用户名: 密码: 验证码:
基于支持向量机的回转干燥窑生产过程建模与能耗优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回转干燥窑广泛应用于工业生产中,尤其在有色金属生产中占有重要地位,如何降低其生产过程中的高能耗一直是困扰企业的难题。干燥过程涉及复杂的传热、传质机理,与干燥物质的特性密切相关,回转干燥窑是一个大惯性、大滞后性、存在时变参数的控制对象,加上窑的主要部分处于回转状态,关键工艺参数难以准确及时的测量,因此很难定量的描述封闭窑内的热工状况。这种参数信息的模糊性,使得建模的难度非常大,导致传统的优化控制策略难以实施。
     本文以锌精矿回转干燥窑为背景,在深入研究其干燥过程机理的基础上,提出了基于支持向量机的回转干燥窑生产过程建模方法,采用基于支持向量机模糊模型的方法解决模型中干燥速率难以确定的问题。为了提高模型的预测精度,利用干燥过程分多个阶段的特点,提出了基于多阶段多支持向量机的回转干燥窑生产过程级联模型的方法,采用多阶段多支持向量机模糊模型确定干燥速率。针对支持向量机模糊模型中超参数的优化问题,提出了改进的遗传算法及免疫进化遗传算法,避免了人工选取参数的不足。为了提高模型的运算速度,提出了改进的变长度粒子群优化算法精简支持向量。在所获模型基础上提出了基于混沌扰动的粒子群约束优化算法,优化干燥过程热工参数,实验数据、仿真和应用都验证了此方法的有效性。论文的主要研究工作及创新性成果如下:
     (1)建立了基于能量、质量守恒定律的回转干燥窑生产过程机理模型,该模型由燃烧室及回转干燥窑窑体机理模型组成,通过燃烧室模型确定产生的烟气量及烟气温度,通过回转干燥窑窑体模型掌握热量利用情况,同时获得物料与烟气在窑内沿轴向连续变化的情况。设计了热平衡测试、参数测试和干燥速率测试实验,并进行了模型仿真,结果显示该模型能反映实际过程趋势,为后续研究奠定了基础。
     (2)提出了基于支持向量机的回转干燥窑生产过程建模方法,运用机理模型描述干燥过程,确定模型的结构,运用模糊建模方法确定干燥速率,并采用基于支持向量机回归模型的方法解决干燥速率模糊规则难以获取的问题,既增加了模糊规则的可靠性又保持了模糊模型的解释性。为了补偿干燥速率实验样本与现场生产数据之间的误差,提出了基于支持向量的残差补偿方法,有效地提高了模型的预测精度。
     (3)提出了改进的遗传算法及免疫进化遗传算法解决支持向量机模糊模型中超参数的优化问题,改进的遗传算法保留了遗传算法全局搜索能力,同时为了克服遗传算法收敛慢的不足,在后期融入了局部线性搜索;免疫进化遗传算法将遗传算法的搜索空间划分为小生境,根据小生境中个体的浓度利用免疫进化算法对适应值进行了修正,克服了遗传算法易出现“早熟”的问题。运行结果表明,两种方法都能有效地找到最优超参数,而改进的遗传算法具有更快的收敛速度。
     (4)提出了基于多干燥阶段多支持向量机的回转干燥窑生产过程级联模型的方法,利用多阶段多支持向量机模糊模型确定干燥速率。针对建模时输入样本空间难以划分的问题,提出了融入分区熵判断准则的模糊C均值算法(FCM),同时为了克服FCM算法对噪声数据敏感问题,引入了可能性FCM聚类算法,讨论了基于核函数的聚类算法,提高了输入样本空间划分的准确率。实验结果表明,该级联模型能提高预测精度,但增加了模型的复杂程度。
     (5)针对过多的支持向量降低模型的运算速度问题,提出了一种新的基于粒子群优化算法的支持向量精简方法,运用变长度粒子编码,将预测精度直接作为性能指标,通过粒子群优化算法获得精简支持向量集。结果表明该算法能在基本保持原预测精度的基础上有效地减少了支持向量个数,提高了模型的运行速度。
     (6)在回转干燥窑生产过程模型的基础上,针对工程中带约束的优化问题,提出了基于混沌扰动的粒子群约束优化算法,以干燥全过程参数范围为约束,以热效率最高为目标,通过混沌扰动使粒子跳出局部极值及不动点,获得最优的工艺参数,从而达到节约能源、降低消耗的目的,运行结果及实际应用表明了方法的有效性。
Rotary dryers are widely used in industrial processes, particularly in the non-ferrous metal production. But how to reduce the high-energy consumption of rotary dryer during production process is still a business problem. Its drying process not only involves complex heat transfer and mass transfer mechanism, but also closely relates to the properties of dry material. The rotary dryer is a control object with large inertia, large time delay, and time-varying parameters, and what's more, the main parts of the dryers are in a rotating state, the key technological parameter can not be measured accurately and timely. Therefore, it is difficult to describe the thermal state of closed dryer quantitatively. The ambiguity of parameter information makes modeling very difficult, so the traditional optimization control strategy is hard to implement.
     In the paper, taking a zinc concentrate ore rotary dryer as the background, a support-vector-regression(SVR)-based model for rotary dryer production process is proposed based on the deep study of the drying process mechanism. A SVR-based fuzzy model is adopted to solve the problem of determing the model parameters drying rate. In order to improve prediction accuracy, using the multi-phased-distribution feature of rotary drying process, the multi-phased and multi-SVR cascade model is proposed and drying rate is determined by utilizing multi-phased and multi-SVR fuzzy model. While for the optimization of hyper parameters of SVR fuzzy model, an improved genetic algorithm and an immune genetic algorithm are proposed respectively to avoid the lack of experience in choosing parameters. In order to improve the computation speed of the model, an improved variable-length particle swarm optimization algorithm based reduced support vector is proposed. Based on the obtained model, the chaos disturbence particle swarm constained optimazation algorithm is proposed to optimize the thermal parameters of drying process. Experimental data, simulations and applications have proved the effectiveness of this method. The main research and innovative achievements of the paper are as follows:
     (1) Rotary dryer production process first-principle model based on energy conservation and mass conservation law is established. The model consists of combustion chamber and rotary dryer body first-principle model. The volume and temperature of flue gas are obtained by the combustion chamber model. The heat utilization and the continuously changing situations of material and drying medium in the dryer along the axial direction are gotten by the rotary dryer body model. Thermal balance testing experiments, parameters testing experiments and drying rate testing experiments are designed and simulated, which lays a foundation for follow-up study. The simulation results show that this model can reflect the trend of the actual process.
     (2) The SVR-based rotary dryer production process model is proposed. First-principle model is used to describe the drying process and determine the structure of the model. Fuzzy modeling method is employed to determine the drying rate. In regard to the problem of obtaining the drying rate fuzzy rules, a method using SVR model is adopted. In order to compensate errors between experimental samples and actual production samples of drying rate, a support vector residual compensation method is proposed. This method can compensate for the errors effectively.
     (3) An improved genetic algorithm and an immune genetic algorithm are used respectively to solve the problem of optimization of hyper parameters of SVR fuzzy model. Features of the former include:retain the global search ability of genetic algorithm, and in order to overcome the slow convergence of genetic algorithm, integrate local linear search in the latter part of the algorithm to speed up the convergence rate. For the latter, in order to overcome the "premature" problem of genetic algorithm during process of searching for the optimal solution, genetic algorithm is improved. Dividing the search space of algorithm into small niches, and according to the concentration of individual niche, immune evolutionary algorithm is used to amend the fitness values. The results show that both methods can find the optimal model hyper parameters effectively, while the improved genetic algorithm has faster convergence speed.
     (4) A rotary dryer production process cascade model based on multi-drying-phased and multi-SVR is proposed. For the key problem that input sample space is very difficult to divide during modeling, an improved fuzzy C means algorithm (FCM) based on space entropy rules is proposed. Meanwhile, in order to overcome the problem that FCM algorithm is very sensitive to noise data, the possibility FCM clustering algorithm (PFCM) is introduced, the Kernel-based clustering algorithm (KPFCM) is discussed, to make the accuracy of input sample space better. The experimental results show that the cascade model can improve the prediction accuracy, but increase the complexity of model.
     (5) For the problems of increasing computation speed caused by too many support vectors, a new particle swarm optimization algorithm based reduced support vector method is proposed. Using variable length particle coding to predict accuracy, letting it as a performance index directly, and obtaining the reduced support vector set by particle swarm optimization algorithm. The results show that the algorithm can reduce the number of support vectors effectively on the basis of maintaining the original prediction accuracy, and thus improve the model speed.
     (6) Based on rotary dryer production process model, for the optimization problems with constraints in engineering, the chaos disturbence particle swarm constained optimization algorithm is proposed. Taking the range of parameters in drying process as constraint, with the highest thermal efficiency as the goal, make particles out of local minima and non-fixed point by chaotic disturbance to obtain the optimal technological parameters, and thus save energy and reduce consumption. The results and practical application have proved the effectiveness of this method.
引文
[1]潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社,2008.
    [2]崔春芳,童忠良.干燥新技术及应用[M].北京:化学工业出版社,2009.
    [3]Mujumdar Arun S. Handbook of Industrial Drying[M]. Taylor & Francis Group, LLC,2006.
    [4]章兢,张小刚,刘小燕.回转窑集成智能控制系统.电工技术学报[J],2002,17(4):62-66.
    [5]金国森.干燥设备[M].北京:化学工业出版社,2002.
    [6]Zadeh L. Fuzzy Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Trans. Syst., Man, Cybern.,1973,3(1): 28-44.
    [7]Hopfield J, Tank D. Neural computation of decisions in optimization problems[J]. Biol. Cybern.,1985,52:141-152.
    [8]Abraham A. Neuro-Fuzzy Systems:State-of-the-Art Modeling Techniques[J]. In Mira J and Prieto A (Eds.), Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, Springer-Verlag Germany,2001,269-276.
    [9]Myklestad O. Heat and Mass Transfer in Rotary Dryers[J]. Chem. Eng. Prog. Symp. Series,1963,59(41):129-137.
    [10]Sharples K, Glikin P G, Warne R. Computer simulation of rotary dryers[J]. Trans. Inst. Chem. Eng,1964,42:275-284.
    [11]Thorpe G R. The mathematical modeling of driers:[PhD thesis]. England: Nottingham University,1972.
    [12]Kelly J J, Donnell P O. Residence time model for rotary drums[J]. Trans. Inst. Chem. Eng,1977,55:243-252.
    [13]Porter S J. The design of rotary driers and coolers[J]. Trans.Inst. Chan. Engrs, 1963,41:272-280.
    [14]Reay D. Theory in the design of dryers[J]. Chem. Eng,1979,7:501-506.
    [15]Kamke F A, Wilson J B. Computer simulation of a rotary dryer. Part Ⅱ:Heat and mass transfer[J]. AIChe Journal,1986,32:269-275.
    [16]Douglas P L, Kwade A, Lee P L, et al. Simulation of a rotary dryer for sugar crystalline[J]. Drying Technology,1993,11(1):129-155.
    [17]Wang F Y, Cameron I T, Litster J D, et al. A distributed parameter approach to the dynamics of rotary drying processes[J]. Drying Technology,1993,11(7): 1641-1656.
    [18]Duchesne C, Thibault J, Bazin C. Modeling and dynamic simulation of an industrial rotary dryer[J]. Dev. Chem. Eng. Mineral Process,1997,5(3/4): 155-182.
    [19]Iguaz A, Esnoz A, Martinez G, et al. Mathematical modeling and simulation for the drying process of vegetable wholesale by-products in a rotary dryer[J]. Journal of Food Engineering,2003,59:151-160.
    [20]Larsen P. Industrial application of fuzzy logic control[J]. Int, J. Man-Mach. Stud.,1980,12:3-10.
    [21]Yliniemi L. Advanced control of a rotary dryer. [PhD Thesis]. Finland:Oulu University,1999.
    [22]Yliniemi L, Koskinen J, Leiviska K. Data-driven fuzzy modeling of a rotary dryer [J]. International Journal of Systems Science,2003,34(14-15):819-836.
    [23]Jarvensivu M, Saari K and-L.Jamsa-Jounela S. Intelligent control system of an industrial lime kiln process[J]. Control Engineering Practice,2001,9(6): 589-606.
    [24]Hagemoen S W. An expert system application for lime kiln automation[C]. Proceedings of Pulp and Paper Industry Technical Conference, IEEE, Hyannis 1993,91-97.
    [25]Tsourveloudis N C, Kiralakis L. Rotary Drying of Olive Stones:Fuzzy Modeling and Control[J]. Wseas Transactions on Systems,2005,12(4): 2361-2368.
    [26]刘兴堂,梁炳成,刘力,等.复杂系统建模理论、方法与技术[M].北京:科学出版社,2008.
    [27]Cubillos F A, Alvarez P I, Pinto J C and Lima E L. Hybrid-neural modeling for particulate solid drying process[J]. Powder Technol,1996,87:153-160.
    [28]Juuso E K. Modeling and simulation in advanced control. White paper of the Virtual Institute for Simulation (Sim-Serv):www.sim-serv.com. Sim-Serv, 2004,15p.
    [29]Canales E R, Borquez R M, Melo D L. Steady state modeling and simulation of an indirect rotary dryer. Food Control 2001,12:77-83.
    [30]Chilton T H, Colburn A P. Mass transfer (absorption) coefficients, prediction from data on heat transfer and fluid friction[J]. Ind. Eng. Chem.1934,16 (11): 1183-1187.
    [31]Page C. Factors influencing the maximum rates of air drying shelled corn in thin layers[M.S. thesis]. West Lafayette:Purdue University,1949.
    [32]Lewis W K. The rate of drying of solid materials[J]. Ind. Eng. Chem.—Sympos. Drying,1921,3(5):42.
    [33]Miller C O, Logwinuk A K. Fluidization studies of particles[J]. Ind. Eng. Chem.,1951,43:1220-1226.
    [34]Friedman S J, Marshall W R. Studies in rotary drying Part Ⅱ-heat and mass transfer[J]. Chemical engineer progress,1949,45(9):573-588.
    [35]Schofield F R, Glikin P G. Rotary dryers and coolers for granular fertilizers[J]. Trans.lnst. Chem Eng,1962,40:183-190.
    [36]Lisboa M H, Alves M C, Vitorino D S, et al. Study of the performance of the rotary dryer with fluidization[C]. Proceedings of the 14th International Drying Symposium (IDS 2004), Sao Paulo, Brazil,2004, C:1668-1675.
    [37]Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag,1995.
    [38]Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10:988-999.
    [39]Smola A, Scholkopf B. A Tutorial on Support Vector Regression[J]. Statistics and Computing,2004,14(3):199-222.
    [40]Christopher J, Burges C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2(2):1-43.
    [41]Volker Blanz, Thomas Vetter. A morphable model for the synthesis of 3D faces[C]. SIGGRAPH'99 Conference Proceedings,1999,187-194.
    [42]Vapnik V N, Golowich S E, Smola A J. Support vector method for function approximation, regression estimation and signal processing[J]. In Advances in Neural Information Processing Systems 1996,9:281-287.
    [43]Muller K R, Smola A, Ratsch G, et al. Predicting time series with support vector machines[C]. Artificial Neural Networks-ICANN'97, Springer,1997, 999-1004.
    [44]Serdar Iplikci. Support Vector Machines Based Generalized Predictive Control of Chaotic Systems[J]. IEICE Trans. Fundamentals,10(E89-A):2006, 2787-2794.
    [45]Huang Xixia, Chen Shanben. SVM-based fuzzy modeling for the arc welding process[J]. Materials Science and Engineering A 427,2006,181-187.
    [46]阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528.
    [47]王定成,方廷健,高理富,等.支持向量机回归在线建模及应用[J].控制与决策,2003,17(1):89-91.
    [48]刘斌,苏宏业,褚健.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402.
    [49]冯瑞,张杰,张艳珠,邵惠鹤.基于加权支持向量机的移动建模方法及其在软测量中的应用[J].自动化学报,2004,30(3):436-441.
    [50]王春林,周昊,周樟华,等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76.
    [51]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [52]Cherkassky V, Yunqian M. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J]. Neural Networks,2004,17:113-126.
    [53]Smola A, Murata N, Scholkopf B, Muller K. Asymptotically optimal choice of s-loss for support vector machines[C]. Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing, Berlin, Springer,1998,105-110.
    [54]Samanta B, Al-Balushi K R, Al-Araimi S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection[J]. Engineering Applications of Artificial Intelligence,2003,16(7,8):657-665.
    [55]Kwok J T. Linear dependency between ε and the input noise in ε-support vector regression[C]. ICANN2001,405-410.
    [56]Baesens B, Viaene S, Gestel T V, et al. An empirical assessment for kernel type performance for least squares support vector machine classifiers[C]. Proceedings of 4th Int Conf on Knowledge-based Intelligent Engineering Systems and Allied Technologies. Brighton, UK:IEEE,2000,1:313-316.
    [57]Chapelle O, Vapnik V, Bacsquest O, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning,2002,46(1):131-159.
    [58]Keerthi S. Efficient tuning of SVM hyperparameters using margin bound and iterative algorithms[J]. IEEE Trans, On Neural Networks,2002,13(5):1225-1229.
    [59]邵信光,杨慧中.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743.
    [60]吴景龙,杨淑霞,刘承水.基于遗传算法优化参数的支持向量机短期负荷预测方法[J].中南大学学报(自然科学版),2009,40(1):180-184.
    [61]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[C]. Neural Networks for Signal Processing Ⅶ-Proceedings of the 1997 IEEE Workshop, New York:IEEE Press,1997:276-285.
    [62]Joachims T. Making large-scale support vector machine learning practical[J]. In Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press,1998,169-184.
    [63]Platt J C. Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines[C]. Microsoft Research Tech, Report MSR-TR-98-14, Microsoft, Redmond, Wash.,1998.
    [64]Platt J C. Fast Training of SVMs Using Sequential Minimal Optimization[J]. In Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press,1998.
    [65]Burges C. Simplified support vector decision rules[C]. In 13th International Conference on Machine Learning,1996,71-77.
    [66]Scholkoph B, Mika S, Burges C. Input space versus feature space in kernel based methods[J]. IEEE Transactions on Neural Networks,1999,10(5): 1000-1016.
    [67]曾志强,高济.基于向量集约简的精简支持向量机[J].软件学报,2007,18(11):2719-2727.
    [68]Gilardi N, Bengio S. Local machine learning models for spatial data analysis[J]. Inf. Decis. Anal,2003,1(4):11-28.
    [69]Chen Xiu Juan, Robert Harrison, Zhang Yan Qing. A Multi-SVM Fusion Model Using Type-2 FLS[C].2006 IEEE International Conference on Fuzzy Systems, Canada,2006,1261-1265.
    [70]高学金,王普,孙崇正,等.一种建立发酵过程模型的新方法[J].北京工业大学学报,2006,32(5):405-409.
    [71]张晶晶,曹鹏,乔旭光.脱水蒜片干燥工艺的节能优化[J].农业工程学报.2009,25(7):279-282.
    [72]Boss E A, Filhoa R M, Coselli E. Freeze drying process:real time model and optimization[J]. Chemical Engineering and Processing,2004,43(12): 1475-1485.
    [73]Kennedy J, Eberhart R C. Particle swarm optimization[C]. IEEE International Conference on Neural Networks. Piscataway:IEEE Service Center,1995, 1942-1948.
    [74]Dasnupta D, Forrest S. An anomaly detection algorithm inspired by the immune system. Artificial Immune System and Their Applications[C], Berlin: Springer-Verlag,1998,262-277.
    [75]Cooke D E, Hunt J E. Recognizing promoter-sequences using an artificial immune system [C]. Proc Intelligent System in Molecular Biology(ISM B'95). Cambridge:AAAI Press,1995,89-97.
    [76]Michalewicz Z. Genetic algorithms+Data Structures=Evolution Programs[M], 3rd Edition, Springer, NY, USA,1999.
    [77]叶长燊,阮奇,李玲.微粒群算法在干燥器多变量优化设计中的应用[J].化学工业与工程技术,2007,28(1):51-57.
    [78]Ugur Yuzgec, Yasar Becerikli, Mustafa Turker. Nonlinear predictive control of a drying process using genetic algorithms[J]. ISA Transactions,2006,45(4): 589-602.
    [79]孔玲爽,阳春华,王雅琳,桂卫华.考虑多性能指标的配料优化模型及求解算法[J].中南大学学报(自然科学版),2010,41(1):213-218.
    [80]李勇刚,桂卫华,阳春华.基于改进粒子群优化的锌电解分时供电优化[J].计算机工程与应用,2007,43(2):221-223.
    [81]Hu X, Eberhart R. Solving constrained nonlinear optimization problems with particle swarm optimization[J]. In Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA,2002.
    [82]王汉立,刘晓勇.热工设备与测试技术[M].武汉:武汉理工大学出版社,2007.
    [83]徐利华,延吉生.热工基础与工业窑炉[M].北京:冶金工业出版社,2006.
    [84]孙佩极.冶金化工过程及设备[M].北京:冶金工业出版社,1980.
    [85]Balakrishnan A R, Pei D C T. Heat transfer in gas-solid packed bed systems,1. A critical review[J]. Ind. Eng. Chem. Process Des. Dev.,1979,18(1):30-40.
    [86]Bradshaw R D, Myers J E. Heat and mass transfer in fixed and fluidized beds of large particles[J].AIChEJ,1967,13(6):1181-1187.
    [87]Miskell F, Marshall W R. A study of retention time in a rotary dryer[J]. Chem Eng Progress,1956,52(1):35-38.
    [88]Friedman S J, Marshall W R. Studies in rotary drying-Part 1. Holdup and
    dusting[J]. Chem Eng Progress,1949,45 (8):482-493.
    [89]Friedman S J, Marshall W R. Studies in rotary drying-Part 2. Heat and mass transfer[J]. Chem Eng Progress,1949,45 (9):573-588.
    [90]Perry J H. Chemical Engineers'Handbook[M]. McGraw-Hill, Inc, New York, 1963,1-107.
    [91]Kuramae M, Tanaka T. An analysis of the volumetric heat transfer coefficient for a rotary dryer[C]. Heat Transfer Jpn. Research,1977,6(1):66-80.
    [92]Mcormick P Y. Gas velocity effects on heat transfer in direct heat rotary dryers[J]. Chem Eng Progress,1962,58(6):57-62.
    [93]Chiang J H, Hao P Y. Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling:A New Approach[....J]. IEEE Trans. Fuzzy systems, 2004,12(1):1-12.
    [94]Yixin Chen, James Z. Wang, Kernel Machines and Additive Fuzzy Systems: Classification and Function Approximation[C], The 12th IEEE International Conference on Fuzzy Systems,2003. FUZZ'03.25-28 May 2003,2:789-795.
    [95]Takagi, T., Sugeno, M., Fuzzy Identification of Systems and Its Applications to Modeling and Control, IEEE Trans. Syst., Man, Cybernetics, 1985,15:116-132.
    [96]Linkens, D. A., Chen, M. Y, "A systematic neuro-fuzzy modeling framework with application to material property prediction", IEEE Trans. Syst., Man, and Cyb.,vol.31(5):781-790.
    [97]Wang L X. Fuzzy systems are universal approximators[C]. Proc. IEEE Int. Conf. Fuzzy Systems,1992,1163-1170.
    [98]Aizerman M, Braverman E, Rozonoer L. Theoretical foundations of the potential function method in pattern recognition learning[J]. Automation and Remote Control,1964,25:821-837.
    [99]Poggio T. On optimal nonlinear associative recall[J]. Biological Cybernetics, 1975,19:201-209.
    [100]Poggio T, Girosi F. Networks for approximation and learning[C]. Proceedings of the IEEE,1990,78(9):1481-1497.
    [101]Scholkopf B, Burges C, Smola A J. Advances in Kernel Methods-Support Vector Learning [J]. MIT Press, Cambridge,1999,327-352.
    [102]Watkins C. Kernels from matching operations[C]. Technical Report CSD-TR-98-7, Royal Holloway, University of London,1999.
    [103]Haussler D. Convolution kernels on discrete structures[C]. Technical Report UCSC-CRL-99-10, University of California in Santa Cruz,1999.
    [104]Jaakkola T S, Haussler D. Exploiting generative models in discriminative classifiers[C]. In Proc. of Tenth Conference on Advances in Neural Information Processing Systems, MIT Press,1998,487-493.
    [105]Amari S, Wu S. Improving support vector machine classifiers by modifying kernel functions[J]. Neural Networks,1999,12(6):783-789.
    [106]Jyh-Shing, Jang R. ANFIS:Adaptive-network-based fuzzy inference system[J], IEEE Transactions on Systems, Man and Cybernetics,1993,665-685.
    [107]Tong R M. The evaluation of fuzzy models derived from experimental Data[J]. Fuzzy Sets Syst,1980,4:1-12.
    [108]Linkens D A, Chen M Y. A systematic neuron-fuzzy modeling framework with application to material property prediction[J]. IEEE Trans. Syst., Man and Cyb.,31(5):781-790.
    [109]Mattera D, Haykin S. Support vector machines for dynamic reconstruction of a chaotic system. Advances in kernel method:Support vector machine[M]. Cambridge, MA:MIT Press,1999.
    [110]Holland J. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press,1975,26-42.
    [111]Marek Obitko. Introduction to genetic algorithms. http://www.obitko.com/tutorials/geneticalgorithms/index.php,2008.
    [112]Houk C R, Joins J, Kay M. A genetic algorithm for function optimization:a matlab implementation[R]. Report No:NCSU IE TR95 09, North Carolina State University,1995.
    [113]Jiao L C, Wang L. A novel genetic algorithm based on immunity. IEEE Trans. on System, Man and Cybernetic-Part A:Systems and Humans,2000,30(5): 552-561.
    [114]Talbi. Meta heuristics for multiobjective combinatorial optimization:state of the art[R]. Technical report, LIFL, University of Lille, France,2000.
    [115]谢书明,高宪文,柴天佑.基于灰色模型的转炉炼钢终点预报研究[J].钢铁研究学报,1999,11(4):9-11.
    [116]秦斌,吴敏,王欣.模糊神经网络模型混沌混合优化学习算法及应用[J].控制与决策,2005,20(3):261-265.
    [117]Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics,1974,3(3):32-57.
    [118]Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York:Plenum Press,1981:95-107.
    [119]Pain R, Bezdek J C. On cluster validity for the fuzzy c-means model [J]. IEEE Trans. Fuzzy Systems,1995,3(3):370-379.
    [120]Meena T, Smriti S. A New Kernel Based Hybrid c-Means Clustering Model[C]. FUZZ-IEEE,2007:1-5.
    [121]Krishnapuram R, Keller J M. A possibilistic approach to clustering[J]. IEEE Fuzzy Systems,1993,1(2):98-110.
    [122]Tushir M, Srivastava S. A new kernelized hybrid C-mean clustering model with optimized parameters [J]. Applied Soft Computing Journal (2008), doi:10.1016/j.asoc.2009.08.020.
    [123]Pedrycz W. Conditional fuzzy clustering in the design of radial basis function neural networks[J]. IEEE Transactions on Neural Networks,1998,9(4): 601-612.
    [124]Pedrycz W. Conditional fuzzy c-means[J]. Pattern Recognition Letters,1996, 17:625-632.
    [125]Downs T, Gates K E, Masters A L. Exact simplification of support vector solutions[J]. Journal of Machine Learning Research, MIT Press, Cambridge, 2001,2:45-49.
    [126]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan.1995,39-43.
    [127]Zhang J L, Zhang X S. A sequential penalty algorithm for nonlinear constrained Optimization[J]. Journal of Optimization Theory and Application, 2003,118(3):635-655.
    [128]周永华,张旭,毛宗源.采用不可微精确罚函数的约束优化演化算法[J].小型微型计算机系统,2004,25(8):1464-1467.
    [129]Clerc M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]. Proceedings of the Congress on Evolutionary Computation, Washington DC, USA, IEEE Service Center, Piscataway, NJ. 1999,1951-1957.
    [130]Hamida S B, Schoenauer M. ASCHEA:New results using adaptive segregational constraint handling[C]. Proc. of the Congress on Evolutionary Computation (CEC 2002), Piscataway:IEEE Service Center,2002,884-889.
    [131]Yang J M, Chen Y P, Horng J, et al. Applying family competition to evolution strategies for constrained optimization[J]. Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg New York,1997,1213:201-211.
    [132]Homaifar A, Lai S H, Qi X. Constrained Optimization via Genetic Algorithms[J]. Simulation,1994,2(4):242-254.
    [133]Deb K, Pratab A, Agrawal S, Meyarivan T. A fast and elitist nondominated sorting genetic algorithm for multi-objective optimization:NSGA Ⅱ[J]. IEEE Trans. on Evolutionary Computation,2002,6(2):182-197.
    [134]Michalewicz Z, Attia N F. Evolutionary optimization of constrained problems[C]. Proc. of the 3rd Annual Conf. on Evolutionary Programming. River Edge:World Scientific,1994,98-108.
    [135]Shi Y, Eberhart R C.A modified particle swarm optimizer[J]. Evolutionary Programming VII, Springer,1998,611-616.
    [136]Suganthan P N. Particle swarm optimiser with neighbourhood operator[C]. In Proceedings of the IEEE congress on evolutionary computation (CEC) Piscataway:IEEE,1999,1958-1962.
    [137]吴祥兴,陈忠等编著.混沌学导论[M].上海:上海科学技术文献出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700