(1):273-283.
    [48]Au S. K., Beck J. L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,23(2):208-218.
    [49]Ching J., Beck J. L., Au S. K. Hybrid Subset Simulation method for reliability estimation of dynamical systems subject to stochastic excitation[J]. Probabilistic Engineering Mechanics,2005,194(12):1557-1579.
    [50]刘佩,姚谦峰.结构动力可靠度计算的区域分解法和重要抽样法[J].振动与冲击,2008,27(12):52-55.
    [51]Huh J., Haldar A. Seismic reliability of non-linear frames with PR connections using systematic RSM[J]. Probabilistic Engineering Mechanics,2002,235(17):1897-1908.
    [52]Zhang J., Foschi R. O. Performance-based design and seismic reliability analysis using designed experiments and neural networks[J]. Probabilistic Engineering Mechanics, 2004,198(1):28-41.
    [53]Moller O., Foschi R. O., Rubinstein M.,等. Seismic structural reliability using different nonlinear dynamic response surface approximations [J]. Structural Safety, 2009,12(3):201-204.
    [54]陈颖,王东升,朱长春.随机结构在随机载荷下的动力可靠度分析[J].工程力学,2006,23(10):82-85.
    [55]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.
    [56]Schueremans L., Van Gemert D. Benefit of splines and neural networks in simulation based structural reliability analysis[J]. Structural Safety,2005,30(4):277-290.
    [57]Papadrakakis M., Papadopoulos V., Lagaros N. D. Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering,1996,14(1):27-32.
    [58]Hurtado J. E., Alvarez D. A. Neural-network-based reliability analysis:a comparative study[J]. Computer Methods in Applied Mechanics and Engineering, 2001,27(3):246-261.
    [59]Gomes H. M., Awruch A. M. Comparison of response surface and neural network with other methods for structural reliability analysis [J]. Structural Safety, 2004,27(3):246-261.
    [60]Elhewy A. H., Mesbahi E., Pu Y. Reliability analysis of structures using neural network method[J]. Probabilistic Engineering Mechanics,2006,27(3):246-261.
    [61]Deng J., Gu D., Li X.,等. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety,2005,35(3):459-467.
    [62]Deng J. Structural reliability analysis for implicit performance function using radial basis function network[J]. International Journal of Solids and Structures,2006,48(1):225-236.
    [63]Cheng J., Li Q. S., Xiao R. A new artificial neural network-based response surface method for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2008,21(1):44-53.
    [64]Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer,1995.
    [65]赵卫,刘济科.基于支持向量回归的迭代序列响应面可靠度计算方法[J].机械强度,2008,30(6):916-920.
    [66]金伟良,袁雪霞.基于LS_SVM的结构可靠度响应面分析方法[J].浙江大学学报(工学版),2007,41(1):44-47.
    [67]金伟良,唐纯喜.基于SVM的结构可靠度分析响应面方法[J].计算力学学报,2007,24(6):713-718.
    [68]Hurtado J. E., Alvarez D. A. Classification Approach for Reliability Analysis with Stochastic Finite-Element Modeling [J]. Journal of Structural Engineering, 2003,129(8):1141-1149.
    [69]Hurtado J. E. Filtered importance sampling with support vector margin:A powerful method for structural reliability analysis[J]. Structural Safety,2007,22(2):160-166.
    [70]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.
    [71]沈惠申,王宗新.斜拉桥主梁静动力可靠性分析[J].中国公路学报,1996,9(1):59-65.
    [72]沈惠申,高峰.斜拉桥索塔的可靠性分析[J].中国公路学报,1994,7(4):40-43.
    [73]陈铁冰,王书庆,石志源.计入结构几何非线性影响时斜拉桥可靠度分析[J].同济大学学报,2000,28(4):407-412.
    [74]张建仁,刘扬.遗传算法和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报,2001,34(1):7-13.
    [75]程进,肖汝诚.斜拉桥结构静力可靠度分析[J].同济大学学报2004,32(12):1393-1598.
    [76]武芳文,赵雷.混凝土斜拉桥主梁静力可靠度分析[J].铁道学报,2006,28(3):88-91.
    [77]朱劲松,肖汝诚,何立志.大跨度斜拉桥智能可靠度评估方法研究[J].土木工程学报,2007,40(5):41-48.
    [78]张清华,卜一之,乔李.斜拉桥结构可靠度分析的混沌混合算法[J].中国公路学报,2008,21(3):48-52.
    [79]Bruneau M. Evaluation of System-Reliability Methods for Cable-Stayed Bridge Design[J]. Journal of Structural Engineering,1992,118(4):1106-1120.
    [80]Wang J., Ghosn M. Hybrid Data Mining/Genetic Shredding Algorithm for Reliability Assessment of Structural Systems[J]. Journal of Structural Engineering, 2006,132(9):1451-1460.
    [81]陈铁冰.斜拉桥几何、材料非线性静力分析及其可靠度评估[[D].上海:同济大学,2000.
    [82]唐涛.斜拉桥结构体系使用安全性评估理论与方法研究[D].上海:同济大学,2006.
    [83]林国雄,秦顺全,朱华民,等.宁波招宝山大桥加固重建工程设计[J].桥梁建设,2001,3:18-21.
    [84]Choi H-H, Lee S-Y, Choi I-Y,等. Reliability-based failure cause assessment of collapsed bridge during construction[J]. Reliability Engineering & System Safety, 2006,35(1):23-30.
    [85]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [86]Filiatrault A., Tinawi R., Massicotte B. Damage to Cable-Stayed Bridge during 1988 Saguenay Earthquake. Ⅰ:Pseudostatic Analysis[J]. Journal of Structural Engineering, 1993,119(5):1432-1449.
    [87]Filiatrault A., Tinawi R., Massicotte B. Damage to Cable-Stayed Bridge during 1988 Saguenay Earthquake. Ⅱ:Dynamic Analysis[J]. Journal of Structural Engineering, 1993,119(5):1450-1463.
    [88]Chang K. C., Mo Y. L., Chen C. C.,等. Lessons Learned from the Damaged Chi-Lu Cable-Stayed Bridge[J]. Journal of Bridge Engineering,2004,9(4):343-352.
    [89]武芳文.大跨度斜拉桥随机地震响应分析及其动力可靠度研究[D].成都:西南交通大学,2007.
    [90]李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学,2006.
    [91]刘怀林,赵岩.多点地震激励下大跨度桥梁动力可靠度研究[J].华中科技大学学报(城市科学版),2008,25(3):113-116.
    [92]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [93]陈兵.桥梁抗震分析的随机理论及应用研究[D].成都:西南交通大学,2008.
    [94]Franchin P. Reliability of Uncertain Inelastic Structures under Earthquake Excitation[J]. Journal of Engineering Mechanics,2004,130(2):180-191.
    [95]Kleiber M., Antunez H., Hien T. Parameter Sensitivity in Nonlinear Mechanics[M]. West Sussex:John Wiley and Sons Ltd,1997.
    [96]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003.
    [97]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [98]何君毅,林详都.工程结构非线性问题的数值解法[M].北京:国防工业出版社,1994.
    [99]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [100]林元培.斜拉桥[M].北京:人民交通出版社,2004.
    [101]Kent D. C., Park R. Flexural members with confined concrete. [J]. Journal of the Structural Division. ASCE.,1971,97(7):1969-1990.
    [102]周凌远.斜拉桥非线性理论及极限承载力研究[D].成都:西南交通大学,2007.
    [103]颜全胜.大跨度钢斜拉桥极限承载力分析[D].长沙:长沙铁道学院,1994.
    [104]徐金勇.大跨度混合梁斜拉桥弹塑性极限承载力及施工控制研究[D].广州:华南理工大学,2007.
    [105]Zhang Y., Der Kiureghian A. Dynamic response sensitivity of inelastic structures [J]. Computer Methods in Applied Mechanics and Engineering,1993,28(1):44-67.
    [106]Conte J. P., Vijalapura P. K., Meghella M. Consistent Finite-Element Response Sensitivity Analysis[J]. Journal of Engineering Mechanics,2003,129(12):1380-1393.
    [107]Scott M. H., Franchin P., Fenves G. L.,等. Response Sensitivity for Nonlinear Beam--Column Elements[J]. Journal of Structural Engineering,2004,130(9):1281-1288.
    [108]Scott M. H., Filippou F. C. Response Gradients for Nonlinear Beam-Column Elements under Large Displacements [J]. Journal of Structural Engineering, 2007,133(2):155-165.
    [109]Gu Q., Barbato M., Conte J. P. Handling of Constraints in Finite-Element Response Sensitivity Analysis[J]. Journal of Engineering Mechanics,2009,135(12):1427-1438.
    [110]Chopra Anil K.结构动力学:理论及其在地震工程中的应用[M].谢礼立,吕大刚.北京:清华大学出版社,2009.
    [111]Imai K., Frangopol D. M. Geometrically nonlinear finite element reliability analysis of structural systems. I:theory[J]. Computers & Structures,2000,77(6):693-709.
    [112]郭棋武.大跨斜拉桥的非线性及可靠性分析[D].长沙:湖南大学,2007.
    [113]Bathe K. J., Bolourchi S. Large Displacement Analysis of Three Dimensional Beam Structures [J]. International Journal for Numerical Methods in Engineering 1979,14(7):961-986.
    [114]Lo S. H. Geometricall Nonlinear Formulation of 3D Finite Strain Beam Element with Large Rotations[J]. Computers & Structures,1992,44:34-39.
    [115]Majid K. I. Nonlinear Structures[M]. London:Butterworths,1972.
    [116]Frangopol D. M., Imai K. Geometrically nonlinear finite element reliability analysis of structural systems. Ⅱ:applications[J]. Computers & Structures,2000,77(6):677-691.
    [117]Ambartzumian R., Der Kiureghian A., Ohaniana V.,等. Multinormal probability by sequential conditioned importance sampling:theory and application[J]. Probabilistic Engineering Mechanics,1998,14(1):27-32.
    [118]Hohenbichler M., Rackwitz R. First-Order Concepts in System Reliability [J]. Structural safety,1983,1(3):177-188.
    [119]Estes A. C. A system reliability approach to the lifetime optimization of inspection and repair of highway bridges[D]. Boulder:University of Colorado,1997.
    [120]Gollwitzer S., Rackwitz R. Equivalent components in first-order system reliability [J]. Reliability Engineering,1983,5(2):99-115.
    [121]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社,2001.
    [122]Ditlevsen O. Narrow Reliability Bounds for Structural Systems[J]. Journal of Structural Mechanics,1979,7(4):453-472.
    [123]Ang A. H-S., Tang W. Probability concepts in engineering planning and design. Ⅱ: Decision, risk, and reliability[M]. New York:Wiley,1984.
    [124]Zhao Y-G, Ang A. H-S. System Reliability Assessment by Method of Moments[J]. Journal of Structural Engineering,2003,129(10):1341-1349.
    [125]Vanmarcke E., Grigoriu M. Stochastic Finite Element Analysis of Simple Beams[J]. Journal of Engineering Mechanics,1983,109(5):1203-1214.
    [126]刘宁.可靠度随机有限元法及其工程应用[M].北京:中国水利水电出版社,2001.
    [127]Wall F. J., Deodatis G. Variability Response Functions of Stochastic Plane Stress/Strain Problems[J]. Journal of Engineering Mechanics,1994,120(9):1963-1982.
    [128]Shinozuka M., Deodatis G. Response Variability Of Stochastic Finite Element Systems[J]. Journal of Engineering Mechanics,1988,114(3):499-519.
    [129]Deodatis G., Shinozuka M. Weighted Integral Method. Ⅱ:Response Variability and Reliability [J]. Journal of Engineering Mechanics,1991,117(8):1865-1877.
    [130]Deodatis G. Weighted Integral Method. Ⅰ:Stochastic Stiffness Matrix[J]. Journal of Engineering Mechanics,1991,117(8):1851-1864.
    [131]Zhang J., Ellingwood B. SFEM for Reliability of Structures with Material Nonlinearities[J]. Journal of Structural Engineering,1996,122(6):701-704.
    [132]Li C. C., Der Kiureghian A. Optimal Discretization of Random Fields[J]. Journal of Engineering Mechanics,1993,119(6):1136-1154.
    [133]林道锦,秦权.一座现有拱桥面内失稳的可靠度随机有限元分析[J].工程力学,2005,22(6):122-126.
    [134]Hohenbichler M., Rackwitz R. Sensitivity and importance measures in structural reliability[J]. Civil Engineering Systems,1986,3:203-210.
    [135]Bjerager P., Krenk S. Parametric Sensitivity in First Order Reliability Theory[J]. Journal of Engineering Mechanics,1989,115(7):1577-1582.
    [136]Basudhar A., Missoum S., Sanchez A. H. Limit state function identification using Support Vector Machines for discontinuous responses and disjoint failure domains[J]. Probabilistic Engineering Mechanics,2008,302(1):110-118.
    [137]Der Kiureghian A., Dakessian T. Multiple design points in first and second-order reliability [J]. Structural Safety,1998,21(2):113-133.
    [138]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京:科学出版社,2007.
    [139]Hagan M. T., Demuth H. B., Beale M. H.神经网络设计[M].戴葵等.北京:机械工业出版社,2002.
    [140]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005.
    [141]刘希玉,刘弘.人工神经网络与微粒群优化[M].北京:北京邮电大学出版社,2008.
    [142]史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007.
    [143]Suykens J. A. K., Vandewale J. Least Squares Support Vector Machines Classifiers[J]. Neural Network Letters,1999,19(3):293-300.
    [144]王雪松,程玉虎.机器学习理论、方法及应用[M].北京:科学出版社,2009.
    [145]Meera R. S., Basudhar P. K. Effect of Soil Liquefaction on Flexural Behavior of Axially and Laterally Loaded Piles,2008 [C]. ASCE.
    [146]Au S. K., Beck J. L. A new adaptive importance sampling scheme for reliability calculations[J]. Structural Safety,1999,13(15):291-350.
    [147]Haldar A., Mahadevan S. Reliability assessment using stochastic element analysis[M]. New York:Wiley,2000.
    [148]陈颖,宁佐贵.基于神经网络响应面法的随机结构动力可靠度分析[J].振动与冲击,2007,26(1):65-68.
    [149]刘士林,冯云成,吴永昌,等.珠江黄埔大桥北汊主桥设计[J].公路,2009,10:279-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700